Worksheet 21: Orthogonality

1–3. Given the subspace V with an orthogonal basis $\{\vec{v}_1, \vec{v}_2\}$ and the vector \vec{u} ,

(a) Find the orthogonal projection $\vec{v} = \text{proj}_V \vec{u}$ of the vector \vec{u} onto the subspace V.

(b) Compute the vector $\vec{w} = \vec{u} - \vec{v}$ and verify that it is orthogonal to $\vec{v_1}$ and $\vec{v_2}$.

(c) Find the coordinates of \vec{v} in the basis $\{\vec{v}_1, \vec{v}_2\}$ of V.

(d) Find the distance from \vec{u} to V.

$$\vec{v}_1 = \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \ \vec{v}_2 = \begin{bmatrix} 0\\0\\1 \end{bmatrix}, \ \vec{u} = \begin{bmatrix} 1\\2\\3 \end{bmatrix}; \tag{1}$$

$$\vec{v}_1 = \begin{bmatrix} 1\\ -1\\ 0 \end{bmatrix}, \ \vec{v}_2 = \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix}, \ \vec{u} = \begin{bmatrix} 0\\ 2\\ 1 \end{bmatrix};$$
(2)

$$\vec{v}_1 = \begin{bmatrix} 1\\1 \end{bmatrix}, \ \vec{v}_2 = \begin{bmatrix} 1\\-1 \end{bmatrix}, \ \vec{u} = \begin{bmatrix} 1\\2 \end{bmatrix}.$$
 (3)

Answers: 1. (a) (3/2, 3/2, 3) (b) (-1/2, 1/2, 0) (c) (3/2, 3) (d) $\sqrt{2}/2$ 2. (a) (0, 2, 1) (b) (0, 0, 0) (c) (-1, 1) (d) 0

3. (a) (1,2) (b) (0,0) (c) (3/2,-1/2) (d) 0

4. Fix $\vec{v} = (1, 1)$. Define the transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$ by the formula $T(\vec{u}) = \operatorname{proj}_{\vec{v}} \vec{u}$; that is, $T(\vec{u})$ is the orthogonal projection of \vec{u} onto \vec{v} . (See also Lay, 6.2.33.)

(a) Assuming that T is linear, write its standard matrix A.

(b) Verify that $A^2 = A$ and use this fact to deduce possible eigenvalues of A.

(c) Using either the computed value of A or geometric considerations, find the bases of eigenspaces of A.

Solution: (a) We have for $\vec{u} = (u_1, u_2)$,

$$T(\vec{u}) = \frac{\vec{u} \cdot \vec{v}}{\vec{v} \cdot \vec{v}} \vec{v} = \frac{u_1 + u_2}{2} \begin{bmatrix} 1\\1 \end{bmatrix} = \begin{bmatrix} (u_1 + u_2)/2\\(u_1 + u_2)/2 \end{bmatrix}.$$

We then find

$$A = \frac{1}{2} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}.$$

(b) A direct computation shows that $A^2 = A$. Then, if λ is an eigenvalue of A and \vec{x} is the corresponding eigenvector, we have $A\vec{x} = \lambda \vec{x}$ and $A^2\vec{x} = \lambda^2\vec{x}$; since $A^2 = A$, $\lambda \vec{x} = \lambda^2 \vec{x}$ and $\lambda = \lambda^2$. Therefore, the possible eigenvalues of A are 0 and 1.

(c) The matrix A has eigenvalues 0 and 1. The eigenspace for the eigenvalue 0 is spanned by (-1, 1) and it is orthogonal to \vec{v} . The eigenspace for the eigenvalue 1 is spanned by $(1, 1) = \vec{v}$.

5. Lay, 6.2.31. **Solution:** We have

$$\operatorname{proj}_{c\vec{u}} \vec{y} = \frac{(c\vec{u}) \cdot \vec{y}}{\|c\vec{u}\|^2} (c\vec{u}) = \frac{c(\vec{u} \cdot \vec{y})}{c^2 \|\vec{u}\|^2} c\vec{u} = \frac{\vec{u} \cdot \vec{y}}{\|\vec{u}\|^2} \vec{u} = \operatorname{proj}_{\vec{u}} \vec{y}.$$

6. Fix $\vec{v} = (1, 1)$. Define the transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$ by the formula $T(\vec{u}) = \vec{u} - 2 \operatorname{proj}_{\vec{v}} \vec{u}$. Explain why $T(\vec{u})$ is the result of reflecting the vector \vec{u} across the line $\operatorname{Span}\{\vec{v}\}^{\perp}$. Then, do parts (a)–(c) from the previous problem for this transformation T. (You should use the equation $A^2 = I$ instead of $A^2 = A$ in (b). (See also Lay, 6.2.34.))

Solution: (a) We have for $\vec{u} = (u_1, u_2)$,

$$T(\vec{u}) = \vec{u} - 2\frac{\vec{u} \cdot \vec{v}}{\|\vec{v}\|^2} \vec{v} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} - 2\frac{u_1 + u_2}{2} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} -u_2 \\ -u_1 \end{bmatrix}.$$

T is the reflection across the line $\operatorname{Span}\{\vec{v}\}^{\perp} = \operatorname{Span}\{(-1,1)\}$. Then,

$$A = \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}.$$

(b) A direct calculation shows that $A^2 = I$. Then, arguing similarly to the previous problem, we get that each eigenvalue λ of A satisfies $\lambda^2 = 1$ and thus the possible eigenvalues are 1 and -1.

(c) The matrix A has eigenvalues 1 and -1. The eigenspace for the eigenvalue 1 is spanned by (-1, 1) and is orthogonal to the eigenspace for the eigenvalue -1; the latter is spanned by $(1, 1) = \vec{v}$.

7. Prove that if U is an orthogonal matrix, then its determinant is equal to either 1 or -1. (Hint: we have done this problem before.) If det U = 1, we call U orientation preserving; if det U = -1, we call U orientation reversing.

Solution: We have $U^T U = I$; therefore,

$$1 = \det(U^T U) = \det U^T \cdot \det U = (\det U)^2.$$

Thus, $\det U = 1$ or $\det U = -1$.

8. For the standard matrix A of the transformation T from problem 6, show that A is orthogonal. Is it orientation preserving or orientation reversing?

Solution: We check that $A^T A = I$ and det A = -1; therefore, A is orthogonal and orientation reversing.

9.* (Orthogonal orientation preserving matrices in \mathbb{R}^2) Assume that A is a 2 × 2 orthogonal matrix such that det A = 1. Prove that A must have the form

$$\begin{bmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{bmatrix}$$

for some ϕ . (Hint: assume that $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$; write the identity $A^{-1} = A^T$ and use the formula for A^{-1} from Section 2.2.)

Solution: Let

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix};$$

then, since $\det A = 1$,

$$\begin{bmatrix} a & c \\ b & d \end{bmatrix} = A^T = A^{-1} = \begin{bmatrix} d & -b \\ -c & a \end{bmatrix};$$

therefore, d = a and b = -c; A has the form

$$A = \begin{bmatrix} a & -c \\ c & a \end{bmatrix}$$

Now, $1 = \det A = a^2 + c^2$; therefore, we can write $a = \cos \phi$ and $c = \sin \phi$ for some angle ϕ . It follows that A is the standard matrix of counterclockwise rotation by ϕ .

10.* (Orthogonal orientation preserving matrices in \mathbb{R}^3) Assume that A is a 3 × 3 orthogonal matrix such that det A = 1.

(a) Prove that $I - A = (A^T - I)A$.

(b) Use part (a) and properties of determinants to prove that 1 is an eigenvalue of A. (In fact, combining this with the previous problem, one can show that A must be the standard matrix of rotation about some axis in \mathbb{R}^3 .)

(c) Consider the transformation $T : \mathbb{R}^3 \to \mathbb{R}^3$ given by $T(x_1, x_2, x_3) = (x_2, x_3, x_1)$. Write down the standard matrix A of T and verify that it is orthogonal and orientation preserving. Find an eigenvector of A corresponding to the eigenvalue 1. Prove that $A^3 = I$. If I were to tell you that T is actually a rotation about some axis, what would the axis and the angle be?

Solution: (a) We have $(A^T - I)A = A^T A - A = I - A$.

(b) We have

$$\det(A - I) = -\det(I - A) = -\det(A^T - I) \det A$$

= $-\det((A - I)^T) = -\det(A - I).$

in the first equality, we used the properties of determinants under row operations and A being a 3×3 matrix. We get $\det(A - I) = 0$; thus, 1 is an eigenvalue of A.

(c) We have

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix};$$

we compute $A^T A = I$ and det A = 1. An eigenvector for eigenvalue 1 is (1, 1, 1). We can check that $A^3 = I$ directly or we can see that $T^2(x_1, x_2, x_3) = (x_3, x_1, x_2)$ and $T^3(x_1, x_2, x_3) = (x_1, x_2, x_3)$. Therefore, T has to be a 120 degree rotation around the line spanned by (1, 1, 1).