Worksheet 22: Gram-Schmidt and Least-Squares

1-2. Use Gram-Schmidt (Theorem 6.4.11) to orthogonalize the following linearly independent systems:

$$
\begin{align*}
& \left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right\} \tag{1}\\
& \left\{\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right],\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right]\right\} \tag{2}
\end{align*}
$$

Answers: (1) $\{(1,0,0),(0,1,1),(0,-1 / 2,1 / 2)\}(2)\{(1,-1,0),(1 / 2,1 / 2,-1)\}$.
3. Use the normal equations (Theorem 6.5.13) to find the least-squares solution to the equation $A \vec{x}=\vec{b}$, where

$$
A=\left[\begin{array}{cc}
1 & 1 \\
-1 & 0 \\
0 & -1
\end{array}\right], \vec{b}=\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right]
$$

Find the least-squares error.
Solution: The normal equation is

$$
\left[\begin{array}{cc}
2 & 1 \\
1 & 2
\end{array}\right] \vec{x}=\left[\begin{array}{c}
-1 \\
0
\end{array}\right] ;
$$

the least-squares solution is $(-2 / 3,1 / 3)$. The least-squares error is $4 / \sqrt{3}$.
4. Find the least-squares solution to the system from problem 3 using the following alternative way:
(a) Use Gram-Schmidt to find an orthogonal basis for $\operatorname{Col} A$. (Hint: you have done this already.)
(b) Use the orthogonal projection formula to find the projection of \vec{b} onto $\operatorname{Col} A$. Denote this projection by \hat{b}.
(c) Find the solution \hat{x} to the equation $A \hat{x}=\hat{b}$. This is the least squares solution; compare it to the answer for problem 3.

Solution: (a) $\{(1,-1,0),(1 / 2,1 / 2,-1)\}$ (b) $\hat{b}=(-1 / 3,2 / 3,1 / 3)$ (c) $\hat{x}=(-2 / 3,1 / 3)$.
5. Find all least-squares solutions to the equation $A \vec{x}=\vec{b}$, where

$$
A=\left[\begin{array}{ccc}
1 & 1 & 0 \\
-1 & 0 & 1 \\
0 & -1 & -1
\end{array}\right], \vec{b}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

Solution: The normal equation is

$$
\left[\begin{array}{ccc}
2 & 1 & -1 \\
1 & 2 & 1 \\
-1 & 1 & 2
\end{array}\right] \hat{x}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

the general least-squares solution is

$$
\hat{x}=x_{3}\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right], x_{3} \in \mathbb{R}
$$

