Math 54, midterm 1

Instructor: Semyon Dyatlov

July 9, 2010

Name: \qquad SID: \qquad
Problem 1: \qquad / 10

Problem 2: \qquad / 10

Problem 3: \qquad / 10

Problem 4: \qquad / 10

Problem 5: \qquad / 10

Total: $\quad / 50$

- Write your solutions in the space provided. Do not use your own paper. I can give you extra paper if needed. Indicate clearly where your answer is.
- Explain your solutions as clearly as possible. This will help me find what you did right and what you did wrong, and award partial credit if possible.
- Justify all your steps. (Problem 3 is exempt from this rule.) A correct answer with no justification will be given 0 points. Pictures without explanations are not counted as justification. You may cite a theorem from the book by stating what it says.
- No calculators or notes are allowed on the exam, except for a single two-sided 5 " $\times 9$ " sheet of hand-written notes. Cheating will result in academic and/or disciplinary action. Please turn off cellphones and other electronic devices.

1. (a) Find the standard matrix of the transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ given by the formula $T\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}+2 x_{2}, x_{2}+2 x_{3}\right)$.
(b) Describe the solution set of the equation $T(\vec{x})=\left[\begin{array}{l}1 \\ 3\end{array}\right]$ in parametric vector form.

> 2. (a) Let A be a 3×3 matrix such that $A^{-1}=\left[\begin{array}{ccc}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 10\end{array}\right]$. Solve the equation $A \vec{x}=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$.
(b) Find a linear dependence relation between the vectors

$$
\vec{a}_{1}=\left[\begin{array}{l}
2 \\
4
\end{array}\right], \quad \vec{a}_{2}=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \quad \vec{a}_{3}=\left[\begin{array}{l}
3 \\
6
\end{array}\right] .
$$

3. Circle the correct answer for each of the following true/false or multiple choice questions, or write in the correct answer in the blank space provided. No justification is required. For each question, you get 1 point if you answer it correctly, 0 points if you choose not to answer, and -1 point if you answer it incorrectly. (If your total score for the problem is negative, it will be changed to zero.)
(a) For each matrix $A, \operatorname{det}\left(A^{T} A\right) \geq 0$.

True False
(b) For all square matrices A and B of the same size, if $A B=0$, then $A=0$ or $B=0$.

True False
(c) For all square matrices A and B of the same size, $\operatorname{det}\left(A^{2}-B^{2}\right)=\operatorname{det}(A+B)$. $\operatorname{det}(A-B)$.

True False
(d) If the equation $A \vec{x}=\vec{b}$ has a solution for each \vec{b}, then A is square and $\operatorname{det} A \neq 0$.

True False
(e) If $A B$ is well-defined and invertible and A is a square matrix, then B is invertible.

True False
(f) If A has size $m \times n$ and B has size ___ $\times \ldots$, then $A B$ is well-defined and has size $\times k$.
(g) If a linear transformation $T: \mathbb{R}^{a} \rightarrow \mathbb{R}^{b}$ is onto, then:
$a \leq b \quad a \geq b$
(h) If the vectors $\vec{a}_{1}, \vec{a}_{2}, \vec{a}_{3} \in \mathbb{R}^{4}$ form a linearly dependent set, then each of these vectors is a linear combination of the other two.

True False
(i) For each matrix A, if the equation $A \vec{x}=\overrightarrow{0}$ has unique solution, then for each \vec{b}, the number of solutions to the equation $A \vec{x}=\vec{b}$ is either 0 or 1 .

True False
(j) If A is a square matrix and $A^{T} A=I$, then $A A^{T}=I$.

True False
4. (a) Find all $t \in \mathbb{R}$ such that the matrix $A=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]+t\left[\begin{array}{ll}1 & 4 \\ 0 & 1\end{array}\right]$ has linearly dependent columns.
(b) Find $\operatorname{det}\left[\begin{array}{llll}1 & 2 & 0 & 3 \\ 0 & 0 & 2 & 0 \\ 0 & 4 & 0 & 5 \\ 1 & 3 & 0 & 5\end{array}\right]$.
5. Solve one of the following two problems. Mark which one you want graded.
(a) Assume that A and B are square matrices of the same size and $A^{2}=B^{2}=(A B)^{2}=$ I. Show that $A B=B A$.
(b) Let $\vec{a}_{1}, \vec{a}_{2}, \vec{a}_{3} \in \mathbb{R}^{n}$. Prove that $\operatorname{Span}\left\{\vec{a}_{1}, \vec{a}_{2}\right\} \subset \operatorname{Span}\left\{\vec{a}_{1}, \vec{a}_{2}, \vec{a}_{3}\right\}$. Here the sign ${ }^{\prime} \subset$ ' means 'is contained in'. Also, prove that if $\vec{a}_{3} \in \operatorname{Span}\left\{\vec{a}_{1}, \vec{a}_{2}\right\}$, then $\operatorname{Span}\left\{\vec{a}_{1}, \vec{a}_{2}\right\}=$ $\operatorname{Span}\left\{\vec{a}_{1}, \vec{a}_{2}, \vec{a}_{3}\right\}$.

