18.156, SPRING 2017, PROBLEM SET 7

1. This exercise shows that the two definitions of semiclassical wavefront set given in lecture are equivalent (at least away from fiber infinity). Let $u = u(h) \in \mathcal{D}'(\mathbb{R}^n)$ be a family of distributions, and assume for simplicity that $||u||_{L^2(\mathbb{R}^n)}$ is bounded uniformly in h (same would work for h-tempered u). Let $(x_0, \xi_0) \in \mathbb{R}^{2n} = T^*\mathbb{R}^n$. Show that the following two statements are equivalent:

(a) there exists $\chi \in C_c^{\infty}(\mathbb{R}^n)$, $\chi(x_0) \neq 0$, and a neighborhood W of ξ_0 such that

$$\int_{W} |\widehat{\chi u}(\xi/h)|^2 d\xi = \mathcal{O}(h^{\infty}); \tag{1}$$

(I replaced the L^{∞} norm by L^2 here to make life a bit easier. With some more work one can show that this does not make a difference.)

(b) there exists a neighborhood V of (x_0, ξ_0) in $T^*\mathbb{R}^n$ such that

 $Au = \mathcal{O}(h^{\infty})_{C^{\infty}}$ for all compactly supported $A \in \Psi_h^0(\mathbb{R}^n)$ with $WF_h(A) \subset V$.

Hint: To show (a) \Rightarrow (b), note that (1) gives a bound on $||Bu||_{L^2}$ where $B = \psi(hD_x)\chi$ and $\psi \in C_c^{\infty}(W)$. If $A \in \Psi_h^0$ satisfies $WF_h(A) \subset \{\chi \neq 0\} \times \{\psi \neq 0\}$, then $||Au||_{H_h^s}$ is controlled in terms of $||Bu||_{H_h^s}$ by the elliptic estimate, whose proof applies despite Bnot being a differential operator.

To show (b) \Rightarrow (a), we can use the same operator B where now $\sup \chi \times \sup \psi \subset V$. The operator B is not compactly supported, however pseudolocality and boundedness on Sobolev spaces imply that $\|(1-\chi_1)B\|_{L^2\to H_h^N} \leq C_N h^N$ for all N as long as $\chi_1 \in C_c^{\infty}(\mathbb{R}^n)$, $\supp(1-\chi_1) \cap \sup \chi = \emptyset$.

- **2.** Show that
 - (a) for the Gaussian $u(x;h) = e^{-\frac{x^2}{2h}}, x \in \mathbb{R}$, we have $WF_h(u) \subset \{(0,0)\};$
 - (b) for the higher dimensional Heaviside function $u(x,y) = [x > 0], (x,y) \in \mathbb{R}^2$,

WF_h(u) $\subset \{(x, y, 0, 0) \mid x \ge 0, y \in \mathbb{R}\} \cup \{(0, y, \xi, 0) \mid y \in \mathbb{R}, \xi \in \overline{\mathbb{R}}\}.$

Hint: the shortest (but not necessarily the easiest) solution is to find some operators $P \in \Psi_h^1$ such that Pu = 0 and use the elliptic estimate.

3. Assume that $p \in S^k(T^*\mathbb{R}^n)$. Show that the vector field $\langle \xi \rangle^{1-k}H_p$ extends to a smooth vector field on $\overline{T}^*\mathbb{R}^n$ which is tangent to the fiber infinity $\partial \overline{T}^*\mathbb{R}^n$. You may use Exercise 3 from the previous problem set. (Hint: write $\xi = (\xi_1, \xi'), \xi' \in \mathbb{R}^{n-1}$. If $\xi_1 \geq \varepsilon |\xi'|$ for some $\varepsilon > 0$, we can use the coordinate system $x_1, x', \rho := \xi_1^{-1}, \eta := \xi'/\xi_1$ on $\overline{T}^*\mathbb{R}^n$, with the boundary defining function ρ .)