
Worksheet 26: PDE and Fourier method

0. Given the functions

u(x, t) = e−t sinx,

v(x, t) = cos t sinx,

calculate the derivatives

∂u

∂t
,
∂2u

∂x2
,
∂2v

∂t2
,
∂2v

∂x2
.

Explain why u solves the following initial/boundary value problem for the
heat equation:

∂u

∂t
(x, t) =

∂2u

∂x2
(x, t), 0 < x < π, t > 0;

u(0, t) = u(π, t) = 0, t > 0;

u(x, 0) = sin(x), 0 < x < π,

while v solves the following initial/boundary value problem for the wave
equation:

∂2v

∂t2
(x, t) =

∂2v

∂x2
(x, t), 0 < x < π, t > 0;

v(0, t) = v(π, t) = 0, t > 0;

v(x, 0) = sin x,
∂v

∂t
(x, 0) = 0, 0 < x < π.

Describe the behavior of the functions u(t, ·) and v(t, ·) as time goes on.
Solution: We find

∂u

∂t
= −e−t sinx =

∂2u

∂x2
;

∂v

∂t
= − cos t sinx =

∂2v

∂x2
.
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It remains to verify the boundary and initial conditions for u and v. The
shape of the profile (for fixed t and varying x) of the functions u and v stays
the same (in the shape of sin x); however, the function u will exponentially
fast go to zero, while the function v will bounce back and forth with period
2π.

1. Find all eigenvalues λ and the corresponding eigenfunctions for the
boundary value problem (see also problem 2)

y′′(x) + λy(x) = 0, 0 < x < π;

y′(0) = 0, y′(π) = 0.

Solution: Assume that {y1(x), y2(x)} is a fundamental system of solu-
tions to the equation y′′(x) + λy(x). (Both y1 and y2 depend on λ.) The
general solution is then c1y1(x) + c2y2(x) for c1, c2 arbitrary constants; the
boundary conditions are satisfied if the following system of equations on c1, c2
holds:

0 = y′(0) = c1y
′
1(0) + c2y

′
2(0),

0 = y′(π) = c1y
′
1(π) + c2y

′
2(π).

(1)

This system has a nonzero solution if and only if

det

[
y′1(0) y′2(0)
y′1(π) y′2(π)

]
= 0. (2)

Now, the auxiliary equation is r2 + λ = 0. We consider the following cases:
Case 1: λ < 0. Put r =

√
−λ > 0. We find y1(x) = erx, y2(x) = e−rx,

and (2) turns into
r2(erπ − e−rπ) = 0,

which cannot be true for r > 0.
Case 2: λ = 0. We find y1(x) = 1, y2(x) = x, and the equation (2)

is satisfied. Solving (1), we get c1 ∈ R, c2 = 0; therefore, y = 1 is an
eigenfunction for this eigenvalue.

Case 3: λ > 0. Put s =
√
λ > 0. We find y1(x) = cos(sx), y2(x) =

sin(sx); (2) turns into
0 = sin(sπ).

This equation is solved for s = k a positive integer; the corresponding value
of λ is λ = k2. Solving (1), we get c1 ∈ R, c2 = 0; therefore, y = cos(kx) is
an eigenfunction for this eigenvalue.
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Therefore, the eigenvalues for our problem are λ = k2, k ∈ Z, k ≥ 0, and
the corresponding eigenfunctions are cos(kx).

2.* Prove that problem 1 has no eigenvalues λ < 0, using the follow-
ing method: assume that y(x) is an eigenfunction with λ < 0. Using the
equation, integration by parts, and boundary conditions, show that

0 =

∫ π

0

(y′′(x) + λy(x))y(x) dx =

∫ π

0

−y′(x)2 + λy(x)2 dx.

Explain why this leads to a contradiction.
Solution: Assume that y(x) is an eigenfunction with λ < 0. We use the

integration by parts formula∫ π

0

u′(x)v(x) dx = u(x)v(x)|πx=0 −
∫ π

0

u(x)v′(x) dx

for u = y′ and v = y, to get∫ π

0

y′′(x)y(x) dx = −
∫ π

0

(y′(x))2 dx,

since y′(x)y(x) = 0 both at x = 0 and at x = π due to boundary conditions.
Combining this with the equation y′′ + λy = 0, we get∫ π

0

−y′(x)2 + λy(x)2 dx = 0.

Since λ < 0, the expression under the integral is nonpositive. Therefore, if its
integral is zero, this expression is identically zero. We then get λy(x)2 ≡ 0;
since λ 6= 0, it follows that y(x) ≡ 0, a contradiction with y(x) being an
eigenfunction.

3. Using separation of variables, solve the following initial/boundary
value problem for the heat equation:

∂u

∂t
(x, t) =

∂2u

∂x2
(x, t), 0 < x < π, t > 0;

∂u

∂x
(0, t) =

∂u

∂x
(π, t) = 0, t > 0;

u(x, 0) = 2 + cosx− cos(3x), 0 < x < π.

Find the limit of u(x, t) as t→ +∞ and explain your results from a physical
point of view.
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Solution: We look for solutions in the form u = T (t)X(x); plugging this
into the equation, we get T ′(t)X(x) = T (t)X ′′(x), or T ′/T = X ′′/X = −λ,
where λ is a constant. Now, X needs to satisfy the boundary conditions
X ′(0) = X ′(π) = 0; in other words, it is an eigenfunction for problem 1.
Therefore, λ = k2, where k is a nonnegative integer, and we can take X =
cos(kx). The corresponding function T has the form cke

−k2x and satisfies
T (0) = ck.

Therefore, the function u = 2 solves our problem with initial data u(x, 0) =
2; the function u = e−t cosx solves our problem with initial data u(x, 0) =
cosx, and the function u = −e−9t cos(3x) solves our problem with initial
data u(x, 0) = − cos(3x); adding these up, we get the following solution to
the original problem:

u(x, t) = 2 + e−t cosx− e9t cos(3x).

The limit of this expression as t → +∞ is equal to 2; this reflects the
physical observation that, once you insulate a heated rod, after a large time
the temperature everywhere in the rod will become the same.

4. Using separation of variables, solve the following initial/boundary
value problem for the wave equation:

∂2u

∂t2
(x, t) =

∂2u

∂x2
(x, t), 0 < x < π, t > 0;

∂u

∂x
(0, t) =

∂u

∂x
(π, t) = 0, t > 0;

u(x, 0) = 1,
∂u

∂t
(x, 0) = cos x, 0 < x < π.

Solution: We argue similarly to the previous problem, trying to find
solutions of the form T (t)X(x). We get T ′′/T = X ′′/X = −λ. The equation
X ′′/X = −λ is solved exactly as in the previous problem, yielding λ = k2

with k ≥ 0 an integer. The corresponding solution to the equation T ′′/T =
−λ is ak cos(kt) + bk sin(kt), with ak, bk ∈ R, and it has T (0) = ak, T

′(0) =
kbk.

Therefore, the function u = 1 solves our problem with initial data u(x, 0) =
1, ∂u

∂t
(x, 0) = 0; the function u = sin t cosx solves our problem with initial

data u(x, 0) = 0, ∂u
∂t

(x, 0) = cos x. Adding up these two solutions, we get the
following solution to the original problem:

u(x, t) = 1 + sin t cosx.
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