Worksheet 11: Subspaces

We will consider the following vector spaces:

- \mathbb{R}^{n}, the spaces we studied before;
- \mathbb{P}_{n}, the space of all polynomials in one variable of degree $\leq n$;
- \mathbb{P}, the space of all polynomials.
$1-4$. Are the following sets subspaces of \mathbb{R}^{2} ?
(1) The line passing through $(0,1)$ and $(1,0)$.
(2) The line passing through $(0,1)$ and $(0,-1)$.
(3) The disc of radius 1 centered at zero.
(4) The set of points $\left(x_{1}, x_{2}\right)$ such that $x_{1} x_{2}=0$.

Answers: (1) No, as it does not contain the zero vector (2) Yes (3) No, as $(1,0)$ lies in the disc, but $2(1,0)$ does not, thus violating property (c) of the definition of a subspace (4) No, as $(1,0)$ and $(0,1)$ lie in this set, but their sum does not.
5. Find a vector \vec{v} such that the set from problem 2 is equal to $\operatorname{Span}(\vec{v})$. Answer: One possibility is $\vec{v}=(0,1)$.
6. Represent the set

$$
\{(a-b, b-c, c-a) \mid a, b, c \in \mathbb{R}\} \subset \mathbb{R}^{3}
$$

as $\operatorname{Span}\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$ for some vectors $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$. Prove that this set is a subspace of \mathbb{R}^{3}.

Solution: We have

$$
\left[\begin{array}{l}
a-b \\
b-c \\
c-a
\end{array}\right]=a\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right]+b\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]+c\left[\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right]
$$

therefore, the set in question is spanned by $\vec{v}_{1}=(1,0,-1), \vec{v}_{2}=(-1,1,0), \vec{v}_{3}=$ $(0,-1,1)$.
7. Show that the set

$$
S=\{f(x) \in \mathbb{P} \mid f(7)=0\}
$$

is a subspace of \mathbb{P}.
Solution: We verify the properties in the definition of a subspace:

- The zero polynomial is in S, as its value at any point is equal to zero.
- Let $f, g \in S$. Then $(f+g)(7)=f(7)+g(7)=0$; therefore, $f+g \in S$.
- Let $f \in S$ and $c \in \mathbb{R}$. Then $(c f)(7)=c f(7)=0$; therefore, $c f \in S$.

8. Using the method of Problem 6, show that the set

$$
\left\{a+(a+b) t^{2} \mid a, b \in \mathbb{R}\right\}
$$

is a subspace of \mathbb{P}_{2}.
Solution: We have

$$
a+(a+b) t^{2}=a\left(1+t^{2}\right)+b t^{2}
$$

Therefore, the set in question is spanned by $\left\{1+t^{2}, t^{2}\right\}$. It follows that it is a subspace of \mathbb{P}_{2}.
9.* Lay, 4.1.33.

Solution: We verify the defining properties of a subspace for $H+K$:

- $\overrightarrow{0} \in H+K$, as we can represent $\overrightarrow{0}=\overrightarrow{0}+\overrightarrow{0}$ with $\overrightarrow{0} \in H$ and $\overrightarrow{0} \in K$.
- Assume that $\vec{w}_{1}, \vec{w}_{2} \in H+K$. Then there exist $u_{1}, u_{2} \in H$ and $v_{1}, v_{2} \in$ K such that $\vec{w}_{1}=\vec{u}_{1}+\vec{v}_{1}$ and $\vec{w}_{2}=\vec{u}_{2}+\vec{v}_{2}$. Then we represent $\vec{w}_{1}+\vec{w}_{2}=\left(\vec{u}_{1}+\vec{u}_{2}\right)+\left(\vec{v}_{1}+\vec{v}_{2}\right)$ with $\vec{u}_{1}+\vec{u}_{2} \in H$ and $\vec{v}_{1}+\vec{v}_{2} \in K ;$ therefore, $\vec{w}_{1}+\vec{w}_{2} \in H+K$.
- Assume that $\vec{w} \in H+K$ and $c \in \mathbb{R}$. Then there exist $\vec{u} \in H$ and $\vec{v} \in K$ such that $\vec{w}=\vec{u}+\vec{v}$. Then we represent $c \vec{w}=c \vec{u}+c \vec{v}$ with $c \vec{u} \in H$ and $c \vec{v} \in K$; therefore, $c \vec{w} \in H+K$.

