Math 54, second midterm information and review

July 29, 2010

1 General information

The second midterm will take place on Friday, July 30, from 8-10 AM in room 2 Evans. The exam itself will start at $8: 10$, but I ask you to come at 8 so that I could hand out the exams and everybody would start at the same time. There are no calculators and no materials allowed, except for one two-sided $5 " \times 9 "$ sheet of hand-written notes. Do not bring your own paper - I will provide extra sheets if needed. The midterm will cover Lay, Chapters 4, 5, and sections 6.1-6.3. As before, 60% will be devoted to computational problems and the rest to theoretical problems.

2 Sample computational problems

$1-2$. For each of the following subspaces W :
(a) Represent W as either $\operatorname{Col} A$ or $\operatorname{Nul} A$ for some matrix A.
(b) Find a basis for W.
(c) State the dimension of W.
(d)-(f) Repeat (a)-(c) for the orthogonal complement W^{\perp}.

$$
\begin{gather*}
W=\{(a-b, b-c, c-a) \mid a, b, c \in \mathbb{R}\} ; \tag{1}\\
W=\{(a, b, c) \mid a+b=0, b+c=0, a=c\} . \tag{2}
\end{gather*}
$$

$3-5$. For each of the following matrices:

$$
\begin{gather*}
A=\left[\begin{array}{ll}
0 & 2 \\
1 & 1
\end{array}\right], \tag{3}\\
A=\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right], \tag{4}\\
A=\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
0 & 0 & 2
\end{array}\right], \tag{5}
\end{gather*}
$$

(a) Find the characteristic polynomial of A.
(b) Find the real eigenvalues of A and state their algebraic multiplicities.
(c) Find the basis of each eigenspace of A.
(d) Is A diagonalizable? If it is diagonalizable, represent it as $P D P^{-1}$, with D diagonal and P invertible.
(e) If A is diagonalizable, find the general formula for its power A^{k}.
6. Given the transformation $T: \mathbb{P}_{2} \rightarrow \mathbb{P}_{2}$ defined by the formula

$$
T(f)=(t+1) f^{\prime}, f \in \mathbb{P}_{2}
$$

the basis $\mathcal{C}=\left\{1, t, t^{2}\right\}$ of \mathbb{P}_{2} and the system $\mathcal{B}=\left\{1,1+t,(1+t)^{2}\right\}$ in \mathbb{P}_{2},
(a) Find the matrix A of T in the basis \mathcal{C}.
(b) Is T 1-to-1? Is it onto?
(c) Find a basis for the kernel of T and for its range. (For that, find the bases for $\operatorname{Nul} A$ and $\operatorname{Col} A$ and translate these from \mathcal{C}-coordinate vectors to polynomials.)
(d) Use \mathcal{C}-coordinate vectors to prove that \mathcal{B} is a basis of \mathbb{P}_{2}.
(e) Find the change of coordinate matrices $\mathcal{P}_{\mathcal{C} \leftarrow \mathcal{B}}$ and $\mathcal{P}_{\mathcal{B} \leftarrow \mathcal{C}}$.
(f) Find the \mathcal{C}-coordinate vector of the polynomial $f=1+2 t+3 t^{2}$. Use part (e) to find the \mathcal{B}-coordinate vector of f.
(g) Use parts (a) and (e) to find the matrix of T in the basis \mathcal{B}.
7. Given $\vec{u}=(1, t, 2), \vec{v}_{1}=(1,1,1), \vec{v}_{2}=(1,1,-2)$, verify that $\mathcal{B}=\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$ is an orthogonal system. Let $V=\operatorname{Span}\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$; use the orthogonal projection formula to:
(a) Find the orthogonal projection of \vec{u} onto V (depending on t).
(b) Find the distance from \vec{u} to V (depending on t).
(c) Find for which t the vector \vec{u} lies in V.
(d) For t such that $\vec{u} \in V$, find the coordinates of \vec{u} in the basis \mathcal{B}.
8. Assuming that A is a 4×8 matrix with $\operatorname{dim} \operatorname{Nul} A=k$,
(a) Find all possible values of k.
(b) Find the rank of A (depending on k).
(c) Define the linear transformation $T: \mathbb{R}^{8} \rightarrow \mathbb{R}^{4}$ by the formula $T(\vec{x})=A \vec{x}$.

For which k is T onto? For which k is it 1-to-1?
(d) Answer part (c) for A^{T} in place of A.

3 Sample theoretical problems

1. Let A be a matrix. Use the Rank Theorem to prove that the solution to $A \vec{x}=0$ is unique if and only if the equation $A^{T} \vec{y}=\vec{b}$ has a solution for each \vec{b}.
2. Assume that the matrix A satisfies the equation

$$
A^{3}=A .
$$

What are the possible eigenvalues of A ?
3. Let A be a 2×2 matrix. Define the trace $\operatorname{tr} A$ as the sum of its diagonal entries. Prove that the characteristic polynomial of A is

$$
P(\lambda)=\lambda^{2}-(\operatorname{tr} A) \lambda+\operatorname{det} A .
$$

Use the quadratic formula to find when A has two distinct real eigenvalues. Use it again to prove that if A has two real eigenvalues $\lambda_{1} \neq \lambda_{2}$, then $\lambda_{1}+\lambda_{2}=\operatorname{tr} A$ and $\lambda_{1} \cdot \lambda_{2}=\operatorname{det} A$.
4. Give an example of a 2×2 orthogonal matrix A such that $A^{2}=-I$.
5. Assume that A is a matrix such that $A^{2}=-I$. Prove that A has no real eigenvalues.
6. Let T and S be two linear transformations such that the composition $T \circ S$ is well defined. (Recall that $T \circ S$ is defined by the formula $(T \circ S)(\vec{v})=T(S(\vec{v}))$.) Prove that the kernel of S is contained in the kernel of $T \circ S$ and the range of $T \circ S$ is contained in the range of T.
7. Let V be a vector space and $T: V \rightarrow V$ be a linear transformation such that $T^{2}=0$. (Here 0 is the zero transformation $V \rightarrow V$, mapping every vector to the zero vector.) Prove that the range of T is contained in its kernel.

4 Answers to computational problems

1. (a) $W=\operatorname{Col} A$, where

$$
A=\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & -1 \\
-1 & 0 & 1
\end{array}\right]
$$

(b) $\{(1,0,-1),(-1,1,0)\}$ (c) 2 (d) $W^{\perp}=\operatorname{Nul} A^{T}$, where

$$
A^{T}=\left[\begin{array}{ccc}
1 & 0 & -1 \\
-1 & 1 & 0 \\
0 & -1 & 1
\end{array}\right]
$$

(b) $\{(1,1,1)\}$ (c) 1 .
2. (a) $W=\operatorname{Nul} A$, where

$$
A=\left[\begin{array}{ccc}
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & -1
\end{array}\right]
$$

(b) $\{(1,-1,1)\}$ (c) 1 (d) $W^{\perp}=\operatorname{Col} A^{T}$, where

$$
A^{T}=\left[\begin{array}{ccc}
1 & 0 & 1 \\
1 & 1 & 0 \\
0 & 1 & -1
\end{array}\right]
$$

(e) $\{(1,1,0),(0,1,1)\}(f) 2$.
3. (a) $\lambda^{2}-\lambda-2$ (b) $-1,2$ (both multiplicity 1) (c) For $\lambda=-1$: $\{(-2,1)\}$; for $\lambda=2:\{(1,1)\}$ (d) Yes;

$$
P=\left[\begin{array}{cc}
2 & 1 \\
-1 & 1
\end{array}\right], D=\left[\begin{array}{cc}
-1 & 0 \\
0 & 2
\end{array}\right], P^{-1}=\frac{1}{3}\left[\begin{array}{cc}
1 & -1 \\
1 & 2
\end{array}\right]
$$

(e)

$$
A^{k}=\frac{1}{3}\left[\begin{array}{cc}
2(-1)^{k}+2^{k} & 2(-1)^{k+1}+2^{k+1} \\
(-1)^{k+1}+2^{k} & (-1)^{k}+2^{k+1}
\end{array}\right] .
$$

4. (a) $(\lambda-1)^{2}$ (b) 1 (multiplicity 2) (c) For $\lambda=1:\{(0,1)\}$ (d) No.
5. (a) $(1-\lambda)^{2}(2-\lambda)(b) 1$ (multiplicity 2$), 2$ (multiplicity 1) (c) For $\lambda=1$: $\{(0,1,0)\}$; for $\lambda=2:\{(0,0,1)\}$ (d) No.
6. (a)

$$
A=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 1 & 2 \\
0 & 0 & 2
\end{array}\right]
$$

(b) Not 1-to-1, not onto (c) Basis for the kernel: $\{1\}$; basis for the range: $\left\{1+t, 2 t+2 t^{2}\right\}$ (e)

$$
\mathcal{P}_{\mathcal{C} \leftarrow \mathcal{B}}=\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right], \mathcal{P}_{\mathcal{B} \leftarrow \mathcal{C}}=\left[\begin{array}{ccc}
1 & -1 & 1 \\
0 & 1 & -2 \\
0 & 0 & 1
\end{array}\right]
$$

(f)

$$
[f]_{\mathcal{C}}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right],[f]_{\mathcal{B}}=\left[\begin{array}{c}
2 \\
-4 \\
3
\end{array}\right]
$$

(g) Note also that $1,1+t,(1+t)^{2}$ are eigenvectors of T.

$$
[T]_{\mathcal{B}}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right] .
$$

7. (a) $(1+t, 1+t, 4) / 2$ (b) $|t-1| / \operatorname{sqrt2}$ (c) $t=1$ (d) $(4 / 3,-1 / 3)$.
8. (a) $k=4,5,6,7,8$ (b) $8-k$ (c) Onto for $k=4$, never 1-to-1 (d) 1-to-1
for $k=4$, never onto.

5 Hints and answers for theoretical problems

1. Assume that A has dimension $m \times n$. Recall that the ranks of A and A^{T} are equal. Now, formulate both two statements of the problem in terms of the rank.
2. Every eigenvalue λ solves the equation $\lambda^{3}=\lambda$; therefore, the possible eigenvalues are $0,1,-1$.
3. A has two distinct real eigenvalues $\operatorname{iff}(\operatorname{tr} A)^{2}>4 \operatorname{det} A$. For the last part, you can write $P(\lambda)=\left(\lambda-\lambda_{1}\right)\left(\lambda-\lambda_{2}\right)$, expand this expression and compare the coefficients at λ and λ^{2} with $-\operatorname{tr} A$ and $\operatorname{det} A$.
4. Take the standard matrix of a 90 degree rotation (in either direction).
5. Each eigenvalue λ solves the equation $\lambda^{2}=-1$.
6. First, assume that \vec{v} lies in the kernel of S. Then $S(\vec{v})=\overrightarrow{0}$ and $(T \circ S)(\vec{v})=$ $T(S(\vec{v}))=T(\overrightarrow{0})=\overrightarrow{0}$; therefore, \vec{v} lies in the kernel of $T \circ S$. We have proven that the kernel of S is contained in the kernel of $T \circ S$.

Now, assume that \vec{v} lies in the range of $T \circ S$. Then there exists \vec{w} such that $\vec{v}=T(S(\vec{w}))$. If we put $\vec{u}=S(\vec{w})$, then $\vec{v}=T(\vec{u})$; therefore, \vec{v} lies in the range of T. We have proven that the range of $T \circ S$ is contained in the range of T.
7. Take \vec{w} in the range of T. Then there exists \vec{v} such that $\vec{w}=T(\vec{v})$. However, since $T^{2}=0$, we have $\overrightarrow{0}=T^{2} \vec{v}=T(T(\vec{v}))=T(\vec{w})$. It follows that \vec{w} lies in the kernel of T.

