## Worksheet 20: Inner product

1. Given $\vec{u}=(1,2,3)$ and $\vec{v}=(2,3,1)$, compute $\vec{u} \cdot \vec{v},\|\vec{u}\|,\|\vec{v}\|$.

Answer: $\vec{u} \cdot \vec{v}=1 \cdot 2+2 \cdot 3+3 \cdot 1=11,\|\vec{u}\|=\|\vec{v}\|=\sqrt{14}$.
2. Given $\vec{u}, \vec{v} \in \mathbb{R}^{n}$ such that $\|\vec{u}\|=1, \vec{u} \cdot \vec{v}=2,\|\vec{v}\|=3$, compute $\|\vec{u}+\vec{v}\|$ and $\|\vec{u}-\vec{v}\|$.

Solution: Using the properties of inner products, we compute

$$
\|\vec{u} \pm \vec{v}\|^{2}=\|\vec{u}\|^{2} \pm 2 \vec{u} \cdot \vec{v}+\|\vec{v}\|^{2}
$$

Using the known values of $\|\vec{u}\|,\|\vec{v}\|, \vec{u} \cdot \vec{v}$, we get

$$
\|\vec{u}+\vec{v}\|=\sqrt{14},\|\vec{u}-\vec{v}\|=\sqrt{6} .
$$

3. Lay, 6.1.24.

Solution: We calculate

$$
\begin{aligned}
& \|\vec{u}+\vec{v}\|^{2}=(\vec{u}+\vec{v}) \cdot(\vec{u}+\vec{v})=\vec{u} \cdot \vec{u}+\vec{v} \cdot \vec{v}+2 \vec{u} \cdot \vec{v}, \\
& \|\vec{u}-\vec{v}\|^{2}=(\vec{u}-\vec{v}) \cdot(\vec{u}-\vec{v})=\vec{u} \cdot \vec{u}+\vec{v} \cdot \vec{v}-2 \vec{u} \cdot \vec{v} .
\end{aligned}
$$

Adding these two equalitites up, we get the parallelogram identity.
4. Find all unit vectors lying in $\operatorname{Span}\{(3,4)\}$.

Solution: Every element of $\operatorname{Span}\{(3,4)\}$ has the form $t(3,4)=(3 t, 4 t)$, where $t \in \mathbb{R}$. This is a unit vector if and only if $\|(3 t, 4 t)\|=1$; in other words, if $(3 t)^{2}+(4 t)^{2}=1$. This equation has two solutions, $t= \pm 1 / 5$. Therefore, Span $\{(3,4)\}$ has two unit vectors, $(3 / 5,4 / 5)$ and $(-3 / 5,-4 / 5)$.
5. Describe the set of all unit vectors in $\mathbb{R}^{2}$.

Solution: A vector in $\mathbb{R}^{2}$ has the form $(x, y)$; this is a unit vector if and only if $x^{2}+y^{2}=1$. Therefore, the set of all unit vectors in $\mathbb{R}^{2}$ is the circle of radius 1 centered at the origin.
6. Let $W \subset \mathbb{R}^{3}$ be the subspace spanned by the vectors $(1,0,-1)$ and $(1,-1,0)$. Using Theorem 6.1.3, find a basis for $W^{\perp}$.

Solution: We have $W=\operatorname{Col} A$, where

$$
A=\left[\begin{array}{cc}
1 & 1 \\
0 & -1 \\
-1 & 0
\end{array}\right]
$$

Then $W^{\perp}=\operatorname{Nul} A^{T}$, where

$$
A^{T}=\left[\begin{array}{ccc}
1 & 0 & -1 \\
1 & -1 & 0
\end{array}\right]
$$

A basis for $\operatorname{Nul} A^{T}$ is given by $\{(1,1,1)\}$.
7. Find all values of $t$ for which the vectors $(1,2)$ and $(1, t)$ are orthogonal.

Solution: We have $(1,2) \cdot(1, t)=1+2 t$; therefore, the vectors in question are orthogonal if and only if $t=-1 / 2$.
8. Let $\vec{w} \in \mathbb{R}^{n}$ be nonzero. Explain why $\{\vec{w}\}^{\perp}$ cannot equal to the whole $\mathbb{R}^{n}$. (Hint: find a specific vector in $\mathbb{R}^{n}$ which cannot lie in $W^{\perp}$.)

Solution: We argue by contradiction. Assume that $\{\vec{w}\}^{\perp}=\mathbb{R}^{n}$. Then in particular $\vec{w} \in\{\vec{w}\}^{\perp}$; so, $\vec{w} \cdot \vec{w}=0$. However, this can only happen when $\vec{w}=\overrightarrow{0}$, a contradiction.
9. Given $\vec{u}=(1,1), \vec{v}=(-1,1), \vec{w}=(0,1)$, prove that $\{\vec{u}, \vec{v}\}$ form an orthogonal set. Then, find the orthogonal projections $\vec{w}_{u}$ and $\vec{w}_{v}$ of $\vec{w}$ onto $\vec{u}$ and $\vec{v}$, respectively. Draw the vectors $\vec{u}, \vec{v}, \vec{w}, \vec{w}_{u}, \vec{w}_{v}$ and verify that $\vec{w}=\vec{w}_{u}+\vec{w}_{v}$ by the parallelogram rule. Find the coordinates of $\vec{w}$ in the basis $\mathcal{B}=\{\vec{u}, \vec{v}\}$ of $\mathbb{R}^{2}$.

Solution: We compute $\vec{u} \cdot \vec{v}=0$ and

$$
\vec{w}_{u}=\frac{\vec{w} \cdot \vec{u}}{\vec{u} \cdot \vec{u}} \vec{u}=\left[\begin{array}{l}
1 / 2 \\
1 / 2
\end{array}\right], \vec{w}_{v}=\frac{\vec{w} \cdot \vec{v}}{\vec{v} \cdot \vec{v}} \vec{v}=\left[\begin{array}{c}
-1 / 2 \\
1 / 2
\end{array}\right],[\vec{w}]_{\mathcal{B}}=\left[\begin{array}{l}
1 / 2 \\
1 / 2
\end{array}\right] .
$$

10. Given $\vec{u}=(1,0), \vec{v}=(-1,1), \vec{w}=(1,2)$, find the orthogonal projections $\vec{w}_{u}, \vec{w}_{v}$ of $\vec{w}$ onto $\vec{u}$ and $\vec{v}$, respectively. Draw the vectors $\vec{u}, \vec{v}, \vec{w}, \vec{w}_{u}, \vec{w}_{v}$ and verify that $\vec{w} \neq \vec{w}_{u}+\vec{w}_{v}$.

Solution: We compute

$$
\vec{w}_{u}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \vec{w}_{v}=\left[\begin{array}{c}
-1 / 2 \\
1 / 2
\end{array}\right] ; \vec{w}_{u}+\vec{w}_{v}=\left[\begin{array}{l}
1 / 2 \\
1 / 2
\end{array}\right] \neq \vec{w}
$$

100.* Let $A$ be an $m \times n$ matrix.
(a) Prove that there exists unique $n \times m$ matrix $B$ with the following property: for each $\vec{u} \in \mathbb{R}^{n}, \vec{v} \in \mathbb{R}^{m}$,

$$
\begin{equation*}
(A \vec{u}) \cdot \vec{v}=\vec{u} \cdot(B \vec{v}) ; \tag{1}
\end{equation*}
$$

in fact, $B=A^{T}$. (Hint: for the uniqueness part, try substituting columns of the $n \times n$ and $m \times m$ identity matrices in place of $\vec{u}$ and $\vec{v}$.)
(b) Use part (a) to prove that $(\operatorname{Col} A)^{\perp}=\operatorname{Nul} A^{T}$.
(c) Use part (a) to prove that $(A C)^{T}=C^{T} A^{T}$.

Solution: (a) (The proof is quite technical, so it might be helpful to run it on some specific example to understand how it works.) First, assume that $B$ is a matrix such that (1) holds for all $\vec{u}$ and $\vec{v}$. Let $\vec{e}_{i}$ be the $i$-th column of the $n \times n$ identity matrix and $\overrightarrow{f_{j}}$ be the $j$-th column of the $m \times m$ identity matrix. Take arbitrary $i, j$ and put $\vec{u}=\vec{e}_{i}, \vec{v}=\vec{f}_{j}$; then

$$
\begin{equation*}
\left(A \vec{e}_{i}\right) \cdot \vec{f}_{j}=\vec{e}_{i} \cdot\left(B \vec{f}_{j}\right) \tag{2}
\end{equation*}
$$

A direct calculation shows that the left-hand side is the element in the $j$-th row and $i$-th column of $A$, while the right-hand side is the element in the $i$-th row and $j$-th column of $B$. Since (2) holds for all $i, j$, we get $B=A^{T}$.

We have just proved uniqueness of the solution of (1); now, a direct calculation shows that $B=A^{T}$ solves (1).
(b) Let $\vec{v} \in \mathbb{R}^{m}$. Then

$$
\begin{gathered}
\vec{v} \in \operatorname{Nul} A^{T} \text { if and only if } \\
A^{T} \vec{v}=0 \text { if and only if (see problem 8) } \\
\forall \vec{u} \in \mathbb{R}^{n}: \vec{u} \cdot\left(A^{T} \vec{v}\right)=0 \text { if and only if } \\
\forall \vec{u} \in \mathbb{R}^{n}:(A \vec{u}) \cdot \vec{v}=0 \text { if and only if } \\
\forall \vec{w} \in \operatorname{Col} A: \vec{w} \cdot \vec{v}=0 \text { if and only if } \\
\vec{v} \in(\operatorname{Col} A)^{\perp} .
\end{gathered}
$$

(c) By (a), the matrix $B=(A C)^{T}$ solves the equation

$$
\begin{equation*}
\forall \vec{u}, \vec{v}:(A C \vec{u}) \cdot \vec{v}=\vec{u} \cdot(B \vec{v}) . \tag{3}
\end{equation*}
$$

However, by (a) applied twice,

$$
(A C \vec{u}) \cdot \vec{v}=(C \vec{u}) \cdot\left(A^{T} \vec{v}\right)=\vec{u} \cdot\left(C^{T} A^{T} \vec{v}\right) .
$$

Therefore, $C^{T} A^{T}$ also solves (3). By uniqueness in (a), $(A C)^{T}=C^{T} A^{T}$.

