Worksheet 2: vectors

1. Given the vectors

$$
\vec{u}=\left[\begin{array}{l}
1 \\
2
\end{array}\right], \vec{v}=\left[\begin{array}{l}
2 \\
1
\end{array}\right]
$$

find the vectors $\vec{u}+2 \vec{v}$ and $3 \vec{u}-\vec{v}$. Draw them on the plane using the parallelogram rule.

Answer:

$$
\vec{u}+2 \vec{v}=\left[\begin{array}{l}
5 \\
4
\end{array}\right], 3 \vec{u}-\vec{v}=\left[\begin{array}{l}
1 \\
5
\end{array}\right] .
$$

2. Let \vec{u} and \vec{v} be as in Exercise 1, and put

$$
\vec{b}=\left[\begin{array}{c}
1 \\
-1
\end{array}\right] .
$$

Using the system of linear equations written in class, find x_{1} and x_{2} such that

$$
x_{1} \vec{u}+x_{2} \vec{v}=\vec{b} .
$$

Solution: x_{1} and x_{2} have to solve the system with the augmented matrix

$$
\left[\begin{array}{ccc}
1 & 2 & 1 \\
2 & 1 & -1
\end{array}\right] .
$$

Using row reduction, we find $x_{1}=-1$ and $x_{2}=1$.
3. Let

$$
\vec{a}_{1}=\left[\begin{array}{c}
1 \\
-2
\end{array}\right], \vec{a}_{2}=\left[\begin{array}{c}
-1 \\
2
\end{array}\right], \vec{b}=\left[\begin{array}{l}
2 \\
0
\end{array}\right] .
$$

Write the system equivalent to the vector equation

$$
x_{1} \vec{a}_{1}+x_{2} \vec{a}_{2}=\vec{b}
$$

and solve it. Does \vec{b} lie in $\operatorname{Span}\left(\vec{a}_{1}, \vec{a}_{2}\right)$?
Solution: The augmented matrix of the system is

$$
\left[\begin{array}{ccc}
1 & -1 & 2 \\
-2 & 2 & 0
\end{array}\right]
$$

After row reduction, we get an REF

$$
\left[\begin{array}{ccc}
1 & -1 & 2 \\
0 & 0 & 4
\end{array}\right]
$$

Since the last column is pivot, the system is inconsistent. Therefore, \vec{b} does not lie in $\operatorname{Span}\left(\vec{a}_{1}, \vec{a}_{2}\right)$.
4. Give the geometric description of $\operatorname{Span}\left(\vec{a}_{1}, \vec{a}_{2}\right)$ for \vec{a}_{1} and \vec{a}_{2} from Exercise 3.

Answer: The line passing through \vec{a}_{1} and the origin.
5. Lay, 1.3.7.

Answer: $\vec{a}=\vec{u}-2 \vec{v}, \vec{b}=2 \vec{u}-2 \vec{v}, \vec{c}=2 \vec{u}-3.5 \vec{v}, \vec{d}=3 \vec{u}-4 \vec{v}$.
6. Prove the property (vi) in the gray box on Lay, p. 32, by analogy with what we did in class.

Solution: Let

$$
\vec{u}=\left[\begin{array}{c}
u_{1} \\
\vdots \\
u_{n}
\end{array}\right]
$$

then

$$
(c+d) \vec{u}=\left[\begin{array}{c}
(c+d) u_{1} \\
\vdots \\
(c+d) u_{n}
\end{array}\right]=\left[\begin{array}{c}
c u_{1}+d u_{1} \\
\vdots \\
c u_{n}+d u_{n}
\end{array}\right]=\left[\begin{array}{c}
c u_{1} \\
\vdots \\
c u_{n}
\end{array}\right]+\left[\begin{array}{c}
d u_{1} \\
\vdots \\
d u_{n}
\end{array}\right]=c \vec{u}+d \vec{u} .
$$

7. Lay, 1.3.24.

Solution: (a) True, see the beginning of the subsection 'Vectors in \mathbb{R}^{n}.
(b) True, use Fig. 7 to draw the parallelogram determined by $\vec{u}-\vec{v}$ and \vec{v}.
(c) False; in fact, the linear combination with all coefficients zero will be the zero vector.
(d) True; see the statement that refers to Fig. 11.
(e) True; see the paragraph following the definition of Span.
8.* Let $\vec{u}_{1}, \vec{u}_{2}, \vec{u}_{3}$ be three vectors in \mathbb{R}^{2}. Prove that the intersection point of the medians of the triangle with vertices $\vec{u}_{1}, \vec{u}_{2}, \vec{u}_{3}$ is given by the linear combination

$$
\frac{1}{3}\left(\vec{u}_{1}+\vec{u}_{2}+\vec{u}_{3}\right)
$$

(Hint: start with the formula for the midpoint of a segment we studied in class.)

Solution: The midpoint of the interval with endpoints \vec{u}_{2} and \vec{u}_{3} is given by $\vec{v}=\frac{1}{2}\left(\vec{u}_{2}+\vec{u}_{3}\right)$. Now, we use the fact that the intersection point of the medians lies two thirds of the way between \vec{u}_{1} and \vec{v}; therefore, it is given by

$$
\vec{u}_{1}+\frac{2}{3}\left(\vec{v}-\vec{u}_{1}\right)=\frac{1}{3}\left(\vec{u}_{1}+\vec{u}_{2}+\vec{u}_{3}\right) .
$$

Alternatively, the calculation above shows that $\vec{w}=\frac{1}{3}\left(\vec{u}_{1}+\vec{u}_{2}+\vec{u}_{3}\right)$ lies on the segment connecting \vec{u}_{1} and \vec{v}; that is, on one of the medians of our triangle. Since the expression for \vec{w} stays the same if we permute $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}, \vec{w}$ lies on each median of our triangle. As a byproduct, we recover the geometric fact that the medians of a triangle intersect at one point.

