Math 54, second midterm information and review

July 29, 2010

1 General information

The second midterm will take place on Friday, July 30, from 8–10 AM in room 2 Evans. The exam itself will start at 8:10, but I ask you to come at 8 so that I could hand out the exams and everybody would start at the same time. There are no calculators and no materials allowed, except for one two-sided $5^{"} \times 9^{"}$ sheet of hand-written notes. Do not bring your own paper — I will provide extra sheets if needed. The midterm will cover Lay, Chapters 4, 5, and sections 6.1–6.3. As before, 60% will be devoted to computational problems and the rest to theoretical problems.

2 Sample computational problems

- 1–2. For each of the following subspaces W:
- (a) Represent W as either Col A or Nul A for some matrix A.
- (b) Find a basis for W.
- (c) State the dimension of W.
- (d)–(f) Repeat (a)–(c) for the orthogonal complement W^{\perp} .

$$W = \{ (a - b, b - c, c - a) \mid a, b, c \in \mathbb{R} \};$$
(1)

$$W = \{(a, b, c) \mid a + b = 0, \ b + c = 0, \ a = c\}.$$
 (2)

3–5. For each of the following matrices:

$$A = \begin{bmatrix} 0 & 2\\ 1 & 1 \end{bmatrix},\tag{3}$$

$$A = \begin{bmatrix} 1 & 0\\ 1 & 1 \end{bmatrix},\tag{4}$$

$$A = \begin{vmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 2 \end{vmatrix},$$
(5)

(a) Find the characteristic polynomial of A.

(b) Find the real eigenvalues of A and state their algebraic multiplicities.

(c) Find the basis of each eigenspace of A.

(d) Is A diagonalizable? If it is diagonalizable, represent it as PDP^{-1} , with D diagonal and P invertible.

(e) If A is diagonalizable, find the general formula for its power A^k .

6. Given the transformation $T: \mathbb{P}_2 \to \mathbb{P}_2$ defined by the formula

$$T(f) = (t+1)f', \ f \in \mathbb{P}_2,$$

the basis $\mathcal{C} = \{1, t, t^2\}$ of \mathbb{P}_2 and the system $\mathcal{B} = \{1, 1 + t, (1 + t)^2\}$ in \mathbb{P}_2 ,

(a) Find the matrix A of T in the basis C.

(b) Is T 1-to-1? Is it onto?

(c) Find a basis for the kernel of T and for its range. (For that, find the bases for Nul A and Col A and translate these from C-coordinate vectors to polynomials.)

(d) Use C-coordinate vectors to prove that \mathcal{B} is a basis of \mathbb{P}_2 .

(e) Find the change of coordinate matrices $\mathcal{P}_{\mathcal{C} \leftarrow \mathcal{B}}$ and $\mathcal{P}_{\mathcal{B} \leftarrow \mathcal{C}}$.

(f) Find the C-coordinate vector of the polynomial $f = 1 + 2t + 3t^2$. Use part (e) to find the \mathcal{B} -coordinate vector of f.

(g) Use parts (a) and (e) to find the matrix of T in the basis \mathcal{B} .

7. Given $\vec{u} = (1, t, 2)$, $\vec{v}_1 = (1, 1, 1)$, $\vec{v}_2 = (1, 1, -2)$, verify that $\mathcal{B} = \{\vec{v}_1, \vec{v}_2\}$ is an orthogonal system. Let $V = \text{Span}\{\vec{v}_1, \vec{v}_2\}$; use the orthogonal projection formula to:

(a) Find the orthogonal projection of \vec{u} onto V (depending on t).

(b) Find the distance from \vec{u} to V (depending on t).

(c) Find for which t the vector \vec{u} lies in V.

(d) For t such that $\vec{u} \in V$, find the coordinates of \vec{u} in the basis \mathcal{B} .

8. Assuming that A is a 4×8 matrix with dim Nul A = k,

(a) Find all possible values of k.

(b) Find the rank of A (depending on k).

(c) Define the linear transformation $T : \mathbb{R}^8 \to \mathbb{R}^4$ by the formula $T(\vec{x}) = A\vec{x}$. For which k is T onto? For which k is it 1-to-1?

(d) Answer part (c) for A^T in place of A.

3 Sample theoretical problems

1. Let A be a matrix. Use the Rank Theorem to prove that the solution to $A\vec{x} = 0$ is unique if and only if the equation $A^T\vec{y} = \vec{b}$ has a solution for each \vec{b} .

2. Assume that the matrix A satisfies the equation

 $A^3 = A.$

What are the possible eigenvalues of A?

3. Let A be a 2×2 matrix. Define the trace tr A as the sum of its diagonal entries. Prove that the characteristic polynomial of A is

$$P(\lambda) = \lambda^2 - (\operatorname{tr} A)\lambda + \det A$$

Use the quadratic formula to find when A has two distinct real eigenvalues. Use it again to prove that if A has two real eigenvalues $\lambda_1 \neq \lambda_2$, then $\lambda_1 + \lambda_2 = \operatorname{tr} A$ and $\lambda_1 \cdot \lambda_2 = \det A$.

4. Give an example of a 2×2 orthogonal matrix A such that $A^2 = -I$.

5. Assume that A is a matrix such that $A^2 = -I$. Prove that A has no real eigenvalues.

6. Let T and S be two linear transformations such that the composition $T \circ S$ is well defined. (Recall that $T \circ S$ is defined by the formula $(T \circ S)(\vec{v}) = T(S(\vec{v}))$.) Prove that the kernel of S is contained in the kernel of $T \circ S$ and the range of $T \circ S$ is contained in the range of T.

7. Let V be a vector space and $T: V \to V$ be a linear transformation such that $T^2 = 0$. (Here 0 is the zero transformation $V \to V$, mapping every vector to the zero vector.) Prove that the range of T is contained in its kernel.

4 Answers to computational problems

1. (a) $W = \operatorname{Col} A$, where

$$A = \begin{bmatrix} 1 & -1 & 0\\ 0 & 1 & -1\\ -1 & 0 & 1 \end{bmatrix}$$

(b) $\{(1,0,-1), (-1,1,0)\}$ (c) 2 (d) $W^{\perp} = \operatorname{Nul} A^T$, where

$$A^T = \begin{bmatrix} 1 & 0 & -1 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix}$$

(b) $\{(1,1,1)\}$ (c) 1.

2. (a) $W = \operatorname{Nul} A$, where

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & -1 \end{bmatrix}$$

(b) $\{(1, -1, 1)\}$ (c) 1 (d) $W^{\perp} = \operatorname{Col} A^{T}$, where

$$A^T = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & -1 \end{bmatrix}$$

(e) $\{(1,1,0), (0,1,1)\}$ (f) 2.

3. (a) $\lambda^2-\lambda-2$ (b) -1,2 (both multiplicity 1) (c) For $\lambda=-1$: {(-2,1)}; for $\lambda=2$: {(1,1)} (d) Yes;

$$P = \begin{bmatrix} 2 & 1 \\ -1 & 1 \end{bmatrix}, \ D = \begin{bmatrix} -1 & 0 \\ 0 & 2 \end{bmatrix}, \ P^{-1} = \frac{1}{3} \begin{bmatrix} 1 & -1 \\ 1 & 2 \end{bmatrix}$$

(e)

$$A^{k} = \frac{1}{3} \begin{bmatrix} 2(-1)^{k} + 2^{k} & 2(-1)^{k+1} + 2^{k+1} \\ (-1)^{k+1} + 2^{k} & (-1)^{k} + 2^{k+1} \end{bmatrix}.$$

4. (a) $(\lambda - 1)^2$ (b) 1 (multiplicity 2) (c) For $\lambda = 1$: {(0,1)} (d) No.

5. (a) $(1-\lambda)^2(2-\lambda)$ (b) 1 (multiplicity 2), 2 (multiplicity 1) (c) For $\lambda = 1$: {(0,1,0)}; for $\lambda = 2$: {(0,0,1)} (d) No.

6. (a)

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 2 \end{bmatrix}$$

(b) Not 1-to-1, not onto (c) Basis for the kernel: {1}; basis for the range: $\{1+t, 2t+2t^2\}$ (e)

$$\mathcal{P}_{\mathcal{C} \leftarrow \mathcal{B}} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}, \ \mathcal{P}_{\mathcal{B} \leftarrow \mathcal{C}} = \begin{bmatrix} 1 & -1 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix}$$

(f)

$$[f]_{\mathcal{C}} = \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \ [f]_{\mathcal{B}} = \begin{bmatrix} 2\\-4\\3 \end{bmatrix}.$$

(g) Note also that $1, 1 + t, (1 + t)^2$ are eigenvectors of T.

$$[T]_{\mathcal{B}} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

7. (a)
$$(1+t, 1+t, 4)/2$$
 (b) $|t-1|/sqrt2$ (c) $t = 1$ (d) $(4/3, -1/3)$.

8. (a) k=4,5,6,7,8 (b) 8-k (c) Onto for k=4, never 1-to-1 (d) 1-to-1 for k=4, never onto.

5 Hints and answers for theoretical problems

1. Assume that A has dimension $m \times n$. Recall that the ranks of A and A^T are equal. Now, formulate both two statements of the problem in terms of the rank.

2. Every eigenvalue λ solves the equation $\lambda^3 = \lambda$; therefore, the possible eigenvalues are 0, 1, -1.

3. A has two distinct real eigenvalues iff $(\operatorname{tr} A)^2 > 4 \det A$. For the last part, you can write $P(\lambda) = (\lambda - \lambda_1)(\lambda - \lambda_2)$, expand this expression and compare the coefficients at λ and λ^2 with $-\operatorname{tr} A$ and $\det A$.

4. Take the standard matrix of a 90 degree rotation (in either direction).

5. Each eigenvalue λ solves the equation $\lambda^2 = -1$.

6. First, assume that \vec{v} lies in the kernel of S. Then $S(\vec{v}) = \vec{0}$ and $(T \circ S)(\vec{v}) = T(S(\vec{v})) = T(\vec{0}) = \vec{0}$; therefore, \vec{v} lies in the kernel of $T \circ S$. We have proven that the kernel of S is contained in the kernel of $T \circ S$.

Now, assume that \vec{v} lies in the range of $T \circ S$. Then there exists \vec{w} such that $\vec{v} = T(S(\vec{w}))$. If we put $\vec{u} = S(\vec{w})$, then $\vec{v} = T(\vec{u})$; therefore, \vec{v} lies in the range of T. We have proven that the range of $T \circ S$ is contained in the range of T.

7. Take \vec{w} in the range of T. Then there exists \vec{v} such that $\vec{w} = T(\vec{v})$. However, since $T^2 = 0$, we have $\vec{0} = T^2 \vec{v} = T(T(\vec{v})) = T(\vec{w})$. It follows that \vec{w} lies in the kernel of T.