Worksheet 24: Second order linear ODE

We will work with the space $C^{\infty}(\mathbb{R})$, which consists of functions $y: \mathbb{R} \rightarrow \mathbb{R}$ that have derivatives of all orders. (We call such functions smooth.)
$1-3$. Write the general solution for each of the following equations:

$$
\begin{gather*}
y^{\prime \prime}+2 y^{\prime}=0 \tag{1}\\
y^{\prime \prime}+2 y^{\prime}+y=0 \tag{2}\\
y^{\prime \prime}+2 y^{\prime}+2 y=0 \tag{3}
\end{gather*}
$$

Answers: (1) $c_{1}+c_{2} e^{-2 t}(2) c_{1} e^{-t}+c_{2} t e^{-t}$ (3) $c_{1} e^{-t} \cos t+c_{2} e^{-t} \sin t$.
4. Use the Wronskian to prove that the functions

$$
\begin{equation*}
y_{1}(t)=1, y_{2}(t)=e^{-2 t} \tag{4}
\end{equation*}
$$

are linearly independent as elements of $C^{\infty}(\mathbb{R})$.
Solution: We compute

$$
W\left(y_{1}, y_{2}\right)(t)=\operatorname{det}\left[\begin{array}{cc}
1 & e^{-2 t} \\
0 & -2 e^{-2 t}
\end{array}\right]=-2 e^{-2 t} .
$$

Since it is nonzero, the functions y_{1} and y_{2} are linearly independent.
5.* Define the linear transformation $T: C^{\infty}(\mathbb{R}) \rightarrow C^{\infty}(\mathbb{R})$ by the formula

$$
\begin{equation*}
T(y)=y^{\prime \prime}+2 y^{\prime}, y \in C^{\infty}(\mathbb{R}) . \tag{5}
\end{equation*}
$$

(a) Explain why the set of all smooth solutions to the equation (1) is equal to the kernel $\operatorname{Ker} T$. Conclude that it is a subspace of $C^{\infty}(\mathbb{R})$.
(b) Explain why the set $\left\{1, e^{-2 t}\right\}$ is a basis of $\operatorname{Ker} T$. Find the dimension of $\operatorname{Ker} T$.
(c)* Use Theorem 4.2.1 to prove that the linear transformation $S: \operatorname{Ker} T \rightarrow$ \mathbb{R}^{2} defined by

$$
S(y)=\left[\begin{array}{c}
y(0) \\
y^{\prime}(0)
\end{array}\right], y \in \operatorname{Ker} T
$$

is invertible.
Solution: (a) The kernel Ker T consists of all functions $y \in C^{\infty}(\mathbb{R})$ such that $T(y)=0$; the latter is exactly the equation (1). The kernel of any linear transformation is a subspace.
(b) The set $\left\{1, e^{-2 t}\right\}$ is linearly independent, by problem 4. It spans $\operatorname{Ker} T$, by problem 1. Therefore, it is a basis of $\operatorname{Ker} T$ and the dimension of Ker T is equal to 2 .
(c) Stating that $S(y)$ is invertible is the same as saying that it is 1 -to- 1 and onto; this means that for every $\left(Y_{0}, Y_{1}\right) \in \mathbb{R}^{2}$, there exists unique $y \in \operatorname{Ker} T$ such that $S(y)=\left(Y_{0}, Y_{1}\right)$. Recalling what the transformations S and T are, this can be reformulated as follows: for every $Y_{0}, Y_{1} \in \mathbb{R}$, there exists a unique solution y to the equation (1) such that $y(0)=Y_{0}$ and $y(1)=Y_{1}$.
6. Solve the initial value problem for the equation (1), with the initial conditions

$$
\begin{equation*}
y(0)=0, y^{\prime}(0)=1 . \tag{6}
\end{equation*}
$$

Solution: The general solution for (1) is $y=c_{1}+c_{2} e^{-2 t}$; the initial conditions yield

$$
\begin{gathered}
0=y(0)=c_{1}+c_{2}, \\
1=y^{\prime}(0)=-2 c_{2} .
\end{gathered}
$$

Solving this system of linear equations, we find $c_{1}=1 / 2, c_{2}=-1 / 2$, and $y=\left(1-e^{-2 t}\right) / 2$.
7. Solve the boundary value problem for the equation

$$
\begin{equation*}
y^{\prime \prime}+y=0 \tag{7}
\end{equation*}
$$

with the boundary conditions

$$
y(0)=1, y(\pi / 2)=0 .
$$

Solution: The general solution for (7) is $y=c_{1} \cos t+c_{2} \sin t$; the boundary conditions yield

$$
1=y(0)=c_{1}, 0=y(1)=c_{2} .
$$

Therefore, $y=\cos t$.
8.* Find all values of $T \in \mathbb{R}$ for which the boundary value problem for the equation (7) with the conditions

$$
\begin{equation*}
y(0)=0, y(T)=0 \tag{8}
\end{equation*}
$$

has a nontrivial (nonzero) solution.
Solution: The general solution for (7) is $y=c_{1} \cos t+c_{2} \sin t$; the boundary conditions yield

$$
0=y(0)=c_{1}, 0=y(T)=c_{1} \cos T+c_{2} \sin T .
$$

Substituting $c_{1}=0$ into the second equation, we get $0=c_{2} \sin T$. A nontrivial solution to the system above exists if and only if $\sin T=0$; that is, if $T=\pi k$ for some integer k.
9. NS\&S, 4.4.27.

Answer: $\left(A_{3} t^{3}+A_{2} t^{2}+A_{1} t+A_{0}\right) t \cos (3 t)+\left(B_{3} t^{3}+B_{2} t^{2}+B_{1} t+\right.$ $\left.B_{0}\right) t \sin (3 t)$.
10. Determine the form of a trial solution to the following equation. Do not solve.

$$
y^{\prime \prime}+2 y^{\prime}+y=\cos ^{2} t+t e^{-t} .
$$

Answer: We write $\cos ^{2} t=(1+\cos (2 t)) / 2$; then the trial solution is $A+B \cos (2 t)+C \sin (2 t)+\left(D_{1} t+D_{2}\right) t e^{-t}$.
11. Find the general solution to the equation

$$
y^{\prime \prime}-y=e^{t}+\cos t .
$$

Solution: The general solution to the corresponding homogeneous equation is $c_{1} e^{t}+c_{2} e^{-t}$. The trial solution is

$$
y=A t e^{t}+B \cos t+C \sin t
$$

we find

$$
y^{\prime \prime}-y=2 A e^{t}-2 B \cos t-2 C \sin t ;
$$

therefore, $A=1 / 2, B=-1 / 2, C=0$, and the general solution to the inhomogeneous equation is

$$
y=\frac{1}{2} t e^{t}-\frac{1}{2} \cos t+c_{1} e^{t}+c_{2} e^{-t} .
$$

12.* This problem provides an explanation of the method of undetermined coefficients using abstract vector spaces. Consider for example the equation

$$
y^{\prime \prime}-2 y^{\prime}+y=\cos t
$$

(a) Let V be the subspace of $C^{\infty}(\mathbb{R})$ consisting of all functions of the form

$$
A \cos t+B \sin t, A, B \in \mathbb{R}
$$

Prove that $\mathcal{B}=\{\cos t, \sin t\}$ is a basis of V.
(b) Show that for each $y \in V$, the function $y^{\prime \prime}-2 y^{\prime}+y$ lies in V. (This property of exponentials, polynomials, and trigonometric functions is what actually determines which right-hand sides the method of undetermined coefficients can handle.)
(c) Define the linear transformation $T: V \rightarrow V$ by the formula $T(y)=$ $y^{\prime \prime}-2 y^{\prime}+y$. Find the matrix A of T in the basis \mathcal{B}.
(d) Show that the matrix A is invertible. Use coordinate vectors to find $y \in V$ solving the equation $T(y)=\cos t$.

Solution: (a) \mathcal{B} is linearly independent, for example by Wronskian computation. It spans V by the definition of V.
(b) A direct computation shows that for each $y \in V$, its derivative lies in V. Using this fact twice, we get that $y^{\prime \prime} \in V$; since V is a subspace, $y^{\prime \prime}-2 y^{\prime}+y \in V$ as a linear combination of $y, y^{\prime}, y^{\prime \prime}$.
(c) We have $T(\cos t)=2 \sin t, T(\sin t)=-2 \cos t$; therefore,

$$
A=\left[\begin{array}{cc}
0 & -2 \\
2 & 0
\end{array}\right]
$$

(d) The matrix A is invertible since $\operatorname{det} A=4 \neq 0$, and the equation $T(y)=\cos t$ is equivalent to

$$
A[y]_{\mathcal{B}}=[\cos t]_{\mathcal{B}}=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

Solving this, we find $[y]_{\mathcal{B}}=(0,-1 / 2)$ and thus $y=-1 / 2 \sin t$.

