Worksheet 20: Inner product

1. Given $\vec{u} = (1, 2, 3)$ and $\vec{v} = (2, 3, 1)$, compute $\vec{u} \cdot \vec{v}$, $\|\vec{u}\|, \|\vec{v}\|$.

Answer: $\vec{u} \cdot \vec{v} = 1 \cdot 2 + 2 \cdot 3 + 3 \cdot 1 = 11$, $\|\vec{u}\| = \|\vec{v}\| = \sqrt{14}$.

2. Given $\vec{u}, \vec{v} \in \mathbb{R}^n$ such that $\|\vec{u}\| = 1, \vec{u} \cdot \vec{v} = 2, \|\vec{v}\| = 3$, compute $\|\vec{u} + \vec{v}\|$ and $\|\vec{u} - \vec{v}\|$.

Solution: Using the properties of inner products, we compute

$$\|\vec{u} \pm \vec{v}\|^2 = \|\vec{u}\|^2 \pm 2\vec{u} \cdot \vec{v} + \|\vec{v}\|^2.$$

Using the known values of $\|\vec{u}\|, \|\vec{v}\|, \vec{u} \cdot \vec{v}$, we get

$$\|\vec{u} + \vec{v}\| = \sqrt{14}, \ \|\vec{u} - \vec{v}\| = \sqrt{6}.$$

3. Lay, 6.1.24.

Solution: We calculate

$$\begin{aligned} \|\vec{u} + \vec{v}\|^2 &= (\vec{u} + \vec{v}) \cdot (\vec{u} + \vec{v}) = \vec{u} \cdot \vec{u} + \vec{v} \cdot \vec{v} + 2\vec{u} \cdot \vec{v}, \\ \|\vec{u} - \vec{v}\|^2 &= (\vec{u} - \vec{v}) \cdot (\vec{u} - \vec{v}) = \vec{u} \cdot \vec{u} + \vec{v} \cdot \vec{v} - 2\vec{u} \cdot \vec{v}. \end{aligned}$$

Adding these two equalitites up, we get the parallelogram identity.

4. Find all unit vectors lying in $\text{Span}\{(3,4)\}$.

Solution: Every element of Span{(3,4)} has the form t(3,4) = (3t,4t), where $t \in \mathbb{R}$. This is a unit vector if and only if ||(3t,4t)|| = 1; in other words, if $(3t)^2 + (4t)^2 = 1$. This equation has two solutions, $t = \pm 1/5$. Therefore, Span{(3,4)} has two unit vectors, (3/5,4/5) and (-3/5,-4/5).

5. Describe the set of all unit vectors in \mathbb{R}^2 .

Solution: A vector in \mathbb{R}^2 has the form (x, y); this is a unit vector if and only if $x^2 + y^2 = 1$. Therefore, the set of all unit vectors in \mathbb{R}^2 is the circle of radius 1 centered at the origin.

6. Let $W \subset \mathbb{R}^3$ be the subspace spanned by the vectors (1, 0, -1) and (1, -1, 0). Using Theorem 6.1.3, find a basis for W^{\perp} .

Solution: We have $W = \operatorname{Col} A$, where

$$A = \begin{bmatrix} 1 & 1\\ 0 & -1\\ -1 & 0 \end{bmatrix}.$$

Then $W^{\perp} = \operatorname{Nul} A^T$, where

$$A^T = \begin{bmatrix} 1 & 0 & -1 \\ 1 & -1 & 0 \end{bmatrix}.$$

A basis for $\operatorname{Nul} A^T$ is given by $\{(1, 1, 1)\}$.

7. Find all values of t for which the vectors (1, 2) and (1, t) are orthogonal.

Solution: We have $(1, 2) \cdot (1, t) = 1 + 2t$; therefore, the vectors in question are orthogonal if and only if t = -1/2.

8. Let $\vec{w} \in \mathbb{R}^n$ be nonzero. Explain why $\{\vec{w}\}^{\perp}$ cannot equal to the whole \mathbb{R}^n . (Hint: find a specific vector in \mathbb{R}^n which cannot lie in W^{\perp} .)

Solution: We argue by contradiction. Assume that $\{\vec{w}\}^{\perp} = \mathbb{R}^n$. Then in particular $\vec{w} \in \{\vec{w}\}^{\perp}$; so, $\vec{w} \cdot \vec{w} = 0$. However, this can only happen when $\vec{w} = \vec{0}$, a contradiction.

9. Given $\vec{u} = (1,1)$, $\vec{v} = (-1,1)$, $\vec{w} = (0,1)$, prove that $\{\vec{u},\vec{v}\}$ form an orthogonal set. Then, find the orthogonal projections \vec{w}_u and \vec{w}_v of \vec{w} onto \vec{u} and \vec{v} , respectively. Draw the vectors $\vec{u}, \vec{v}, \vec{w}_u, \vec{w}_v$ and verify that $\vec{w} = \vec{w}_u + \vec{w}_v$ by the parallelogram rule. Find the coordinates of \vec{w} in the basis $\mathcal{B} = \{\vec{u}, \vec{v}\}$ of \mathbb{R}^2 .

Solution: We compute $\vec{u} \cdot \vec{v} = 0$ and

$$\vec{w}_u = \frac{\vec{w} \cdot \vec{u}}{\vec{u} \cdot \vec{u}} \vec{u} = \begin{bmatrix} 1/2\\1/2 \end{bmatrix}, \ \vec{w}_v = \frac{\vec{w} \cdot \vec{v}}{\vec{v} \cdot \vec{v}} \vec{v} = \begin{bmatrix} -1/2\\1/2 \end{bmatrix}, \ [\vec{w}]_{\mathcal{B}} = \begin{bmatrix} 1/2\\1/2 \end{bmatrix}.$$

10. Given $\vec{u} = (1,0)$, $\vec{v} = (-1,1)$, $\vec{w} = (1,2)$, find the orthogonal projections \vec{w}_u, \vec{w}_v of \vec{w} onto \vec{u} and \vec{v} , respectively. Draw the vectors $\vec{u}, \vec{v}, \vec{w}, \vec{w}_u, \vec{w}_v$ and verify that $\vec{w} \neq \vec{w}_u + \vec{w}_v$.

Solution: We compute

$$\vec{w}_u = \begin{bmatrix} 1\\0 \end{bmatrix}, \ \vec{w}_v = \begin{bmatrix} -1/2\\1/2 \end{bmatrix}; \ \vec{w}_u + \vec{w}_v = \begin{bmatrix} 1/2\\1/2 \end{bmatrix} \neq \vec{w}.$$

100.* Let A be an $m \times n$ matrix.

(a) Prove that there exists unique $n \times m$ matrix B with the following property: for each $\vec{u} \in \mathbb{R}^n$, $\vec{v} \in \mathbb{R}^m$,

$$(A\vec{u}) \cdot \vec{v} = \vec{u} \cdot (B\vec{v}); \tag{1}$$

in fact, $B = A^T$. (Hint: for the uniqueness part, try substituting columns of the $n \times n$ and $m \times m$ identity matrices in place of \vec{u} and \vec{v} .)

(b) Use part (a) to prove that $(\operatorname{Col} A)^{\perp} = \operatorname{Nul} A^T$.

(c) Use part (a) to prove that $(AC)^T = C^T A^T$.

Solution: (a) (The proof is quite technical, so it might be helpful to run it on some specific example to understand how it works.) First, assume that B is a matrix such that (1) holds for all \vec{u} and \vec{v} . Let $\vec{e_i}$ be the *i*-th column of the $n \times n$ identity matrix and $\vec{f_j}$ be the *j*-th column of the $m \times m$ identity matrix. Take arbitrary i, j and put $\vec{u} = \vec{e_i}, \vec{v} = \vec{f_j}$; then

$$(A\vec{e_i}) \cdot \vec{f_j} = \vec{e_i} \cdot (B\vec{f_j}). \tag{2}$$

A direct calculation shows that the left-hand side is the element in the *j*-th row and *i*-th column of A, while the right-hand side is the element in the *i*-th row and *j*-th column of B. Since (2) holds for all *i*, *j*, we get $B = A^T$.

We have just proved uniqueness of the solution of (1); now, a direct calculation shows that $B = A^T$ solves (1).

(b) Let $\vec{v} \in \mathbb{R}^m$. Then

 $\vec{v} \in \operatorname{Nul} A^T \text{ if and only if}$ $A^T \vec{v} = 0 \text{ if and only if (see problem 8)}$ $\forall \vec{u} \in \mathbb{R}^n \colon \vec{u} \cdot (A^T \vec{v}) = 0 \text{ if and only if}$ $\forall \vec{u} \in \mathbb{R}^n \colon (A \vec{u}) \cdot \vec{v} = 0 \text{ if and only if}$ $\forall \vec{w} \in \operatorname{Col} A \colon \vec{w} \cdot \vec{v} = 0 \text{ if and only if}$ $\vec{v} \in (\operatorname{Col} A)^{\perp}.$

(c) By (a), the matrix $B = (AC)^T$ solves the equation

$$\forall \vec{u}, \vec{v} \colon (AC\vec{u}) \cdot \vec{v} = \vec{u} \cdot (B\vec{v}). \tag{3}$$

However, by (a) applied twice,

$$(AC\vec{u}) \cdot \vec{v} = (C\vec{u}) \cdot (A^T\vec{v}) = \vec{u} \cdot (C^T A^T\vec{v}).$$

Therefore, $C^T A^T$ also solves (3). By uniqueness in (a), $(AC)^T = C^T A^T$.