# Worksheet 13: Bases and coordinates 

1. Is

$$
\left\{\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right]\right\}
$$

a basis of $\mathbb{R}^{3}$ ? Explain.
Answer: No, as the matrix

$$
\left[\begin{array}{ccc}
1 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & -1
\end{array}\right]
$$

is not invertible.
2. Represent the following set as $\operatorname{Col} A$ for some matrix $A$ and find a basis for it:

$$
V=\{(a-b, b-c, c-a) \mid a, b, c \in \mathbb{R}\}
$$

Solution: We have

$$
\left[\begin{array}{l}
a-b \\
b-c \\
c-a
\end{array}\right]=a\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right]+b\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]+c\left[\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right]
$$

therefore, $V=\operatorname{Col} A$ with

$$
A=\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & -1 \\
-1 & 0 & 1
\end{array}\right]
$$

Row reduction shows that $A$ is row equivalent to

$$
\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right] .
$$

The pivot columns are the second and the third one; therefore, a basis for $V$ is given by

$$
\left\{\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right],\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]\right\}
$$

3. Represent the following set as $\operatorname{Nul} A$ for some matrix $A$ and find a basis for it:

$$
V=\{(a, b, c) \mid a+b+c=0\} .
$$

Solution: Writing $a+b+c=0$ as a matrix equation, we get $V=\operatorname{Nul} A$, where

$$
A=\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right] .
$$

We see that $A$ is already in RREF; the general solution in parametric vector form is

$$
b\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]+c\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right], b, c \in \mathbb{R}
$$

Therefore, a basis for $V$ is given by

$$
\left\{\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]\right\}
$$

4. Using the definition of a basis, prove that the set $\left\{1, t, t^{2}\right\}$ forms a basis of $\mathbb{P}_{2}$ (the space of polynomials of degree no more than 2 ).

Solution: First, we prove that $\operatorname{Span}\left\{1, t, t^{2}\right\}=\mathbb{P}_{2}$. Indeed, every vector in $\operatorname{Span}\left\{1, t, t^{2}\right\}$ has the form $a+b t+c t^{2}$ for some $a, b, c \in \mathbb{R}$; this is exactly the form of a general element of $\mathbb{P}_{2}$.

Next, we prove that $\left\{1, t, t^{2}\right\}$ is linearly independent. Assume that $a+$ $b t+c t^{2}=0$. Then the coefficients of this polynomial are zero, which implies $a=b=c=0$.
5. Using the definition of a basis, prove that the set $\left\{t, t^{2}\right\}$ forms a basis of the space

$$
V=\left\{f \in \mathbb{P}_{2} \mid f(0)=0\right\} .
$$

Solution: Similar to the previous problem, using the fact that the general element of $V$ has the form $a t+b t^{2}$ for $a, b \in \mathbb{R}$.
6. Given

$$
\mathcal{B}=\left\{\left[\begin{array}{l}
1 \\
2
\end{array}\right],\left[\begin{array}{l}
2 \\
1
\end{array}\right]\right\}, \vec{v}=\left[\begin{array}{c}
1 \\
-2
\end{array}\right],
$$

find the coordinate vector $[\vec{v}]_{\mathcal{B}}$ of $\vec{v}$ in the basis $\mathcal{B}$.
Solution: We need to find $\vec{x}=\left(x_{1}, x_{2}\right)$ that solves the coordinate identity

$$
x_{1}\left[\begin{array}{l}
2 \\
1
\end{array}\right]+x_{2}\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\left[\begin{array}{c}
1 \\
-2
\end{array}\right] .
$$

Solving this vector equation, we find $\vec{x}=(-5 / 3,4 / 3)$.
7. Given the basis $\mathcal{B}$ from problem 6 , find the vector $\vec{v}$ such that

$$
[\vec{v}]_{\mathcal{B}}=\left[\begin{array}{c}
1 \\
-2
\end{array}\right] .
$$

Solution: The coordinate identity gives

$$
\vec{v}=1 \cdot\left[\begin{array}{l}
1 \\
2
\end{array}\right]+(-2) \cdot\left[\begin{array}{l}
2 \\
1
\end{array}\right]=\left[\begin{array}{c}
-3 \\
0
\end{array}\right] .
$$

8. Find the coordinate vector of $(1+t)^{2}$ in the basis of $\mathbb{P}_{2}$ from problem 4.

Solution: We have $(1+t)^{2}=1 \cdot 1+2 \cdot t+1 \cdot t^{2}$; therefore, the coordinate vector is $(1,2,1)$.
9. Find the coordinate vector of $t(1-t)$ in the basis $\left\{t, t^{2}\right\}$ of the space $V$ from problem 5 .

Solution: We have $t(1-t)=1 \cdot t+(-1) \cdot t^{2}$; therefore, the coordinate vector is $(1,-1)$.
10. Use the coordinate vectors with respect to the basis from problem 4 to find whether the set

$$
\left\{1,(t-1),(t-1)^{2}\right\}
$$

is a basis of $\mathbb{P}_{2}$.
Solution: The coordinate vectors of $1,(t-1),(t-1)^{2}$ in the basis $\left\{1, t, t^{2}\right\}$ are

$$
\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right] .
$$

It remains to verify that these coordinate vectors form a basis of $\mathbb{R}^{3}$.
11. Find the coordinate vector of $1-2 t$ in the basis $\{1+2 t, 2+t\}$ of $\mathbb{P}_{1}$. (You may use either the coordinate identity (1) on page 246 or coordinate vectors with respect to the basis $\{1, t\}$.)

First solution: We are looking for $x_{1}$ and $x_{2}$ such that

$$
1-2 t=x_{1}(1+2 t)+x_{2}(2+t)
$$

This is equivalent to

$$
1-2 t=\left(x_{1}+2 x_{2}\right)+\left(2 x_{1}+x_{2}\right) t .
$$

Therefore, we need to solve the system

$$
\begin{gathered}
x_{1}+2 x_{2}=1 \\
2 x_{1}+x_{2}=-2
\end{gathered}
$$

The solution is $\left(x_{1}, x_{2}\right)=(-5 / 3,4 / 3)$.
Second solution: We can replace all the vectors by their coordinate vectors in the basis $\{1, t\}$; then, we need to find the coordinates of the vector $(1,-2)$ in the basis $\{(1,2),(2,1)\}$. This was done in problem 6 .
100.* (Caution: doing this problem is not going to directly help you with the exam, and might give a headache. Do it at your own risk.) Assume that we rewrote all definitions so that multiplying a scalar $c$ by a vector $\vec{v}$ is only allowed when $c \in \mathbb{Q}$. Here $\mathbb{Q}$ is the set of all rational numbers (i.e., ratios of two integers). Prove that:
(a) The set $\mathbb{R}$ of all real numbers forms a vector space.
(b) The set

$$
V=\{a+b \sqrt{2} \mid a, b \in \mathbb{Q}\}
$$

is a subspace of $\mathbb{R}$ in the new definition, but not in the old definition.
(c) The set $\{1, \sqrt{2}\}$ is a basis of $V$.

