Worksheet 25: Higher order linear ODE and systems of ODE

1. NS\&S, 6.1.2.

Solution: The interval is $(0, \infty)$, because that's where the coefficient \sqrt{x} is well-defined and continuous.
2. NS\&S, 6.1.17.

Solution: We substitute $y=x^{k}$ into the equation to yield

$$
\begin{gathered}
x^{3} y^{\prime \prime \prime}-3 x^{2} y^{\prime \prime}+6 x y^{\prime}-6 y \\
=\left(k^{3}-6 k^{2}+11 k-6\right) x^{k}=(k-1)(k-2)(k-3) x^{k} .
\end{gathered}
$$

Therefore, x, x^{2}, x^{3} solve the considered equation. Next, the Wrosnkian is

$$
W\left(x, x^{2}, x^{3}\right)=\operatorname{det}\left[\begin{array}{ccc}
x & x^{2} & x^{3} \\
1 & 2 x & 3 x^{2} \\
0 & 2 & 6 x
\end{array}\right]=2 x^{3} .
$$

Since the Wronskian is not identically equal to zero, the functions $\left\{x, x^{2}, x^{3}\right\}$ form a linearly independent set and thus a fundamental system of solutions for our equation.
3. NS\&S, 6.1.21.

Solution: (a) The general solution is $y=\ln x+c_{1} x+c_{2} x \ln x+c_{3} x(\ln x)^{2}$, where $c_{1}, c_{2}, c_{3} \in \mathbb{R}$ are arbitrary. (b) We find

$$
\begin{gathered}
y^{\prime}(x)=x^{-1}+c_{1}+c_{2}(1+\ln x)+c_{3}(2+\ln x) \ln x \\
y^{\prime \prime}(x)=-x^{-2}+c_{2} x^{-1}+2 c_{3} x^{-1}(1+\ln x) \\
3=y(1)=c_{1} \\
3=y^{\prime}(1)=1+c_{1}+c_{2} \\
0=y^{\prime \prime}(1)=-1+c_{2}+2 c_{3}
\end{gathered}
$$

solving this system of linear equations in c_{1}, c_{2}, c_{3}, we find

$$
c_{1}=3, c_{2}=-1, c_{3}=1 ;
$$

therefore, the solution to our initial-value problem is

$$
y=\ln x+3 x-x \ln x+x(\ln x)^{2} .
$$

4. NS\&S, 6.2.2.

Solution: The auxiliary equation is $r^{3}-3 r^{2}-r+3=0$; the roots are $r=-1,1,3$. The fundamental system is $\left\{e^{-x}, e^{x}, e^{3 x}\right\}$; the general solution is $c_{1} e^{-x}+c_{2} e^{x}+c_{3} e^{3 x}$.
5. NS\&S, 6.2.13.

Solution: The auxiliary equation is $r^{4}+4 r^{2}+4=0$; the solutions are $r= \pm i \sqrt{2}$, both with multiplicity 2 . The fundamental system is

$$
\{\cos (\sqrt{2} x), \sin (\sqrt{2} x), x \cos (\sqrt{2} x), x \sin (\sqrt{2} x)\}
$$

the general solution is

$$
y=c_{1} \cos (\sqrt{2} x)+c_{2} \sin (\sqrt{2} x)+c_{3} x \cos (\sqrt{2} x)+c_{4} x \sin (\sqrt{2} x) .
$$

6. NS\&S, 6.2.17.

Solution: The auxiliary equation is

$$
(r+4)(r-3)(r+2)^{3}\left(r^{2}+4 r+5\right)^{2} r^{5}=0
$$

the roots are $r=-4,3$ (multiplicity 1), $r=-2+i,-2-i$ (multiplicity 2), $r=-2$ (multiplicity 3), $r=0$ (multiplicity 5); the fundamental system is

$$
\begin{gathered}
\left\{e^{-4 x}, e^{3 x}, e^{-2 x} \cos x, e^{-2 x} \sin x, x e^{-2 x} \cos x, x e^{-2 x} \sin x\right. \\
\left.e^{-2 x}, x e^{-2 x}, x^{2} e^{-2 x}, 1, x, x^{2}, x^{3}, x^{4}\right\}
\end{gathered}
$$

7.* Draw the trajectories $\left(y(t), y^{\prime}(t)\right)$ on the plane \mathbb{R}^{2}, where $y(t)$ solves the following initial-value problems:
(a) $y^{\prime \prime}-y=0, y(0)=1, y^{\prime}(0)=0$;
(b) $y^{\prime \prime}-y=0, y(0)=1, y^{\prime}(0)=1$;
(c) $y^{\prime \prime}-y=0, y(0)=1, y^{\prime}(0)=-1$;
(d) $y^{\prime \prime}+y=0, y(0)=1, y^{\prime}(0)=0$;
(e) $y^{\prime \prime}+y=0, y(0)=0, y^{\prime}(0)=0$;
(f) $y^{\prime \prime}+2 y^{\prime}+2 y=0, y(0)=1, y^{\prime}(0)=0$.

Solution: (a) We have

$$
\left[\begin{array}{l}
y(t) \\
y^{\prime}(t)
\end{array}\right]=e^{t}\left[\begin{array}{l}
1 / 2 \\
1 / 2
\end{array}\right]+e^{-t}\left[\begin{array}{c}
1 / 2 \\
-1 / 2
\end{array}\right]
$$

since $e^{t} \cdot e^{-t}=1$, the trajectory, taken in the coordinate system induced by the vectors $(1 / 2,1 / 2)$ and $(-1 / 2,-1 / 2)$, lies on a hyperbola.
(b) We have

$$
\left[\begin{array}{c}
y(t) \\
y^{\prime}(t)
\end{array}\right]=e^{t}\left[\begin{array}{l}
1 \\
1
\end{array}\right] ;
$$

the trajectory consists of all positive multiples of the vector $(1,1)$ and thus is a ray.
(c) We have

$$
\left[\begin{array}{c}
y(t) \\
y^{\prime}(t)
\end{array}\right]=e^{-t}\left[\begin{array}{c}
1 \\
-1
\end{array}\right]
$$

the trajectory is a ray, as in (b).
(d) We have

$$
\left[\begin{array}{c}
y(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{c}
\cos t \\
\sin t
\end{array}\right]
$$

since $\cos ^{2} t+\sin ^{2} t=1$ for all t, the trajectory is a circle.
(e) We have

$$
\left[\begin{array}{c}
y(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

the trajectory is a single point. (This is called a stationary point.)
(f) We have

$$
\left[\begin{array}{c}
y(t) \\
y^{\prime}(t)
\end{array}\right]=e^{t} \cos t\left[\begin{array}{l}
1 \\
0
\end{array}\right]+e^{t} \sin t\left[\begin{array}{l}
-1 \\
-2
\end{array}\right]
$$

The coordinates of this vector with respect to the basis $\{(1,0),(-1,-2)\}$ are $\vec{v}(t)=\left(e^{t} \cos t, e^{t} \sin t\right)$. We can write $\vec{v}(t)=e^{t}(\cos t, \sin t)$; we see that its length is e^{t}, while its polar angle is t. Therefore, the trajectory of $\vec{v}(t)$, and thus of the original vector, is a logarithmic spiral.
8. NS\&S, 9.1.2.

Answer:

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]^{\prime}=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right] .
$$

9. NS\&S, 9.1.8.

Solution: We divide the equation by $1-t^{2}$ to get

$$
y^{\prime \prime}-\frac{2 t}{1-t^{2}} y^{\prime}+\frac{2}{1-t^{2}} y=0 ;
$$

we can rewrite it as

$$
\left[\begin{array}{c}
y \\
y^{\prime}
\end{array}\right]^{\prime}=\left[\begin{array}{cc}
0 & 1 \\
-\frac{2}{1-t^{2}} & \frac{2 t}{1-t^{2}}
\end{array}\right]\left[\begin{array}{c}
y \\
y^{\prime}
\end{array}\right] .
$$

10. NS\&S, 9.1.11.

Answer:

$$
\left[\begin{array}{c}
x \\
x^{\prime} \\
y \\
y^{\prime}
\end{array}\right]^{\prime}=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
-3 & 0 & -2 & 0 \\
0 & 0 & 0 & 1 \\
2 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
x \\
x^{\prime} \\
y \\
y^{\prime}
\end{array}\right] .
$$

11. NS\&S, 9.4.20.

Solution: We compute the Wronskian:

$$
W=\operatorname{det}\left[\begin{array}{cc}
3 e^{-t} & e^{4 t} \\
2 e^{-t} & -e^{4 t}
\end{array}\right]=-5 e^{3 t} ;
$$

since it is not identically zero, the given vectors form a fundamental solution set and the general solution is given by

$$
c_{1} e^{-t}\left[\begin{array}{l}
3 \\
2
\end{array}\right]+c_{2} e^{4 t}\left[\begin{array}{c}
1 \\
-1
\end{array}\right] .
$$

12. NS\&S, 9.5.12.

Solution: The characteristic polynomial is $\lambda^{2}-2 \lambda-35$; the eigenvalues are $-5,7$. A basis for the eigenspace for $\lambda=-5$ is $\{(-1,2)\}$; a basis for the eigenspace for $\lambda=7$ is $\{(1,2)\}$. Therefore, a fundamental system of solutions is

$$
\left\{e^{-5 t}\left[\begin{array}{c}
-1 \\
2
\end{array}\right], e^{7 t}\left[\begin{array}{l}
1 \\
2
\end{array}\right]\right\} .
$$

13. NS\&S, 9.5.17.

Solution: (a) We verify that $A \vec{u}_{1}=2 \vec{u}_{1}$ and $A \vec{u}_{2}=-2 \vec{u}_{2}$. (As a harder exercise, try to prove that the matrix $A / 2$ is actually the standard matrix of a certain reflection in \mathbb{R}^{2}.)
(b) The solution is $-e^{2 t} \vec{u}_{1}$. The trajectory consists of all negative multiples of \vec{u}_{1} and is a ray (starting from the origin, but not containing it).
(c) Similar to (b).
(d) The solution is $-e^{2 t} \vec{u}_{1}+e^{-2 t} \vec{u}_{2}$; the coordinates of a point on the trajectory in the basis $\left\{\vec{u}_{1}, \vec{u}_{2}\right\}$ are $\left(e^{2 t}, e^{-2 t}\right)=(f(t), g(t))$. Since $f(t) \cdot g(t)=$ 1 for all t, we see that these coordinates lie on a hyperbola.
14. NS\&S, 9.5.31.

Solution: The eigenvalues are $-2,4$; a basis of the eigenspace for $\lambda=$ -2 is $\{(-1,1)\}$ and a basis of the eigenspace for $\lambda=4$ is $\{(1,1)\}$. The general solution is

$$
y=c_{1} e^{-2 t}\left[\begin{array}{c}
-1 \\
1
\end{array}\right]+c_{2} e^{4 t}\left[\begin{array}{l}
1 \\
1
\end{array}\right] .
$$

Plugging in the initial condition, we get

$$
c_{1}\left[\begin{array}{c}
-1 \\
1
\end{array}\right]+c_{2}\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
3 \\
1
\end{array}\right]
$$

solving this vector equation, we get $c_{1}=-1, c_{2}=2$; the solution to the initial value problem is

$$
y=e^{-2 t}\left[\begin{array}{c}
1 \\
-1
\end{array}\right]+e^{4 t}\left[\begin{array}{l}
2 \\
2
\end{array}\right] .
$$

15.* NS\&S, 9.5.37.

Solution: (a) Direct verification, using the fact that A is upper triangular.
(b) Take $\vec{u}_{1}=(1,0,0)$; then $A \vec{u}_{1}=2 \vec{u}_{1}$. We calculate

$$
\vec{x}_{1}^{\prime}(t)=\left(e^{2 t} \vec{u}_{1}\right)^{\prime}=2 e^{2 t} \vec{u}_{1}=2 \vec{x}_{1}(t)=A \vec{x}_{1}(t) .
$$

Therefore, $\vec{x}_{1}(t)$ is a solution to the equation $\vec{x}^{\prime}=A \vec{x}$.
(c) Using that $A \vec{u}_{1}=2 \vec{u}_{1}$, we get

$$
\begin{gathered}
\vec{x}_{2}^{\prime}(t)=2 t e^{2 t} \vec{u}_{1}+e^{2 t}\left(\vec{u}_{1}+2 \vec{u}_{2}\right) ; \\
A \vec{x}_{2}(t)=2 t e^{2 t} \vec{u}_{1}+e^{2 t} A \vec{u}_{2} ;
\end{gathered}
$$

for these two vector-valued functions to be equal, we need

$$
\vec{u}_{1}+2 \vec{u}_{2}=A \vec{u}_{2},
$$

or $(A-2 I) \vec{u}_{2}=\vec{u}_{1}$. We solve this equation for \vec{u}_{2} (recalling that $\left.\vec{u}_{1}=(1,0,0)\right)$ and get

$$
\vec{u}_{2}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]+c\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], c \in \mathbb{R}
$$

We are free to choose any value of c (this will add a multiple of the solution found in (b) to our solution); we pick $c=0$ and then $\vec{u}_{2}=(0,1,0)$.
(d) Using that $A \vec{u}_{1}=2 \vec{u}_{1}$ and $A \vec{u}_{2}=2 \vec{u}_{2}+\vec{u}_{1}$, we get

$$
\begin{gathered}
\vec{x}_{3}^{\prime}(t)=t^{2} e^{2 t} \vec{u}_{1}+t e^{2 t}\left(\vec{u}_{1}+2 \vec{u}_{2}\right)+e^{2 t}\left(\vec{u}_{2}+2 \vec{u}_{3}\right) ; \\
A \vec{x}_{3}(t)=t^{2} e^{2 t} \vec{u}_{1}+t e^{2 t}\left(2 \vec{u}_{2}+\vec{u}_{1}\right)+e^{2 t} A \vec{u}_{3} ;
\end{gathered}
$$

for these two vector-valued functions to be equal, we need

$$
\vec{u}_{2}+2 \vec{u}_{3}=\vec{u}_{3}
$$

or $(A-2 I) \vec{u}_{3}=\vec{u}_{2}$. Similarly to the above, we can solve for \vec{u}_{3}; one possible solution is $\vec{u}_{3}=(0,0,1)$.

