18.156, SPRING 2017, PROBLEM SET 6, SOLUTIONS

1 (a) Denote $|g(x)| := |\det(g_{jk}(x))|$. Also, let $(g^{jk}(x))$ be the inverse matrix of $(g_{jk}(x))$. Then the Laplace–Beltrami operator Δ_g has the form

$$\Delta_g u(x) = |g(x)|^{-1/2} \sum_{j,k} \partial_{x_j} \left(|g(x)|^{1/2} g^{jk}(x) \partial_{x_k} u(x) \right) = \sum_{j,k} g^{jk}(x) \partial_{x_j} \partial_{x_k} u(x) + \dots$$

where \dots denotes a first order differential operator applied to u. Then

$$P = -h^2 \Delta_g = -h^2 \sum_{j,k} g^{jk}(x) \partial_{x_j} \partial_{x_k} + h \Psi_h^1(\mathbb{R}^n).$$

It follows that $P \in \Psi_h^2(\mathbb{R}^n)$ and the principal symbol $p := \sigma_h(P)$ is given by

$$p(x,\xi) = \sum_{j,k} g^{jk}(x)\xi_j\xi_k.$$
(1)

Note that p is the square of the norm on covectors induced by the metric g.

1 (b) Assume that $(x(t), \xi(t)) = \varphi_t(x_0, \xi_0)$ for some fixed (x_0, ξ_0) . Then $x(t), \xi(t)$ solve Hamilton's equations (with dots denoting derivatives in t)

$$\dot{x}_j(t) = (\partial_{\xi_j} p) \big(x(t), \xi(t) \big), \quad \dot{\xi}_j(t) = (-\partial_{x_j} p) \big(x(t), \xi(t) \big).$$

Using (1), we rewrite those as follows:

$$\dot{x}_j(t) = 2\sum_k g^{jk}(x(t))\xi_k,$$
(2)

$$\dot{\xi}_j(t) = -\sum_{k,\ell} (\partial_{x_j} g^{k\ell}) \big(x(t) \big) \xi_k \xi_\ell.$$
(3)

Now, (2) gives immediately the equation for $2\xi_j(t)$ required in the problem.

It remains to show that $t \mapsto x(t)$ is a geodesic. For that we need to prove that x(t) solves the geodesic equation

$$\ddot{x}_{j}(t) + \sum_{k,\ell} \Gamma^{j}_{k\ell}(x(t)) \dot{x}_{k}(t) \dot{x}_{\ell}(t) = 0, \qquad (4)$$

where $\Gamma_{k\ell}^{j}$ are the Christoffel symbols, given by

$$\Gamma_{k\ell}^{j} = \frac{1}{2} \sum_{r} g^{jr} \left(\partial_{x_k} g_{\ell r} + \partial_{x_\ell} g_{kr} - \partial_{x_r} g_{k\ell} \right).$$
(5)

Using (2), we rewrite (4) as

$$2\sum_{k}g^{jk}\dot{\xi}_{k} + 4\sum_{k,r,\alpha}(\partial_{x_{r}}g^{jk})g^{r\alpha}\xi_{k}\xi_{\alpha} + 4\sum_{k,\ell,\alpha,\beta}g^{k\alpha}g^{\ell\beta}\Gamma^{j}_{k\ell}\xi_{\alpha}\xi_{\beta} = 0.$$
(6)

Using (3) we rewrite (6) as

$$\sum_{k,\alpha,\beta} g^{jk} (\partial_{x_k} g^{\alpha\beta}) \xi_\alpha \xi_\beta = 2 \sum_{r,\alpha,\beta} g^{r\alpha} (\partial_{x_r} g^{j\beta}) \xi_\alpha \xi_\beta + 2 \sum_{k,\ell,\alpha,\beta} g^{k\alpha} g^{\ell\beta} \Gamma^j_{k\ell} \xi_\alpha \xi_\beta.$$
(7)

Since (g^{jk}) is the inverse matrix to (g_{jk}) , we rewrite (7) as

$$-\sum_{k,\alpha,\beta,r,\ell} g^{jk} g^{\alpha r} g^{\beta \ell} (\partial_{x_k} g_{r\ell}) \xi_{\alpha} \xi_{\beta}$$

$$= -2 \sum_{k,\alpha,\beta,r,\ell} g^{jk} g^{\alpha r} g^{\beta \ell} (\partial_{x_r} g_{k\ell}) \xi_{\alpha} \xi_{\beta} + 2 \sum_{k,\ell,\alpha,\beta} g^{k\alpha} g^{\beta \ell} \Gamma^j_{k\ell} \xi_{\alpha} \xi_{\beta}.$$
(8)

Finally, (8) follows from (5).

2. Denote $a := \sigma_h(A)$ and let $\operatorname{Char}(A)$ (the characteristic set) be the complement of $\operatorname{ell}_h(A)$ in the compactified cotangent bundle. Then:

(1) For $A = -h^2 \Delta - 1$, we have

$$a(x,\xi) = |\xi|^2 - 1,$$

Char(A) = { |\xi| = 1 },
 $e^{sH_a}(x,\xi) = (x + 2s\xi,\xi).$

Note that $\operatorname{Char}(A)$ does not intersect the fiber infinity $\partial \overline{T}^* \mathbb{R}^n$.

(2) For $A = ih\partial_t - h^2 \Delta_x$, denoting by $\tau \in \mathbb{R}, \xi \in \mathbb{R}^n$ the momentum variables corresponding to t, x, we have

$$a(x,\xi) = -\tau + |\xi|^2,$$

Char(A) $\cap T^* \mathbb{R}^n = \{ |\xi|^2 = \tau \},$
 $e^{sH_a}(t, x, \tau, \xi) = (t - s, x + 2s\xi, \tau, \xi)$

To understand the intersection of $\operatorname{Char}(A)$ with the fiber infinity, introduce the following coordinate system valid for $(\tau, \xi) \neq 0$:

$$(\tau,\xi) = \rho^{-1}(\check{\tau},\check{\xi}), \quad \rho \in [0,\infty), \quad (\check{\tau},\check{\xi}) \in \mathbb{S}^n.$$

Note that ρ is a defining function of the fiber infinity, in particular $\partial \overline{T}^* \mathbb{R}^n = \{\rho = 0\}$. In this coordinate system, we have

Char(A) = {
$$|\xi|^{-2}a(x,\xi) = 0$$
} = { $\check{\xi}^2 = \rho\check{\tau}$ }.

Putting $\rho = 0$, we see that

$$\operatorname{Char}(A) \cap \partial \overline{T}^* \mathbb{R}^n = \{ \check{\xi} = 0, \ \check{\tau} = \pm 1 \}.$$

(3) For $A = h^2 \partial_t^2 - h^2 \Delta_x$, we have

$$a(x,\xi) = -\tau^{2} + |\xi|^{2},$$

Char(A) $\cap T^{*}\mathbb{R}^{n} = \{|\xi| = |\tau|\},$
 $e^{sH_{a}}(t,x,\tau,\xi) = (t - 2s\tau, x + 2s\xi,\tau,\xi).$

Moreover, in the coordinates introduced above

$$\operatorname{Char}(A) \cap \partial \overline{T}^* \mathbb{R}^n = \{ |\check{\xi}| = |\check{\tau}| = 1/\sqrt{2} \}.$$

3. Both admitting a smooth extension to fiber infinity and having an asymptotic expansion in powers of $|\xi|$ are asymptotic questions as $|\xi| \to \infty$ (i.e. these properties trivially hold if *a* is compactly supported in ξ). Therefore we will restrict ourselves to $|\xi| \ge 1$.

Consider the polar coordinates in ξ :

$$\rho := |\xi|^{-1} \in (0,1), \quad \theta := \frac{\xi}{|\xi|} \in \mathbb{S}^{n-1}.$$

Note that (x, ρ, θ) extend to smooth coordinates on $\overline{T}^* \mathbb{R}^n$, with ρ being a defining function of the fiber infinity. We have

$$\partial_{\xi_k} = -\rho \theta_k \, \partial_\rho + \rho \Big(\partial_{\theta_k} - \sum_j \theta_k \theta_j \, \partial_{\theta_j} \Big).$$

The class $S_{1,0}^0$ consists of functions which are bounded under arbitrarily many applications of the vector fields $\partial_{x_1}, \ldots, \partial_{x_n}, \rho^{-1}\partial_{\xi_1}, \ldots, \rho^{-1}\partial_{\xi_n}$. These fields give a frame for smooth vector fields which extend to the boundary of $\overline{T}^*\mathbb{R}^n$. Thus a smooth function on $\overline{T}^*\mathbb{R}^n$ is a symbol in $S_{1,0}^0$.

We now show that $S^k(T^*\mathbb{R}^n) = \langle \xi \rangle^k C^{\infty}(\overline{T}^*\mathbb{R}^n)$. Multiplying both sides by $|\xi|^{-k}$ and using that $|\xi|^{-k} \langle \xi \rangle^k = (1 + \rho^2)^{k/2}$ is a smooth nonvanishing function on $\overline{T}^*\mathbb{R}^n$ (away from $\xi = 0$), we reduce to the case k = 0.

Note that positively homogeneous functions of order $j \in \mathbb{N}_0$ have the form $\rho^j a(x, \theta)$ where a is smooth. If $a \in C^{\infty}(\overline{T}^* \mathbb{R}^n)$, then using the Taylor expansion of a at $\rho = 0$ we obtain an asymptotic expansion in positively homogeneous functions and see that $a \in S^0(T^* \mathbb{R}^n)$.

On the other hand, let $a \in S^0(T^*\mathbb{R}^n)$. To show that a is smooth on $\overline{T}^*\mathbb{R}^n$, we note that each term in the asymptotic expansion for a is smooth (since it has the form $\rho^j a(x,\theta)$). Thus it suffices to consider the case when $a \in S^{-N}(T^*\mathbb{R}^n)$ and show $a \in C^{N-1}(\overline{T}^*\mathbb{R}^n)$. For any j, α, β , the function $\rho^{-N}(\rho\partial_\rho)^j\partial_x^\alpha\partial_\theta^\beta a$ is bounded. Taking j < N, we see that any order < N derivative of a in x, ρ, θ is $\mathcal{O}(\rho)$. It follows that $a \in C^{N-1}(\overline{T}^*\mathbb{R}^n)$ and all order < N derivatives of a vanish on $\{\rho = 0\}$. **4** (a) By induction we see that for each multiindices α, β the derivative $\partial_x^{\alpha} \partial_{\xi}^{\beta}(1/a)$ is a linear combination with constant coefficients of terms of the form

$$a^{-m-1}(\partial_x^{\alpha_1}\partial_\xi^{\beta_1}a)\cdots(\partial_x^{\alpha_m}\partial_\xi^{\beta_m}a) \tag{9}$$

where $\alpha_1 + \cdots + \alpha_m = \alpha$, $\beta_1 + \cdots + \beta_m = \beta$. Indeed, 1/a has the form (9) with m = 0 and if we differentiate (9) once in either x_j or ξ_j , we obtain a linear combination of terms of the form (9) (with updated α or β).

Now it remains to estimate each of the terms (9) using the derivative bounds on $a \in S_{1,0,h}^k$ and the ellipticity bound $|a| \ge c \langle \xi \rangle^k$:

$$\left|a^{-m-1}(\partial_x^{\alpha_1}\partial_\xi^{\beta_1}a)\cdots(\partial_x^{\alpha_m}\partial_\xi^{\beta_m}a)\right| \le C\langle\xi\rangle^{-(m+1)k}\cdot\langle\xi\rangle^{k-|\beta_1|}\cdots\langle\xi\rangle^{k-|\beta_m|} = C\langle\xi\rangle^{-k-|\beta|}.$$

4 (b) We use Exercise 3, where we proved that $a \in S^k$ if and only if $b := \langle \xi \rangle^{-1} a$ admits a smooth extension to $\overline{T}^* \mathbb{R}^n$. Ellipticity of a implies that b is nonvanishing, thus 1/b is smooth on $\overline{T}^* \mathbb{R}^n$. Therefore, if $a \in S^k$ is elliptic, then $1/a \in S^{-k}$.

Now, assume that $a \in S_h^k$, namely

$$a \sim \sum_{j=0}^{\infty} h^j a_j, \quad a_j \in S^{k-j}.$$

We also assume that a is elliptic and thus a_0 is elliptic. Then $1/a_0 \in S^{-k}$, so that $a/a_0 \in S_h^0$. Since $1/a = (1/a_0) \cdot (a/a_0)^{-1}$, by replacing a by a/a_0 we may assume that $a_0 \equiv 1$. We then write a = 1 - hq where $q \in S_h^{-1}$. Then we have $1/a \in S_h^0$, more precisely

$$1/a \sim \sum_{j=0}^{\infty} h^j q^j.$$

Indeed, we have for all J

$$1/a - \sum_{j=0}^{J-1} h^j q^j = h^J q^J / a$$

Since $h^J q^J \in h^J S_{1,0,h}^{-J}$ and by part (a) $1/a \in S_{1,0,h}^0$, we have $h^J q^J/a \in h^J S_{1,0,h}^{-J}$, giving the asymptotic expansion.

5. We compute the principal symbol $p = \sigma_h(P)$:

$$p(x,\xi) = i\xi + 1.$$

Since $|p(x,\xi)| = \langle \xi \rangle$ it follows that $\text{ell}_h(P) = \overline{T}^* \mathbb{R}$. Then the elliptic estimate gives the inequality required by the problem:

$$\|\chi_0 u\|_{L^2} = \mathcal{O}(h^\infty) \|\chi u\|_{L^2} \quad \text{when } Pu = 0.$$
(10)

Now, the set of solutions to Pu = 0 is spanned by the function

$$u = e^{-x/h}.$$

This function satisfies (10) because χ is chosen depending on χ_0 , in particular we will always have supp $\chi_0 \subset {\chi = 1}$, which implies that $|\chi| \ge 1/2$ on some neighborhood of supp χ_0 . Therefore there exists $C = C(\chi_0, \chi) > 0$ such that

$$\|\chi_0 u\|_{L^2} \le C e^{-1/(Ch)} \|\chi u\|_{L^2}$$

and this gives (10).