Worksheet 26: PDE and Fourier method

0 . Given the functions

$$
\begin{gathered}
u(x, t)=e^{-t} \sin x \\
v(x, t)=\cos t \sin x
\end{gathered}
$$

calculate the derivatives

$$
\frac{\partial u}{\partial t}, \frac{\partial^{2} u}{\partial x^{2}}, \frac{\partial^{2} v}{\partial t^{2}}, \frac{\partial^{2} v}{\partial x^{2}}
$$

Explain why u solves the following initial/boundary value problem for the heat equation:

$$
\begin{gathered}
\frac{\partial u}{\partial t}(x, t)=\frac{\partial^{2} u}{\partial x^{2}}(x, t), 0<x<\pi, t>0 ; \\
u(0, t)=u(\pi, t)=0, t>0 \\
u(x, 0)=\sin (x), 0<x<\pi
\end{gathered}
$$

while v solves the following initial/boundary value problem for the wave equation:

$$
\begin{gathered}
\frac{\partial^{2} v}{\partial t^{2}}(x, t)=\frac{\partial^{2} v}{\partial x^{2}}(x, t), 0<x<\pi, t>0 \\
v(0, t)=v(\pi, t)=0, t>0 \\
v(x, 0)=\sin x, \frac{\partial v}{\partial t}(x, 0)=0,0<x<\pi
\end{gathered}
$$

Describe the behavior of the functions $u(t, \cdot)$ and $v(t, \cdot)$ as time goes on.
Solution: We find

$$
\begin{aligned}
\frac{\partial u}{\partial t} & =-e^{-t} \sin x=\frac{\partial^{2} u}{\partial x^{2}} \\
\frac{\partial v}{\partial t} & =-\cos t \sin x=\frac{\partial^{2} v}{\partial x^{2}}
\end{aligned}
$$

It remains to verify the boundary and initial conditions for u and v. The shape of the profile (for fixed t and varying x) of the functions u and v stays the same (in the shape of $\sin x$); however, the function u will exponentially fast go to zero, while the function v will bounce back and forth with period 2π.

1. Find all eigenvalues λ and the corresponding eigenfunctions for the boundary value problem (see also problem 2)

$$
\begin{gathered}
y^{\prime \prime}(x)+\lambda y(x)=0,0<x<\pi \\
y^{\prime}(0)=0, y^{\prime}(\pi)=0 .
\end{gathered}
$$

Solution: Assume that $\left\{y_{1}(x), y_{2}(x)\right\}$ is a fundamental system of solutions to the equation $y^{\prime \prime}(x)+\lambda y(x)$. (Both y_{1} and y_{2} depend on λ.) The general solution is then $c_{1} y_{1}(x)+c_{2} y_{2}(x)$ for c_{1}, c_{2} arbitrary constants; the boundary conditions are satisfied if the following system of equations on c_{1}, c_{2} holds:

$$
\begin{align*}
& 0=y^{\prime}(0)=c_{1} y_{1}^{\prime}(0)+c_{2} y_{2}^{\prime}(0) \\
& 0=y^{\prime}(\pi)=c_{1} y_{1}^{\prime}(\pi)+c_{2} y_{2}^{\prime}(\pi) \tag{1}
\end{align*}
$$

This system has a nonzero solution if and only if

$$
\operatorname{det}\left[\begin{array}{ll}
y_{1}^{\prime}(0) & y_{2}^{\prime}(0) \tag{2}\\
y_{1}^{\prime}(\pi) & y_{2}^{\prime}(\pi)
\end{array}\right]=0
$$

Now, the auxiliary equation is $r^{2}+\lambda=0$. We consider the following cases:
Case 1: $\lambda<0$. Put $r=\sqrt{-\lambda}>0$. We find $y_{1}(x)=e^{r x}, y_{2}(x)=e^{-r x}$, and (2) turns into

$$
r^{2}\left(e^{r \pi}-e^{-r \pi}\right)=0
$$

which cannot be true for $r>0$.
Case 2: $\lambda=0$. We find $y_{1}(x)=1, y_{2}(x)=x$, and the equation (2) is satisfied. Solving (1), we get $c_{1} \in \mathbb{R}, c_{2}=0$; therefore, $y=1$ is an eigenfunction for this eigenvalue.

Case 3: $\lambda>0$. Put $s=\sqrt{\lambda}>0$. We find $y_{1}(x)=\cos (s x), y_{2}(x)=$ $\sin (s x)$; (2) turns into

$$
0=\sin (s \pi)
$$

This equation is solved for $s=k$ a positive integer; the corresponding value of λ is $\lambda=k^{2}$. Solving (1), we get $c_{1} \in \mathbb{R}, c_{2}=0$; therefore, $y=\cos (k x)$ is an eigenfunction for this eigenvalue.

Therefore, the eigenvalues for our problem are $\lambda=k^{2}, k \in \mathbb{Z}, k \geq 0$, and the corresponding eigenfunctions are $\cos (k x)$.
2.* Prove that problem 1 has no eigenvalues $\lambda<0$, using the following method: assume that $y(x)$ is an eigenfunction with $\lambda<0$. Using the equation, integration by parts, and boundary conditions, show that

$$
0=\int_{0}^{\pi}\left(y^{\prime \prime}(x)+\lambda y(x)\right) y(x) d x=\int_{0}^{\pi}-y^{\prime}(x)^{2}+\lambda y(x)^{2} d x
$$

Explain why this leads to a contradiction.
Solution: Assume that $y(x)$ is an eigenfunction with $\lambda<0$. We use the integration by parts formula

$$
\int_{0}^{\pi} u^{\prime}(x) v(x) d x=\left.u(x) v(x)\right|_{x=0} ^{\pi}-\int_{0}^{\pi} u(x) v^{\prime}(x) d x
$$

for $u=y^{\prime}$ and $v=y$, to get

$$
\int_{0}^{\pi} y^{\prime \prime}(x) y(x) d x=-\int_{0}^{\pi}\left(y^{\prime}(x)\right)^{2} d x
$$

since $y^{\prime}(x) y(x)=0$ both at $x=0$ and at $x=\pi$ due to boundary conditions. Combining this with the equation $y^{\prime \prime}+\lambda y=0$, we get

$$
\int_{0}^{\pi}-y^{\prime}(x)^{2}+\lambda y(x)^{2} d x=0
$$

Since $\lambda<0$, the expression under the integral is nonpositive. Therefore, if its integral is zero, this expression is identically zero. We then get $\lambda y(x)^{2} \equiv 0$; since $\lambda \neq 0$, it follows that $y(x) \equiv 0$, a contradiction with $y(x)$ being an eigenfunction.
3. Using separation of variables, solve the following initial/boundary value problem for the heat equation:

$$
\begin{gathered}
\frac{\partial u}{\partial t}(x, t)=\frac{\partial^{2} u}{\partial x^{2}}(x, t), 0<x<\pi, t>0 \\
\frac{\partial u}{\partial x}(0, t)=\frac{\partial u}{\partial x}(\pi, t)=0, t>0 \\
u(x, 0)=2+\cos x-\cos (3 x), 0<x<\pi
\end{gathered}
$$

Find the limit of $u(x, t)$ as $t \rightarrow+\infty$ and explain your results from a physical point of view.

Solution: We look for solutions in the form $u=T(t) X(x)$; plugging this into the equation, we get $T^{\prime}(t) X(x)=T(t) X^{\prime \prime}(x)$, or $T^{\prime} / T=X^{\prime \prime} / X=-\lambda$, where λ is a constant. Now, X needs to satisfy the boundary conditions $X^{\prime}(0)=X^{\prime}(\pi)=0$; in other words, it is an eigenfunction for problem 1. Therefore, $\lambda=k^{2}$, where k is a nonnegative integer, and we can take $X=$ $\cos (k x)$. The corresponding function T has the form $c_{k} e^{-k^{2} x}$ and satisfies $T(0)=c_{k}$.

Therefore, the function $u=2$ solves our problem with initial data $u(x, 0)=$ 2; the function $u=e^{-t} \cos x$ solves our problem with initial data $u(x, 0)=$ $\cos x$, and the function $u=-e^{-9 t} \cos (3 x)$ solves our problem with initial data $u(x, 0)=-\cos (3 x)$; adding these up, we get the following solution to the original problem:

$$
u(x, t)=2+e^{-t} \cos x-e^{9 t} \cos (3 x) .
$$

The limit of this expression as $t \rightarrow+\infty$ is equal to 2 ; this reflects the physical observation that, once you insulate a heated rod, after a large time the temperature everywhere in the rod will become the same.
4. Using separation of variables, solve the following initial/boundary value problem for the wave equation:

$$
\begin{gathered}
\frac{\partial^{2} u}{\partial t^{2}}(x, t)=\frac{\partial^{2} u}{\partial x^{2}}(x, t), 0<x<\pi, t>0 \\
\frac{\partial u}{\partial x}(0, t)=\frac{\partial u}{\partial x}(\pi, t)=0, t>0 \\
u(x, 0)=1, \frac{\partial u}{\partial t}(x, 0)=\cos x, 0<x<\pi
\end{gathered}
$$

Solution: We argue similarly to the previous problem, trying to find solutions of the form $T(t) X(x)$. We get $T^{\prime \prime} / T=X^{\prime \prime} / X=-\lambda$. The equation $X^{\prime \prime} / X=-\lambda$ is solved exactly as in the previous problem, yielding $\lambda=k^{2}$ with $k \geq 0$ an integer. The corresponding solution to the equation $T^{\prime \prime} / T=$ $-\lambda$ is $a_{k} \cos (k t)+b_{k} \sin (k t)$, with $a_{k}, b_{k} \in \mathbb{R}$, and it has $T(0)=a_{k}, T^{\prime}(0)=$ $k b_{k}$.

Therefore, the function $u=1$ solves our problem with initial data $u(x, 0)=$ $1, \frac{\partial u}{\partial t}(x, 0)=0$; the function $u=\sin t \cos x$ solves our problem with initial data $u(x, 0)=0, \frac{\partial u}{\partial t}(x, 0)=\cos x$. Adding up these two solutions, we get the following solution to the original problem:

$$
u(x, t)=1+\sin t \cos x
$$

