
Worksheet 24: Second order linear ODE

We will work with the space C∞(R), which consists of functions y : R→ R
that have derivatives of all orders. (We call such functions smooth.)

1–3. Write the general solution for each of the following equations:

y′′ + 2y′ = 0, (1)

y′′ + 2y′ + y = 0, (2)

y′′ + 2y′ + 2y = 0. (3)

Answers: (1) c1 + c2e
−2t (2) c1e

−t + c2te
−t (3) c1e

−t cos t+ c2e
−t sin t.

4. Use the Wronskian to prove that the functions

y1(t) = 1, y2(t) = e−2t (4)

are linearly independent as elements of C∞(R).
Solution: We compute

W (y1, y2)(t) = det

[
1 e−2t

0 −2e−2t

]
= −2e−2t.

Since it is nonzero, the functions y1 and y2 are linearly independent.

5.* Define the linear transformation T : C∞(R)→ C∞(R) by the formula

T (y) = y′′ + 2y′, y ∈ C∞(R). (5)

(a) Explain why the set of all smooth solutions to the equation (1) is
equal to the kernel KerT . Conclude that it is a subspace of C∞(R).

(b) Explain why the set {1, e−2t} is a basis of KerT . Find the dimension
of KerT .

(c)* Use Theorem 4.2.1 to prove that the linear transformation S : KerT →
R2 defined by

S(y) =

[
y(0)
y′(0)

]
, y ∈ KerT,
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is invertible.
Solution: (a) The kernel KerT consists of all functions y ∈ C∞(R) such

that T (y) = 0; the latter is exactly the equation (1). The kernel of any linear
transformation is a subspace.

(b) The set {1, e−2t} is linearly independent, by problem 4. It spans
KerT , by problem 1. Therefore, it is a basis of KerT and the dimension of
KerT is equal to 2.

(c) Stating that S(y) is invertible is the same as saying that it is 1-to-1 and
onto; this means that for every (Y0, Y1) ∈ R2, there exists unique y ∈ KerT
such that S(y) = (Y0, Y1). Recalling what the transformations S and T are,
this can be reformulated as follows: for every Y0, Y1 ∈ R, there exists a unique
solution y to the equation (1) such that y(0) = Y0 and y(1) = Y1.

6. Solve the initial value problem for the equation (1), with the initial
conditions

y(0) = 0, y′(0) = 1. (6)

Solution: The general solution for (1) is y = c1 + c2e
−2t; the initial

conditions yield
0 = y(0) = c1 + c2,

1 = y′(0) = −2c2.

Solving this system of linear equations, we find c1 = 1/2, c2 = −1/2, and
y = (1− e−2t)/2.

7. Solve the boundary value problem for the equation

y′′ + y = 0 (7)

with the boundary conditions

y(0) = 1, y(π/2) = 0.

Solution: The general solution for (7) is y = c1 cos t+c2 sin t; the bound-
ary conditions yield

1 = y(0) = c1, 0 = y(1) = c2.

Therefore, y = cos t.

8.* Find all values of T ∈ R for which the boundary value problem for
the equation (7) with the conditions

y(0) = 0, y(T ) = 0 (8)
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has a nontrivial (nonzero) solution.
Solution: The general solution for (7) is y = c1 cos t+c2 sin t; the bound-

ary conditions yield

0 = y(0) = c1, 0 = y(T ) = c1 cosT + c2 sinT.

Substituting c1 = 0 into the second equation, we get 0 = c2 sinT . A non-
trivial solution to the system above exists if and only if sinT = 0; that is, if
T = πk for some integer k.

9. NS&S, 4.4.27.
Answer: (A3t

3 + A2t
2 + A1t + A0)t cos(3t) + (B3t

3 + B2t
2 + B1t +

B0)t sin(3t).

10. Determine the form of a trial solution to the following equation. Do
not solve.

y′′ + 2y′ + y = cos2 t+ te−t.

Answer: We write cos2 t = (1 + cos(2t))/2; then the trial solution is
A+B cos(2t) + C sin(2t) + (D1t+D2)te

−t.

11. Find the general solution to the equation

y′′ − y = et + cos t.

Solution: The general solution to the corresponding homogeneous equa-
tion is c1e

t + c2e
−t. The trial solution is

y = Atet +B cos t+ C sin t;

we find
y′′ − y = 2Aet − 2B cos t− 2C sin t;

therefore, A = 1/2, B = −1/2, C = 0, and the general solution to the inho-
mogeneous equation is

y =
1

2
tet − 1

2
cos t+ c1e

t + c2e
−t.

12.* This problem provides an explanation of the method of undetermined
coefficients using abstract vector spaces. Consider for example the equation

y′′ − 2y′ + y = cos t.
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(a) Let V be the subspace of C∞(R) consisting of all functions of the
form

A cos t+B sin t, A,B ∈ R.

Prove that B = {cos t, sin t} is a basis of V .
(b) Show that for each y ∈ V , the function y′′ − 2y′ + y lies in V . (This

property of exponentials, polynomials, and trigonometric functions is what
actually determines which right-hand sides the method of undetermined co-
efficients can handle.)

(c) Define the linear transformation T : V → V by the formula T (y) =
y′′ − 2y′ + y. Find the matrix A of T in the basis B.

(d) Show that the matrix A is invertible. Use coordinate vectors to find
y ∈ V solving the equation T (y) = cos t.

Solution: (a) B is linearly independent, for example by Wronskian com-
putation. It spans V by the definition of V .

(b) A direct computation shows that for each y ∈ V , its derivative lies
in V . Using this fact twice, we get that y′′ ∈ V ; since V is a subspace,
y′′ − 2y′ + y ∈ V as a linear combination of y, y′, y′′.

(c) We have T (cos t) = 2 sin t, T (sin t) = −2 cos t; therefore,

A =

[
0 −2
2 0

]
.

(d) The matrix A is invertible since detA = 4 6= 0, and the equation
T (y) = cos t is equivalent to

A[y]B = [cos t]B =

[
1
0

]
.

Solving this, we find [y]B = (0,−1/2) and thus y = −1/2 sin t.
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