Worksheet 27: Fourier series

Full Fourier series: if f is a function on the interval $[-\pi, \pi]$, then the corresponding series is

$$
\begin{gathered}
f(x) \sim \frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos (n x)+b_{n} \sin (n x) \\
a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos (n x) d x \\
b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin (n x) d x
\end{gathered}
$$

Fourier cosine and sine series: if f is a function on the interval $[0, \pi]$, then the corresponding cosine series is

$$
\begin{aligned}
& f(x) \sim \frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos (n x) ; \\
& a_{n}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \cos (n x) d x
\end{aligned}
$$

and the corresponding sine series is

$$
\begin{gathered}
f(x) \sim \sum_{n=1}^{\infty} b_{n} \sin (n x) \\
b_{n}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \sin (n x)
\end{gathered}
$$

Convergence theorem for full Fourier series: if f is a piecewise differentiable function on $[-\pi, \pi]$, then its Fourier series converges at every point. The sum of the series is computed as follows:

1. Forget about what the function f looks like outside of the interval $[-\pi, \pi]$. After all, the formulas for the coefficients only feature the values of f on that interval.
2. Continue f periodically from $[-\pi, \pi]$ to the whole real line; let \tilde{f} be the resulting function.
3. The sum of the Fourier series at the point x is equal to $\tilde{f}(x)$, if \tilde{f} is continuous at x; otherwise, it is equal to $(\tilde{f}(x+)+\tilde{f}(x-)) / 2$.

Convergence for Fourier cosine series: forget about what f looks like outside of $[0, \pi]$, then extend f as an even function to $[-\pi, \pi]$, then use the above algorithm. Same approach works for sine series, except that you extend f to $[-\pi, \pi]$ as an odd function.
1.* This problem shows an alternative way of proving that the functions $\sin (k x), k \in \mathbb{Z}, k>0$, form an orthogonal set in $C[0, \pi]$.
(a) Assume that u and v are eigenfunctions of the following problem:

$$
\begin{gathered}
u^{\prime \prime}(x)+\lambda u(x)=0,0<x<\pi ; \\
u(0)=u(\pi)=0 ; \\
v^{\prime \prime}(x)+\mu v(x)=0,0<x<\pi ; \\
v(0)=v(\pi)=0
\end{gathered}
$$

where λ and μ are two real numbers. Integrate by parts twice and use the boundary conditions to show that

$$
\int_{0}^{\pi} u^{\prime \prime}(x) v(x) d x=\int_{0}^{\pi} u(x) v^{\prime \prime}(x) d x .
$$

Use the differential equations satisfied by u and v to show that

$$
(\lambda-\mu) \int_{0}^{\pi} u(x) v(x) d x=0 .
$$

(b) Take $u(x)=\sin (k x), v(x)=\sin (l x)$, for k, l positive integers and $k \neq l$. Verify that these functions satisfy the conditions of part (a) for certain λ and μ, and conclude that

$$
\int_{0}^{\pi} \sin (k x) \sin (l x) d x=0
$$

Solution: (a) We have

$$
\begin{aligned}
& \int_{0}^{\pi} u^{\prime \prime}(x) v(x) d x=\left.u^{\prime}(x) v(x)\right|_{x=0} ^{\pi}-\int_{0}^{\pi} u^{\prime}(x) v^{\prime}(x) d x \\
& \int_{0}^{\pi} u(x) v^{\prime \prime}(x) d x=\left.u(x) v^{\prime}(x)\right|_{x=0} ^{\pi}-\int_{0}^{\pi} u^{\prime}(x) v^{\prime}(x) d x
\end{aligned}
$$

Since $u(0)=u(\pi)=v(0)=v(\pi)$, the boundary terms vanish and we get

$$
\int_{0}^{\pi} u^{\prime \prime}(x) v(x) d x=\int_{0}^{\pi} u(x) v^{\prime \prime}(x) d x .
$$

Next, $u^{\prime \prime}(x)=-\lambda u(x)$ and $v^{\prime \prime}(x)=-\mu v(x)$; substituting this into the equation above, we get

$$
-\lambda \int_{0}^{\pi} u(x) v(x) d x=-\mu \int_{0}^{\pi} u(x) v(x) d x
$$

(b) The functions $u(x)$ and $v(x)$ satisfy the equations of (a) for $\lambda=k^{2}$ and $\mu=l^{2}$; therefore,

$$
\left(k^{2}-l^{2}\right) \int_{0}^{\pi} u(x) v(x) d x=0 .
$$

Since $k^{2} \neq l^{2}$, the functions u and v are orthogonal.
2. Find the Fourier sine series for the function

$$
f(x)=x(\pi-x), 0<x<\pi
$$

Solution: Integrate by parts:

$$
\begin{gathered}
b_{k}=\frac{2}{\pi} \int_{0}^{\pi} x(\pi-x) \sin (k x) d x \\
=-\frac{2}{\pi k} \int_{0}^{\pi} x(\pi-x) d(\cos (k x)) \\
=-\left.\frac{2}{\pi k} x(\pi-x) \cos (k x)\right|_{x=0} ^{\pi}+\frac{2}{\pi k} \int_{0}^{\pi}(\pi-2 x) \cos (k x) d x \\
=\frac{2}{\pi k^{2}} \int_{0}^{\pi} \pi-2 x d(\sin (k x)) \\
=\left.\frac{2}{\pi k^{2}}(\pi-2 x) \sin (k x)\right|_{x=0} ^{\pi}+\frac{4}{\pi k^{2}} \int_{0}^{\pi} \sin (k x) d x \\
=-\left.\frac{4}{\pi k^{3}} \cos (k x)\right|_{x=0} ^{\pi}=\frac{4}{\pi k^{3}}\left[1-(-1)^{k}\right] .
\end{gathered}
$$

Therefore, $b_{k}=0$ for k even and $b_{k}=8 /\left(\pi k^{3}\right)$ for k odd; the Fourier series is

$$
f(x) \sim \frac{8}{\pi} \sum_{j=1}^{\infty} \frac{\sin ((2 j-1) x)}{(2 j-1)^{3}}
$$

3. Using the previous problem, find the formal solution to the problem

$$
\begin{gathered}
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}, 0<x<\pi, t>0 \\
u(0, t)=u(\pi, t)=0, t>0 \\
u(x, 0)=x(\pi-x), 0<x<\pi
\end{gathered}
$$

Answer:

$$
u(x, t)=\sum_{j=1}^{\infty} \frac{8}{\pi(2 j-1)^{3}} e^{-(2 j-1)^{2} t} \sin ((2 j-1) x)
$$

4. Find the Fourier cosine series for the function

$$
f(x)=\pi-x, 0<x<\pi .
$$

Solution: We calculate

$$
\begin{gathered}
a_{0}=\frac{2}{\pi} \int_{0}^{\pi} \pi-x d x=\pi \\
a_{k}=\frac{2}{\pi} \int_{0}^{\pi}(\pi-x) \cos (k x) d x \\
=\frac{2}{\pi k} \int_{0}^{\pi} \pi-x d(\sin (k x)) \\
=\frac{2}{\pi k} \int_{0}^{\pi} \sin (k x) d x=\frac{2}{\pi k^{2}}\left[1-(-1)^{k}\right] .
\end{gathered}
$$

The corresponding Fourier series is

$$
f(x) \sim \frac{\pi}{2}+\frac{4}{\pi} \sum_{j=1}^{\infty} \frac{\cos ((2 j-1) x)}{(2 j-1)^{2}}
$$

5. Find the full (sine and cosine) Fourier series for the function

$$
f(x)= \begin{cases}0, & -\pi<x<0 \\ 1, & 0<x<\pi\end{cases}
$$

Solution: We calculate

$$
\begin{gathered}
a_{0}=\frac{1}{\pi} \int_{0}^{\pi} d x=1 \\
a_{k}=\frac{1}{\pi} \int_{0}^{\pi} \cos (k x) d x=0, k>0 \\
b_{k}=\frac{1}{\pi} \int_{0}^{\pi} \sin (k x) d x=\frac{1-(-1)^{k}}{k}
\end{gathered}
$$

Therefore, the Fourier series is

$$
f(x) \sim \frac{1}{2}+\sum_{j=1}^{\infty} \frac{2}{2 j-1} \sin ((2 j-1) x)
$$

6. Assume that $f(x)$ is an odd function on the interval $[-\pi, \pi]$. Explain why the full Fourier series of f consists only of sines (in other words, why the coefficients next to the cosines are all zero).

Solution: We have

$$
a_{k}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos (k x) d x=0
$$

since $\cos (k x)$ is even, $f(x)$ is odd, the product $f(x) \cos (k x)$ is odd and thus its integral over $[-\pi, \pi]$ is zero.
7. Using the Fourier series convergence theorem, find the functions to which the series in problems 2, 4, and 5 converge. Sketch their graphs.

Answers: For problem 2, the Fourier series converges to the 2π-periodic extension of the function

$$
g(x)= \begin{cases}x(\pi-x), & 0 \leq x \leq \pi \\ -x(\pi-x), & -\pi \leq x \leq 0\end{cases}
$$

For problem 4, the Fourier series converges to the 2π-periodic extension of the function $\pi-|x|$ from the segment $[-\pi, \pi]$.

For problem 5, the Fourier series converges to the 2π-periodic extension of the function

$$
h(x)= \begin{cases}0, & -\pi<x<0 \\ 1, & 0<x<\pi \\ 1 / 2, & x \in\{-\pi, 0, \pi\}\end{cases}
$$

8. Assume that f is a function on the interval $[0, \pi]$ whose graph is symmetric with respect to the line $x=\pi / 2$; in other words, $f(\pi-x)=f(x)$. If

$$
f(x) \sim \sum_{k=1}^{\infty} b_{k} \sin (k x)
$$

is the Fourier sine series of f, prove that $b_{k}=0$ for even k. (Hint: write out the formula for b_{k} and make the change of variables $y=\pi-x$.)

Solution: Making the change of variables $y=\pi-x$, we get

$$
\begin{gathered}
b_{k}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \sin (k x) d x \\
=\frac{2}{\pi} \int_{0}^{\pi} f(\pi-y) \sin (k(\pi-y)) d y \\
=\frac{2}{\pi} \int_{0}^{\pi} f(y)(-1)^{k+1} \sin (k y) d y=(-1)^{k+1} b_{k}
\end{gathered}
$$

Therefore, for k even, $b_{k}=-b_{k}$ and thus $b_{k}=0$.

