Worksheet 15: Rank

Rank theorem for matrices: if A is an $m \times n$ matrix (and thus defines a linear transformation acting $\mathbb{R}^n \to \mathbb{R}^m$), then

 $\dim \operatorname{Col} A + \dim \operatorname{Nul} A = n.$

We define rank $A = \dim \operatorname{Col} A$.

Rank theorem for linear transformations: if V and W are **finite-dimensional** vector spaces and $T: V \to W$ is a linear transformation, then

 $\dim \operatorname{Ker} T + \dim \operatorname{Ran} T = \dim V.$

Here Ker $T \subset V$ is the kernel of T and Ran $T \subset W$ is the range of T. (This theorem can be proved by picking some bases of V and W and applying the rank theorem to the matrix of T in these bases.)

Lay, 4.6.1. (Do not find bases for Col A and Nul A.)
Answer: rank A = 2, dim Nul A = 2, basis for Row A: {(1,0,-1,5), (0,-2,5,-6)}.
Lay, 4.6.11.

Solution: dim Row $A = \operatorname{rank} A = 5 - \operatorname{dim} \operatorname{Nul} A = 3$.

3.* Find the rank of the linear transformation $T : \mathbb{P}_3 \to \mathbb{P}_3$ given by the formula T(f) = f'. Explain why this transformation is not onto. (Hint: you can write the matrix of T in the standard basis of \mathbb{P}_3 , or you can find the kernel of T and use the rank theorem.)

Solution: One way to find the rank is to write the matrix of T in the basis $\{1, t, t^2, t^3\}$ of \mathbb{P}_3 :

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

It is in REF; the rank of T is equal to the number of pivot positions of A and is equal to 3.

Another way to find the rank is to use the rank theorem:

$$\operatorname{rank} T = \dim \mathbb{P}_3 - \dim \operatorname{Ker} T.$$

We know that dim $\mathbb{P}_3 = 4$. Next, Ker *T* consists of solutions to the equation f' = 0; that is, of constant polynomials. The basis of Ker *T* consists of the polynomial 1; therefore, dim Ker T = 1 and rank T = 3.

Since rank $T = \dim \operatorname{Ran} T = 3 < \dim \mathbb{P}_3$, T is not onto. One can see this explicitly: $f \in \operatorname{Ran} T$ iff there exists a polynomial $g \in \mathbb{P}_3$ such that f = g'. Therefore, $\operatorname{Ran} T$ consists of polynomials of degree ≤ 2 . (A polynomial of degree 3 still has an antiderivative, but this antiderivative does not lie in \mathbb{P}_3 .)

4. Lay, 4.6.22.

Solution: No. Assume that the system $A\vec{x} = \vec{0}$ has the stated property, where A is a 10×12 matrix. Then Nul A is spanned by a single nonzero vector; it follows that dim Nul A = 1. By the rank theorem, rank A = 11. This means that A has 11 pivot positions, which is impossible because it only has 10 rows.

5. Lay, 4.6.27. **Answer:** We have

$$\begin{aligned} \operatorname{Row} A &= \operatorname{Col} A^T \subset \mathbb{R}^n, \\ \operatorname{Col} A &= \operatorname{Row} A^T \subset \mathbb{R}^m, \\ \operatorname{Nul} A \subset \mathbb{R}^n, \\ \operatorname{Nul} A^T \subset \mathbb{R}^m. \end{aligned}$$

Note that $\operatorname{Nul} A \neq \operatorname{Col} A^T$ and $\operatorname{Nul} A^T \neq \operatorname{Col} A$ (as can be seen by comparing their dimensions in the general case). In fact, these pairs of spaces are **orthogonal complements**, as we will see in Chapter 6.

6. Lay, 4.6.28.

Solution: (a) Follows by rank theorem and the fact that dim Row $A = \operatorname{rank} A$. (b) Follows from (a), applied to A^T ; recall that Row $A^T = \operatorname{Col} A$.

7. Lay, 4.6.29.

Solution: The equation $A\vec{x} = \vec{b}$ has a solution for all \vec{b} if and only if dim Col A = m. By 4.6.28(b), this is equivalent to dim Nul $A^T = 0$; that is, to the equation $A^T\vec{x} = 0$ having only the trivial solution.