Worksheet 21: Orthogonality

1-3. Given the subspace V with an orthogonal basis $\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$ and the vector \vec{u},
(a) Find the orthogonal projection $\vec{v}=\operatorname{proj}_{V} \vec{u}$ of the vector \vec{u} onto the subspace V.
(b) Compute the vector $\vec{w}=\vec{u}-\vec{v}$ and verify that it is orthogonal to \vec{v}_{1} and \vec{v}_{2}.
(c) Find the coordinates of \vec{v} in the basis $\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$ of V.
(d) Find the distance from \vec{u} to V.

$$
\begin{align*}
& \vec{v}_{1}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right], \vec{v}_{2}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right], \vec{u}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] ; \tag{1}\\
& \vec{v}_{1}=\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right], \vec{v}_{2}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right], \vec{u}=\left[\begin{array}{l}
0 \\
2 \\
1
\end{array}\right] ; \tag{2}\\
& \vec{v}_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \vec{v}_{2}=\left[\begin{array}{c}
1 \\
-1
\end{array}\right], \vec{u}=\left[\begin{array}{l}
1 \\
2
\end{array}\right] . \tag{3}
\end{align*}
$$

Answers: 1. (a) $(3 / 2,3 / 2,3)$ (b) $(-1 / 2,1 / 2,0)$ (c) $(3 / 2,3)$ (d) $\sqrt{2} / 2$
2. (a) $(0,2,1)(b)(0,0,0)(c)(-1,1)(d) 0$
3. (a) $(1,2)(b)(0,0)(c)(3 / 2,-1 / 2)(d) 0$
4. Fix $\vec{v}=(1,1)$. Define the transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by the formula $T(\vec{u})=\operatorname{proj}_{\vec{v}} \vec{u}$; that is, $T(\vec{u})$ is the orthogonal projection of \vec{u} onto \vec{v}. (See also Lay, 6.2.33.)
(a) Assuming that T is linear, write its standard matrix A.
(b) Verify that $A^{2}=A$ and use this fact to deduce possible eigenvalues of A.
(c) Using either the computed value of A or geometric considerations, find the bases of eigenspaces of A.

Solution: (a) We have for $\vec{u}=\left(u_{1}, u_{2}\right)$,

$$
T(\vec{u})=\frac{\vec{u} \cdot \vec{v}}{\vec{v} \cdot \vec{v}} \vec{v}=\frac{u_{1}+u_{2}}{2}\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
\left(u_{1}+u_{2}\right) / 2 \\
\left(u_{1}+u_{2}\right) / 2
\end{array}\right] .
$$

We then find

$$
A=\frac{1}{2}\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]
$$

(b) A direct computation shows that $A^{2}=A$. Then, if λ is an eigenvalue of A and \vec{x} is the corresponding eigenvector, we have $A \vec{x}=\lambda \vec{x}$ and $A^{2} \vec{x}=\lambda^{2} \vec{x}$; since $A^{2}=A, \lambda \vec{x}=\lambda^{2} \vec{x}$ and $\lambda=\lambda^{2}$. Therefore, the possible eigenvalues of A are 0 and 1 .
(c) The matrix A has eigenvalues 0 and 1 . The eigenspace for the eigenvalue 0 is spanned by $(-1,1)$ and it is orthogonal to \vec{v}. The eigenspace for the eigenvalue 1 is spanned by $(1,1)=\vec{v}$.
5. Lay, 6.2.31.

Solution: We have

$$
\operatorname{proj}_{c \vec{u}} \vec{y}=\frac{(c \vec{u}) \cdot \vec{y}}{\|c \vec{u}\|^{2}}(c \vec{u})=\frac{c(\vec{u} \cdot \vec{y})}{c^{2}\|\vec{u}\|^{2}} c \vec{u}=\frac{\vec{u} \cdot \vec{y}}{\|\vec{u}\|^{2}} \vec{u}=\operatorname{proj}_{\vec{u}} \vec{y} .
$$

6. Fix $\vec{v}=(1,1)$. Define the transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by the formula $T(\vec{u})=\vec{u}-2 \operatorname{proj}_{\vec{v}} \vec{u}$. Explain why $T(\vec{u})$ is the result of reflecting the vector \vec{u} across the line $\operatorname{Span}\{\vec{v}\}^{\perp}$. Then, do parts (a)-(c) from the previous problem for this transformation T. (You should use the equation $A^{2}=I$ instead of $A^{2}=A$ in (b). (See also Lay, 6.2.34.))

Solution: (a) We have for $\vec{u}=\left(u_{1}, u_{2}\right)$,

$$
T(\vec{u})=\vec{u}-2 \frac{\vec{u} \cdot \vec{v}}{\|\vec{v}\|^{2}} \vec{v}=\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]-2 \frac{u_{1}+u_{2}}{2}\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
-u_{2} \\
-u_{1}
\end{array}\right] .
$$

T is the reflection across the line $\operatorname{Span}\{\vec{v}\}^{\perp}=\operatorname{Span}\{(-1,1)\}$. Then,

$$
A=\left[\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right] .
$$

(b) A direct calculation shows that $A^{2}=I$. Then, arguing similarly to the previous problem, we get that each eigenvalue λ of A satisfies $\lambda^{2}=1$ and thus the possible eigenvalues are 1 and -1 .
(c) The matrix A has eigenvalues 1 and -1 . The eigenspace for the eigenvalue 1 is spanned by $(-1,1)$ and is orthogonal to the eigenspace for the eigenvalue -1 ; the latter is spanned by $(1,1)=\vec{v}$.
7. Prove that if U is an orthogonal matrix, then its determinant is equal to either 1 or -1 . (Hint: we have done this problem before.) If $\operatorname{det} U=1$, we call U orientation preserving; if $\operatorname{det} U=-1$, we call U orientation reversing.

Solution: We have $U^{T} U=I$; therefore,

$$
1=\operatorname{det}\left(U^{T} U\right)=\operatorname{det} U^{T} \cdot \operatorname{det} U=(\operatorname{det} U)^{2}
$$

Thus, $\operatorname{det} U=1$ or $\operatorname{det} U=-1$.
8. For the standard matrix A of the transformation T from problem 6 , show that A is orthogonal. Is it orientation preserving or orientation reversing?

Solution: We check that $A^{T} A=I$ and $\operatorname{det} A=-1$; therefore, A is orthogonal and orientation reversing.
9.* (Orthogonal orientation preserving matrices in \mathbb{R}^{2}) Assume that A is a 2×2 orthogonal matrix such that $\operatorname{det} A=1$. Prove that A must have the form

$$
\left[\begin{array}{cc}
\cos \phi & -\sin \phi \\
\sin \phi & \cos \phi
\end{array}\right]
$$

for some ϕ. (Hint: assume that $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$; write the identity $A^{-1}=A^{T}$ and use the formula for A^{-1} from Section 2.2.)

Solution: Let

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

then, since $\operatorname{det} A=1$,

$$
\left[\begin{array}{ll}
a & c \\
b & d
\end{array}\right]=A^{T}=A^{-1}=\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

therefore, $d=a$ and $b=-c ; A$ has the form

$$
A=\left[\begin{array}{cc}
a & -c \\
c & a
\end{array}\right]
$$

Now, $1=\operatorname{det} A=a^{2}+c^{2}$; therefore, we can write $a=\cos \phi$ and $c=\sin \phi$ for some angle ϕ. It follows that A is the standard matrix of counterclockwise rotation by ϕ.
10.* (Orthogonal orientation preserving matrices in \mathbb{R}^{3}) Assume that A is a 3×3 orthogonal matrix such that $\operatorname{det} A=1$.
(a) Prove that $I-A=\left(A^{T}-I\right) A$.
(b) Use part (a) and properties of determinants to prove that 1 is an eigenvalue of A. (In fact, combining this with the previous problem, one can show that A must be the standard matrix of rotation about some axis in \mathbb{R}^{3}.)
(c) Consider the transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ given by $T\left(x_{1}, x_{2}, x_{3}\right)=$ $\left(x_{2}, x_{3}, x_{1}\right)$. Write down the standard matrix A of T and verify that it is orthogonal and orientation preserving. Find an eigenvector of A corresponding to the eigenvalue 1. Prove that $A^{3}=I$. If I were to tell you that T is actually a rotation about some axis, what would the axis and the angle be?

Solution: (a) We have $\left(A^{T}-I\right) A=A^{T} A-A=I-A$.
(b) We have

$$
\begin{gathered}
\operatorname{det}(A-I)=-\operatorname{det}(I-A)=-\operatorname{det}\left(A^{T}-I\right) \operatorname{det} A \\
=-\operatorname{det}\left((A-I)^{T}\right)=-\operatorname{det}(A-I)
\end{gathered}
$$

in the first equality, we used the properties of determinants under row operations and A being a 3×3 matrix. We get $\operatorname{det}(A-I)=0$; thus, 1 is an eigenvalue of A.
(c) We have

$$
A=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]
$$

we compute $A^{T} A=I$ and $\operatorname{det} A=1$. An eigenvector for eigenvalue 1 is $(1,1,1)$. We can check that $A^{3}=I$ directly or we can see that $T^{2}\left(x_{1}, x_{2}, x_{3}\right)=$ $\left(x_{3}, x_{1}, x_{2}\right)$ and $T^{3}\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}, x_{2}, x_{3}\right)$. Therefore, T has to be a 120 degree rotation around the line spanned by ($1,1,1$).

