## Worksheet 23: Inner products and functional spaces

1-2. Prove that the following formulas do not define inner products on $\mathbb{R}^{2}$, by providing a property of the inner product that is violated:

$$
\begin{align*}
& \left\langle\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right\rangle=x_{1} y_{1}-x_{2} y_{2},  \tag{1}\\
& \left\langle\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right\rangle=x_{1} y_{2}-x_{2} y_{1} . \tag{2}
\end{align*}
$$

Solutions: (1) If $\vec{x}=(0,1)$, then $\langle\vec{x}, \vec{x}\rangle=-1<0$; property 4 is violated.
(2) $\langle\vec{y}, \vec{x}\rangle$ equals $-\langle\vec{x}, \vec{y}\rangle$ instead of $\langle\vec{x}, \vec{y}\rangle$; property 1 is violated. (Also, $\langle\vec{x}, \vec{x}\rangle=0$ for any $\vec{x}$, which violates property 4.)
3. Lay, 6.7.19.

Solution: Put $\vec{v}_{1}=(\sqrt{a}, \sqrt{b})$ and $\vec{v}_{2}=(\sqrt{b}, \sqrt{a})$; then

$$
\vec{v}_{1} \cdot \vec{v}_{2}=2 \sqrt{a b},\left\|\vec{v}_{1}\right\|=\left\|\vec{v}_{2}\right\|=\sqrt{a+b} .
$$

The Cauchy-Schwarz inequality gives $\left|\vec{v}_{1} \cdot \vec{v}_{2}\right| \leq\left\|\vec{v}_{1}\right\| \cdot\left\|\vec{v}_{2}\right\|$, or

$$
2 \sqrt{a b} \leq a+b ;
$$

it remains to divide this by 2 .
Problems 4-5 use the space $\mathbb{P}_{2}$ of polynomials of degree no more than 2, with the inner product

$$
\langle f, g\rangle=f(-1) g(-1)+f(0) g(0)+f(1) g(1), f, g \in \mathbb{P}_{2}
$$

4. Prove that the system $\left\{t, t^{2}\right\}$ is orthogonal.

Solution: We calculate

$$
\left\langle t, t^{2}\right\rangle=-1 \cdot 1+0 \cdot 0+1 \cdot 1=0
$$

5. Find the orthogonal projection of the polynomial 1 onto the space $\operatorname{Span}\left\{t, t^{2}\right\}$.

Solution: We have

$$
\begin{gathered}
\langle 1, t\rangle=1 \cdot(-1)+1 \cdot 0+1 \cdot 1=0 \\
\langle t, t\rangle=(-1) \cdot(-1)+0 \cdot 0+1 \cdot 1=2, \\
\left\langle 1, t^{2}\right\rangle=1 \cdot 1+1 \cdot 0+1 \cdot 1=2 \\
\left\langle t^{2}, t^{2}\right\rangle=1 \cdot 1+0 \cdot 0+1 \cdot 1=2
\end{gathered}
$$

the sought projection is given by

$$
\frac{\langle 1, t\rangle}{\langle t, t\rangle} t+\frac{\left\langle 1, t^{2}\right\rangle}{\left\langle t^{2}, t^{2}\right\rangle} t^{2}=t^{2} .
$$

Problems 6-7 use the space $\mathbb{P}_{2}$, but now equipped with the inner product

$$
\langle f, g\rangle=\int_{0}^{1} f(t) g(t) d t
$$

6. Use Gram-Schmidt to find an orthogonal basis of $\mathbb{P}_{2}$, starting with the standard basis $\left\{1, t, t^{2}\right\}$. (You should first orthogonalize the system $\{1, t\}$ and return to $t^{2}$ if you have time left.)

Solution: We construct the sought basis $\left\{f_{1}, f_{2}, f_{3}\right\}$ step by step. Put $f_{1}=1$. Then,

$$
\begin{aligned}
\left\langle f_{1}, f_{1}\right\rangle & =\int_{0}^{1} 1 d t=1 \\
\left\langle t, f_{1}\right\rangle & =\int_{0}^{1} t d t=\frac{1}{2} \\
\left\langle t^{2}, f_{1}\right\rangle & =\int_{0}^{1} t^{2} d t=\frac{1}{3}
\end{aligned}
$$

We then put

$$
f_{2}=t-\frac{\left\langle f_{1}, t\right\rangle}{\left\langle f_{1}, f_{1}\right\rangle} f_{1}=t-1 / 2
$$

we find

$$
\begin{aligned}
& \left\langle f_{2}, f_{2}\right\rangle=\int_{0}^{1}(t-1 / 2)^{2} d t=1 / 12 \\
& \left\langle f_{2}, t^{2}\right\rangle=\int_{0}^{1} t^{2}(t-1 / 2) d t=1 / 12
\end{aligned}
$$

then, we put

$$
f_{3}=t^{2}-\frac{\left\langle f_{1}, t^{2}\right\rangle}{\left\langle f_{1}, f_{1}\right\rangle} f_{1}-\frac{\left\langle f_{2}, t^{2}\right\rangle}{\left\langle f_{2}, f_{2}\right\rangle} f_{2}=t^{2}-t+1 / 6
$$

The resulting system is

$$
\left\{1, t-1 / 2, t^{2}-t+1 / 6\right\} .
$$

7. Prove that the transformation $T: \mathbb{P}_{2} \rightarrow \mathbb{P}_{2}$ that maps each polynomial $f(t)$ to the polynomial $f(1-t)$ is length preserving; i.e. for each $f \in \mathbb{P}_{2}$, $\|T(f)\|=\|f\|$.

Solution: We use the change of variables $s=1-t$ :

$$
\|T(f)\|^{2}=\int_{0}^{1}(f(1-t))^{2} d t=\int_{0}^{1} f(s)^{2} d s=\|f\|^{2}
$$

Problems 8-9 use the space $C[-\pi, \pi]$ of all continuous functions $f$ : $[-\pi, \pi] \rightarrow \mathbb{R}$, with the inner product

$$
\langle f, g\rangle=\int_{-\pi}^{\pi} f(t) g(t) d t
$$

8. Show that $\sin t$ is orthogonal to $\cos t$. What is the length of $\sin t$ ? (Hint: use the double angle formulas. In case there is not enough time, set up the integrals, but do not compute them.)

Solution: To be posted on Wednesday.
9. Write a formula for the orthogonal projection of a function $f$ onto the subspace of $C[-\pi, \pi]$ spanned by the constant function 1 .

Solution: To be posted on Wednesday.

