18.156, SPRING 2017, PROBLEM SET 7

1. This exercise shows that the two definitions of semiclassical wavefront set given in lecture are equivalent (at least away from fiber infinity). Let $u=u(h) \in \mathcal{D}^{\prime}\left(\mathbb{R}^{n}\right)$ be a family of distributions, and assume for simplicity that $\|u\|_{L^{2}\left(\mathbb{R}^{n}\right)}$ is bounded uniformly in h (same would work for h-tempered u). Let $\left(x_{0}, \xi_{0}\right) \in \mathbb{R}^{2 n}=T^{*} \mathbb{R}^{n}$. Show that the following two statements are equivalent:
(a) there exists $\chi \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right), \chi\left(x_{0}\right) \neq 0$, and a neighborhood W of ξ_{0} such that

$$
\begin{equation*}
\int_{W}|\widehat{\chi u}(\xi / h)|^{2} d \xi=\mathcal{O}\left(h^{\infty}\right) ; \tag{1}
\end{equation*}
$$

(I replaced the L^{∞} norm by L^{2} here to make life a bit easier. With some more work one can show that this does not make a difference.)
(b) there exists a neighborhood V of $\left(x_{0}, \xi_{0}\right)$ in $T^{*} \mathbb{R}^{n}$ such that

$$
A u=\mathcal{O}\left(h^{\infty}\right)_{C^{\infty}} \quad \text { for all compactly supported } A \in \Psi_{h}^{0}\left(\mathbb{R}^{n}\right) \text { with } \mathrm{WF}_{h}(A) \subset V .
$$

Hint: To show (a) $\Rightarrow(\mathrm{b})$, note that (1) gives a bound on $\|B u\|_{L^{2}}$ where $B=\psi\left(h D_{x}\right) \chi$ and $\psi \in C_{c}^{\infty}(W)$. If $A \in \Psi_{h}^{0}$ satisfies $\mathrm{WF}_{h}(A) \subset\{\chi \neq 0\} \times\{\psi \neq 0\}$, then $\|A u\|_{H_{h}^{s}}$ is controlled in terms of $\|B u\|_{H_{h}^{s}}$ by the elliptic estimate, whose proof applies despite B not being a differential operator.

To show $(\mathrm{b}) \Rightarrow(\mathrm{a})$, we can use the same operator B where now supp $\chi \times \operatorname{supp} \psi \subset V$. The operator B is not compactly supported, however pseudolocality and boundedness on Sobolev spaces imply that $\left\|\left(1-\chi_{1}\right) B\right\|_{L^{2} \rightarrow H_{h}^{N}} \leq C_{N} h^{N}$ for all N as long as $\chi_{1} \in$ $C_{c}^{\infty}\left(\mathbb{R}^{n}\right), \operatorname{supp}\left(1-\chi_{1}\right) \cap \operatorname{supp} \chi=\emptyset$.
2. Show that
(a) for the Gaussian $u(x ; h)=e^{-\frac{x^{2}}{2 h}}, x \in \mathbb{R}$, we have $\mathrm{WF}_{h}(u) \subset\{(0,0)\}$;
(b) for the higher dimensional Heaviside function $u(x, y)=[x>0],(x, y) \in \mathbb{R}^{2}$,

$$
\mathrm{WF}_{h}(u) \subset\{(x, y, 0,0) \mid x \geq 0, y \in \mathbb{R}\} \cup\{(0, y, \xi, 0) \mid y \in \mathbb{R}, \xi \in \overline{\mathbb{R}}\} .
$$

Hint: the shortest (but not necessarily the easiest) solution is to find some operators $P \in \Psi_{h}^{1}$ such that $P u=0$ and use the elliptic estimate.
3. Assume that $p \in S^{k}\left(T^{*} \mathbb{R}^{n}\right)$. Show that the vector field $\langle\xi\rangle^{1-k} H_{p}$ extends to a smooth vector field on $\bar{T}^{*} \mathbb{R}^{n}$ which is tangent to the fiber infinity $\partial \bar{T}^{*} \mathbb{R}^{n}$. You may use Exercise 3 from the previous problem set. (Hint: write $\xi=\left(\xi_{1}, \xi^{\prime}\right), \xi^{\prime} \in \mathbb{R}^{n-1}$. If $\xi_{1} \geq \varepsilon\left|\xi^{\prime}\right|$ for some $\varepsilon>0$, we can use the coordinate system $x_{1}, x^{\prime}, \rho:=\xi_{1}^{-1}, \eta:=\xi^{\prime} / \xi_{1}$ on $\bar{T}^{*} \mathbb{R}^{n}$, with the boundary defining function ρ.)

