Worksheet 12: Subspaces and bases

$1-4$. For each of the following sets, either prove that it is not a subspace of \mathbb{R}^{n}, or represent it as $\operatorname{Col} A$ or $\operatorname{Nul} A$ for some matrix A :

$$
\begin{gather*}
\{(a, b, c, d) \mid a-2 b=4 c, 2 a=c+3 d\}, \tag{1}\\
\{(a, b, c) \mid a+b=c+2\}, \tag{2}\\
\{(a-b, a+b, b+1) \mid a, b \in \mathbb{R}\}, \tag{3}\\
\{(-a+2 b, a-2 b, 3 a-6 b) \mid a, b \in \mathbb{R}\} . \tag{4}
\end{gather*}
$$

Answers: (1) This is $\operatorname{Nul} A$, for

$$
A=\left[\begin{array}{cccc}
1 & -2 & 4 & 0 \\
2 & 0 & -1 & -3
\end{array}\right]
$$

(2) Not a subspace, as does not contain the zero vector.
(3) Not a subspace, as does not contain the zero vector. Indeed, if ($a-$ $b, a+b, b+1)=(0,0)$, then $a-b=a+b=0$; thus, $a=b=0$, which contradicts that $b+1=0$.
(4) This is $\operatorname{Col} A$, for

$$
A=\left[\begin{array}{cc}
-1 & 2 \\
1 & -2 \\
3 & -6
\end{array}\right]
$$

5-8. Determine which of these sets form a basis of \mathbb{R}^{3}. For those sets which are not bases, state whether they do not span \mathbb{R}^{3}, are not linearly
independent, or both:

$$
\begin{gather*}
\left\{\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right],\left[\begin{array}{l}
3 \\
4 \\
1
\end{array}\right]\right\} ; \tag{5}\\
\left\{\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right],\left[\begin{array}{l}
3 \\
4 \\
1
\end{array}\right],\left[\begin{array}{c}
0 \\
-4 \\
2
\end{array}\right]\right\} \tag{6}\\
\left\{\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right],\left[\begin{array}{l}
3 \\
4 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
2
\end{array}\right]\right\} \tag{7}\\
\left\{\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right],\left[\begin{array}{l}
3 \\
4 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
2
\end{array}\right],\left[\begin{array}{l}
7 \\
8 \\
9
\end{array}\right]\right\} \tag{8}
\end{gather*}
$$

Answers: (5) Not a basis - linearly independent, but do not span \mathbb{R}^{3} (6) Not a basis - linearly dependent and do not span \mathbb{R}^{3} (7) Basis (8) Not a basis - span \mathbb{R}^{3}, but linearly dependent.
9. Prove that every basis of \mathbb{R}^{3} consists of 3 vectors.

Solution: Let $\vec{v}_{1}, \ldots, \vec{v}_{n}$ be a basis of \mathbb{R}^{3}. Then if $n>3$, these vectors cannot be linearly independent; if $n<3$, they cannot span \mathbb{R}^{3}. Therefore, $n=3$.
10. Lay, 4.3.13.

Answer: Basis for $\operatorname{Nul} A:(-6,-5 / 2,1,0),(-5,-3 / 2,0,1)$. Basis for $\operatorname{Col} A:(-2,2,-3),(4,-6,8)$.
11. Does there exist a subspace W of \mathbb{R}^{3} such that the vectors from problem 5 form a basis of W ? What about the vectors from problem 8 ?

Solution: The vectors in problem 5 are linearly independent and form a basis of the subspace spanned by these vectors. The vectors in problem 8 are linearly dependent and cannot form a basis of anything.
100.* Let A be an $m \times n$ matrix, and $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be the linear transformation defined by the formula $T(\vec{x})=A \vec{x}$.
(a) Let X be a subspace of \mathbb{R}^{n}. Prove that the set

$$
T(X)=\left\{T(\vec{x}) \mid \vec{x} \in \mathbb{R}^{n}\right\}
$$

is a subspace of \mathbb{R}^{m}.
(b) Let Y be a subspace of \mathbb{R}^{m}. Prove that the set

$$
T^{-1}(Y)=\{\vec{x} \mid T(\vec{x}) \in Y\}
$$

is a subspace of \mathbb{R}^{n}. (Caution: T need not be invertible for $T^{-1}(Y)$ to be well defined!)

Solution: We only verify that $T(X)$ and $T^{-1}(Y)$ are closed under addition; the rest is left to the reader.
(a) Let $\vec{y}_{1}, \vec{y}_{2} \in T(X)$. Then there exist $\vec{x}_{1}, \vec{x}_{2} \in X$ such that $\vec{y}_{1}=$ $T\left(\vec{x}_{1}\right), \vec{y}_{2}=T\left(\vec{x}_{2}\right)$. Since X is a subspace, $\vec{x}_{1}+\vec{x}_{2} \in X$; since T is linear, $\vec{y}_{1}+\vec{y}_{2}=T\left(\vec{x}_{1}+\vec{x}_{2}\right) \in T(X)$.
(b) Let $\vec{x}_{1}, \vec{x}_{2} \in T^{-1}(Y)$. Then $T\left(\vec{x}_{1}\right), T\left(\vec{x}_{2}\right) \in Y$. Since T is linear, $T\left(\vec{x}_{1}+\vec{x}_{2}\right)=T\left(\vec{x}_{1}\right)+T\left(\vec{x}_{2}\right)$; since Y is a subspace, $T\left(\vec{x}_{1}\right)+T\left(\vec{x}_{2}\right) \in Y$. Therefore, $T\left(\vec{x}_{1}+\vec{x}_{2}\right) \in Y$; it follows that $\vec{x}_{1}+\vec{x}_{2} \in T^{-1}(Y)$.

