Worksheet 17: Characteristic polynomial and a glimpse of diagonalization

1. Find the characteristic polynomial and the real eigenvalues of the matrix

$$
A=\left[\begin{array}{cc}
1 & 1 \\
-2 & 4
\end{array}\right]
$$

Answer: The characteristic polynomial is $\lambda^{2}-5 \lambda+6$; the eigenvalues are 2 and 3 .
2. Find the characteristic polynomial and the real eigenvalues of the matrix

$$
A=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]
$$

Recalling that A is the standard matrix of a 90 degree rotation, find a geometric interpretation of the answer.
3. Lay, 5.2.15.

Answer: 4 (multiplicity 1), 3 (multiplicity 2), 1 (multiplicity 1). The characteristic polynomial is $(4-\lambda)(3-\lambda)^{2}(1-\lambda)$.
4. For the matrix A in problem 1 , let λ_{1}, λ_{2} be the eigenvalues. Find an eigenvector \vec{v}_{1} for the eigenvalue λ_{1} and an eigenvector \vec{v}_{2} for the eigenvalue λ_{2}. Consider the matrix

$$
P=\left[\begin{array}{ll}
\vec{v}_{1} & \vec{v}_{2}
\end{array}\right]
$$

and the diagonal 2×2 matrix D whose diagonal entries are λ_{1} and λ_{2}. Show that

$$
P D=A P
$$

Show that P is invertible and prove that

$$
A=P D P^{-1}
$$

Solution: From problem 1, we know that

$$
\lambda_{1}=2, \quad \lambda_{2}=3
$$

Next, we row reduce $A-2 I$ and $A-3 I$:

$$
\begin{gathered}
A-2 I=\left[\begin{array}{ll}
-1 & 1 \\
-2 & 2
\end{array}\right] \rightarrow\left[\begin{array}{cc}
1 & -1 \\
0 & 0
\end{array}\right] \\
A-3 I=\left[\begin{array}{ll}
-2 & 1 \\
-2 & 1
\end{array}\right] \rightarrow\left[\begin{array}{cc}
1 & -1 / 2 \\
0 & 0
\end{array}\right] .
\end{gathered}
$$

We can put

$$
\vec{v}_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \quad \vec{v}_{2}=\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

So,

$$
P=\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right], \quad D=\left[\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right]
$$

P is invertible since $\operatorname{det} P \neq 0$. Next,

$$
P D=\left[\begin{array}{ll}
2 & 3 \\
2 & 6
\end{array}\right]=A P
$$

Multiplying this by P^{-1} to the right, we get $A=P D P^{-1}$. Note that no matter what \vec{v}_{1} and \vec{v}_{2} are, we have

$$
P D=\left[\begin{array}{ll}
2 \vec{v}_{1} & 3 \vec{v}_{2}
\end{array}\right], A P=\left[\begin{array}{ll}
A \vec{v}_{1} & A \vec{v}_{2}
\end{array}\right] .
$$

So, the identity $P D=A P$ follows from the eigenvector identities $A \vec{v}_{1}=2 \vec{v}_{1}$, $A \vec{v}_{2}=3 \vec{v}_{2}$.
5. Lay, 5.2.19.

Solution: Substitute $\lambda=0$ into the equation

$$
\operatorname{det}(A-\lambda I)=\left(\lambda_{1}-\lambda\right) \ldots\left(\lambda_{n}-\lambda\right)
$$

