Worksheet 14: Dimension and linear transformations

1. Lay, 4.5.13.

Answer: The dimension of $\operatorname{Col} A$ is 3 , the dimension of $\operatorname{Nul} A$ is 2 .
2. Lay, 4.5.19.

Answers: (a) True (b) False (does not need to pass through the origin) (c) False (the dimension is 5 , as a basis is given by $\left\{1, t, t^{2}, t^{3}, t^{4}\right\}$) (d) True (e) True
3.* Lay, 4.5.27.

Solution: Assume that \mathbb{P} is finite dimensional and $\operatorname{dim} \mathbb{P}=n<\infty$. Then the space \mathbb{P}_{n} of all polynomials of degree $\leq n$ is $n+1$-dimensional, as it has basis $\left\{1, t, \ldots, t^{n}\right\}$; however, \mathbb{P}_{n} is a subspace of \mathbb{P}, which would imply by Theorem 4.5 .11 that $\operatorname{dim} \mathbb{P}_{n} \leq \operatorname{dim} \mathbb{P}$, a contradiction with the fact that $\operatorname{dim} \mathbb{P}=n$.
4. Using the definition of a linear transformation, prove that the transformation $T: \mathbb{P} \rightarrow \mathbb{P}$ given by $T(f)=f^{\prime}$ is linear. (Here \mathbb{P} is the space of all polynomials and f^{\prime} is the derivative of a polynomial f.)

Solution: We need to verify that for any $c, d \in \mathbb{R}$ and $f, g \in \mathbb{P}, T(c f+$ $d g)=c T(f)+d T(g)$. Recalling the definition of T, this turns into

$$
(c f+d g)^{\prime} \equiv c f^{\prime}+d g^{\prime}
$$

This follows from the properties of differentiation.
5. Using the definition of a linear transformation, prove that the transformation $S: \mathbb{P} \rightarrow \mathbb{P}$ given by $S(f)(t)=t f(t)$ is linear.

Solution: We need to verify that for any $c, d \in \mathbb{R}$ and $f, g \in \mathbb{P}, S(c f+$ $d g)=c S(f)+d S(g)$. Recalling the definition of S, this turns into

$$
t(c f(t)+d g(t)) \equiv c(t f(t))+d(t g(t))
$$

a true identity.
6. Find the matrix of the linear transformation $T: \mathbb{P}_{1} \rightarrow \mathbb{P}_{2}$ given by $T(f)(t)=(t+1) f(t)$ in the bases $\{1, t\}$ of \mathbb{P}_{1} and $\left\{1, t, t^{2}\right\}$ of \mathbb{P}_{2}. Is T 1-to-1? Is it onto?

Solution: We have

$$
\begin{aligned}
& T(1)=1+t=1 \cdot 1+1 \cdot t+0 \cdot t^{2} \\
& T(t)=t+t^{2}=0 \cdot 1+1 \cdot t+1 \cdot t^{2}
\end{aligned}
$$

Therefore, the matrix is

$$
A=\left[\begin{array}{ll}
1 & 0 \\
1 & 1 \\
0 & 1
\end{array}\right]
$$

A has a pivot in each column, so T is 1-to- $1 ; A$ does not have a pivot in each row, so T is not onto.
7. Find the matrix of the linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{P}_{2}$ given by $T\left(x_{1}, x_{2}\right)(t)=x_{1} t+x_{2}\left(1+t^{2}\right)$ in the bases $\{(1,1),(1,-1)\}$ of \mathbb{R}^{2} and $\left\{1, t, t^{2}\right\}$ of \mathbb{P}_{2}.

Solution: We have

$$
\begin{gathered}
T(1,1)=1+t+t^{2}=1 \cdot 1+1 \cdot t+1 \cdot t^{2} \\
T(1,-1)=t-1-t^{2}=(-1) \cdot 1+1 \cdot t+(-1) \cdot t^{2}
\end{gathered}
$$

Therefore, the matrix is

$$
A=\left[\begin{array}{cc}
1 & -1 \\
1 & 1 \\
1 & -1
\end{array}\right]
$$

8. Prove that the transformation from problem 4 is onto, but not 1 -to- 1 ; find its kernel.

Solution: Onto: we need to prove that for each $g \in \mathbb{P}$, there exists $f \in \mathbb{P}$ such that $f^{\prime}=g$. This is true since every polynomial has an antiderivative, which is also a polynomial.

Not 1-to-1: a polynomial f is in the kernel of T if and only if $f^{\prime}=0$. Therefore, the kernel of T consists of constant polynomials (or we can say that it is spanned by 1).
9. Prove that the transformation from problem 5 is 1-to-1, but not onto; find its range.

Solution: 1-to-1: We need to prove that for every $f \in \mathbb{P}$, if $t f(t) \equiv 0$, then $f \equiv 0$. This is true, as $t f(t) \equiv 0$ implies that $f(t)=0$ for all $t \neq 0$; thus, f has infinitely many roots, which can only happen when $f \equiv 0$.

Not onto: a polynomial f is in the range of S if and only if $f=t g$ for some polynomial g. Therefore, the range of S consists of polynomials with zero constant term.
10. Given the transformations T from problem 4 and S from problem 5, find $T \circ S$ and $S \circ T$. (Recall that $T \circ S$ is the composition of T and S, defined by $(T \circ S)(f)=T(S(f))$.)

Solution: We find

$$
\begin{gathered}
(T \circ S) f(t)=(t f(t))^{\prime}=f(t)+t f^{\prime}(t) \\
(S \circ T) f(t)=t f^{\prime}(t) .
\end{gathered}
$$

Note that $T \circ S \neq S \circ T$.
100.* (Lagrange interpolation) (Do not attempt this problem in section; however, you might want to come back to it later.) Let \mathbb{P}_{n} be the space of polynomials of degree no more than n, and assume that $t_{0}, \ldots, t_{n} \in \mathbb{R}$ are $n+1$ distinct points. (We fix these points from now on.)
(a) Consider the transformation $T: \mathbb{P}_{n} \rightarrow \mathbb{R}^{n+1}$ given by

$$
T(f)=\left(f\left(t_{0}\right), \ldots, f\left(t_{n}\right)\right)
$$

Prove that it is linear.
(b) Prove that T is 1-to-1. (Hint: a nontrivial polynomial of degree no more than n can have at most n roots.)
(c) Use part (b) and IMT to prove that T is onto. (Hint: take some bases of \mathbb{P}_{n} and \mathbb{R}^{n+1} and consider the matrix of T in these bases; why is it square?)
(d) Reformulate part (c) as follows: for every $s_{0}, \ldots, s_{n} \in \mathbb{R}^{n}$, there exists a unique polynomial f of degree $\leq n$ such that $f\left(t_{0}\right)=s_{0}, \ldots, f\left(t_{n}\right)=$ s_{n}.
(e) Try to think what the statement of (d) means for $n=0,1,2$ in terms of the graph of f.

