18.156, SPRING 2017, PROBLEM SET 6, SOLUTIONS

1 (a) Denote $|g(x)|:=\left|\operatorname{det}\left(g_{j k}(x)\right)\right|$. Also, let $\left(g^{j k}(x)\right)$ be the inverse matrix of $\left(g_{j k}(x)\right)$. Then the Laplace-Beltrami operator Δ_{g} has the form

$$
\Delta_{g} u(x)=|g(x)|^{-1 / 2} \sum_{j, k} \partial_{x_{j}}\left(|g(x)|^{1 / 2} g^{j k}(x) \partial_{x_{k}} u(x)\right)=\sum_{j, k} g^{j k}(x) \partial_{x_{j}} \partial_{x_{k}} u(x)+\ldots
$$

where '...' denotes a first order differential operator applied to u. Then

$$
P=-h^{2} \Delta_{g}=-h^{2} \sum_{j, k} g^{j k}(x) \partial_{x_{j}} \partial_{x_{k}}+h \Psi_{h}^{1}\left(\mathbb{R}^{n}\right)
$$

It follows that $P \in \Psi_{h}^{2}\left(\mathbb{R}^{n}\right)$ and the principal symbol $p:=\sigma_{h}(P)$ is given by

$$
\begin{equation*}
p(x, \xi)=\sum_{j, k} g^{j k}(x) \xi_{j} \xi_{k} \tag{1}
\end{equation*}
$$

Note that p is the square of the norm on covectors induced by the metric g.
1 (b) Assume that $(x(t), \xi(t))=\varphi_{t}\left(x_{0}, \xi_{0}\right)$ for some fixed $\left(x_{0}, \xi_{0}\right)$. Then $x(t), \xi(t)$ solve Hamilton's equations (with dots denoting derivatives in t)

$$
\dot{x}_{j}(t)=\left(\partial_{\xi_{j}} p\right)(x(t), \xi(t)), \quad \dot{\xi}_{j}(t)=\left(-\partial_{x_{j}} p\right)(x(t), \xi(t)) .
$$

Using (1), we rewrite those as follows:

$$
\begin{align*}
\dot{x}_{j}(t) & =2 \sum_{k} g^{j k}(x(t)) \xi_{k} \tag{2}\\
\dot{\xi}_{j}(t) & =-\sum_{k, \ell}\left(\partial_{x_{j}} g^{k \ell}\right)(x(t)) \xi_{k} \xi_{\ell} . \tag{3}
\end{align*}
$$

Now, (2) gives immediately the equation for $2 \xi_{j}(t)$ required in the problem.
It remains to show that $t \mapsto x(t)$ is a geodesic. For that we need to prove that $x(t)$ solves the geodesic equation

$$
\begin{equation*}
\ddot{x}_{j}(t)+\sum_{k, \ell} \Gamma_{k \ell}^{j}(x(t)) \dot{x}_{k}(t) \dot{x}_{\ell}(t)=0, \tag{4}
\end{equation*}
$$

where $\Gamma_{k \ell}^{j}$ are the Christoffel symbols, given by

$$
\begin{equation*}
\Gamma_{k \ell}^{j}=\frac{1}{2} \sum_{r} g^{j r}\left(\partial_{x_{k}} g_{\ell r}+\partial_{x_{\ell}} g_{k r}-\partial_{x_{r}} g_{k \ell}\right) \tag{5}
\end{equation*}
$$

Using (2), we rewrite (4) as

$$
\begin{equation*}
2 \sum_{k} g^{j k} \dot{\xi}_{k}+4 \sum_{k, r, \alpha}\left(\partial_{x_{r}} g^{j k}\right) g^{r \alpha} \xi_{k} \xi_{\alpha}+4 \sum_{k, \ell, \alpha, \beta} g^{k \alpha} g^{\ell \beta} \Gamma_{k \ell}^{j} \xi_{\alpha} \xi_{\beta}=0 . \tag{6}
\end{equation*}
$$

Using (3) we rewrite (6) as

$$
\begin{equation*}
\sum_{k, \alpha, \beta} g^{j k}\left(\partial_{x_{k}} g^{\alpha \beta}\right) \xi_{\alpha} \xi_{\beta}=2 \sum_{r, \alpha, \beta} g^{r \alpha}\left(\partial_{x_{r}} g^{j \beta}\right) \xi_{\alpha} \xi_{\beta}+2 \sum_{k, \ell, \alpha, \beta} g^{k \alpha} g^{\ell \beta} \Gamma_{k \ell}^{j} \xi_{\alpha} \xi_{\beta} \tag{7}
\end{equation*}
$$

Since $\left(g^{j k}\right)$ is the inverse matrix to $\left(g_{j k}\right)$, we rewrite (7) as

$$
\begin{gather*}
-\sum_{k, \alpha, \beta, r, \ell} g^{j k} g^{\alpha r} g^{\beta \ell}\left(\partial_{x_{k}} g_{r \ell}\right) \xi_{\alpha} \xi_{\beta} \\
=-2 \sum_{k, \alpha, \beta, r, \ell} g^{j k} g^{\alpha r} g^{\beta \ell}\left(\partial_{x_{r}} g_{k \ell}\right) \xi_{\alpha} \xi_{\beta}+2 \sum_{k, \ell, \alpha, \beta} g^{k \alpha} g^{\beta \ell} \Gamma_{k \ell}^{j} \xi_{\alpha} \xi_{\beta} . \tag{8}
\end{gather*}
$$

Finally, (8) follows from (5).
2. Denote $a:=\sigma_{h}(A)$ and let $\operatorname{Char}(A)$ (the characteristic set) be the complement of $\operatorname{ell}_{h}(A)$ in the compactified cotangent bundle. Then:
(1) For $A=-h^{2} \Delta-1$, we have

$$
\begin{aligned}
a(x, \xi) & =|\xi|^{2}-1, \\
\operatorname{Char}(A) & =\{|\xi|=1\}, \\
e^{s H_{a}}(x, \xi) & =(x+2 s \xi, \xi) .
\end{aligned}
$$

Note that Char (A) does not intersect the fiber infinity $\partial \bar{T}^{*} \mathbb{R}^{n}$.
(2) For $A=i h \partial_{t}-h^{2} \Delta_{x}$, denoting by $\tau \in \mathbb{R}, \xi \in \mathbb{R}^{n}$ the momentum variables corresponding to t, x, we have

$$
\begin{aligned}
a(x, \xi) & =-\tau+|\xi|^{2} \\
\operatorname{Char}(A) \cap T^{*} \mathbb{R}^{n} & =\left\{|\xi|^{2}=\tau\right\} \\
e^{s H_{a}}(t, x, \tau, \xi) & =(t-s, x+2 s \xi, \tau, \xi)
\end{aligned}
$$

To understand the intersection of $\operatorname{Char}(A)$ with the fiber infinity, introduce the following coordinate system valid for $(\tau, \xi) \neq 0$:

$$
(\tau, \xi)=\rho^{-1}(\check{\tau}, \check{\xi}), \quad \rho \in[0, \infty), \quad(\check{\tau}, \check{\xi}) \in \mathbb{S}^{n}
$$

Note that ρ is a defining function of the fiber infinity, in particular $\partial \bar{T}^{*} \mathbb{R}^{n}=$ $\{\rho=0\}$. In this coordinate system, we have

$$
\operatorname{Char}(A)=\left\{|\xi|^{-2} a(x, \xi)=0\right\}=\left\{\check{\xi}^{2}=\rho \check{\tau}\right\}
$$

Putting $\rho=0$, we see that

$$
\operatorname{Char}(A) \cap \partial \bar{T}^{*} \mathbb{R}^{n}=\{\check{\xi}=0, \check{\tau}= \pm 1\}
$$

(3) For $A=h^{2} \partial_{t}^{2}-h^{2} \Delta_{x}$, we have

$$
\begin{aligned}
a(x, \xi) & =-\tau^{2}+|\xi|^{2}, \\
\operatorname{Char}(A) \cap T^{*} \mathbb{R}^{n} & =\{|\xi|=|\tau|\}, \\
e^{s H_{a}}(t, x, \tau, \xi) & =(t-2 s \tau, x+2 s \xi, \tau, \xi) .
\end{aligned}
$$

Moreover, in the coordinates introduced above

$$
\operatorname{Char}(A) \cap \partial \bar{T}^{*} \mathbb{R}^{n}=\{|\check{\xi}|=|\check{\tau}|=1 / \sqrt{2}\}
$$

3. Both admitting a smooth extension to fiber infinity and having an asymptotic expansion in powers of $|\xi|$ are asymptotic questions as $|\xi| \rightarrow \infty$ (i.e. these properties trivially hold if a is compactly supported in ξ). Therefore we will restrict ourselves to $|\xi| \geq 1$.

Consider the polar coordinates in ξ :

$$
\rho:=|\xi|^{-1} \in(0,1), \quad \theta:=\frac{\xi}{|\xi|} \in \mathbb{S}^{n-1} .
$$

Note that (x, ρ, θ) extend to smooth coordinates on $\bar{T}^{*} \mathbb{R}^{n}$, with ρ being a defining function of the fiber infinity. We have

$$
\partial_{\xi_{k}}=-\rho \theta_{k} \partial_{\rho}+\rho\left(\partial_{\theta_{k}}-\sum_{j} \theta_{k} \theta_{j} \partial_{\theta_{j}}\right) .
$$

The class $S_{1,0}^{0}$ consists of functions which are bounded under arbitrarily many applications of the vector fields $\partial_{x_{1}}, \ldots, \partial_{x_{n}}, \rho^{-1} \partial_{\xi_{1}}, \ldots, \rho^{-1} \partial_{\xi_{n}}$. These fields give a frame for smooth vector fields which extend to the boundary of $\bar{T}^{*} \mathbb{R}^{n}$. Thus a smooth function on $\bar{T}^{*} \mathbb{R}^{n}$ is a symbol in $S_{1,0}^{0}$.

We now show that $S^{k}\left(T^{*} \mathbb{R}^{n}\right)=\langle\xi\rangle^{k} C^{\infty}\left(\bar{T}^{*} \mathbb{R}^{n}\right)$. Multiplying both sides by $|\xi|^{-k}$ and using that $|\xi|^{-k}\langle\xi\rangle^{k}=\left(1+\rho^{2}\right)^{k / 2}$ is a smooth nonvanishing function on $\bar{T}^{*} \mathbb{R}^{n}$ (away from $\xi=0$), we reduce to the case $k=0$.

Note that positively homogeneous functions of order $j \in \mathbb{N}_{0}$ have the form $\rho^{j} a(x, \theta)$ where a is smooth. If $a \in C^{\infty}\left(\bar{T}^{*} \mathbb{R}^{n}\right)$, then using the Taylor expansion of a at $\rho=0$ we obtain an asymptotic expansion in positively homogeneous functions and see that $a \in S^{0}\left(T^{*} \mathbb{R}^{n}\right)$.

On the other hand, let $a \in S^{0}\left(T^{*} \mathbb{R}^{n}\right)$. To show that a is smooth on $\bar{T}^{*} \mathbb{R}^{n}$, we note that each term in the asymptotic expansion for a is smooth (since it has the form $\left.\rho^{j} a(x, \theta)\right)$. Thus it suffices to consider the case when $a \in S^{-N}\left(T^{*} \mathbb{R}^{n}\right)$ and show $a \in C^{N-1}\left(\bar{T}^{*} \mathbb{R}^{n}\right)$. For any j, α, β, the function $\rho^{-N}\left(\rho \partial_{\rho}\right)^{j} \partial_{x}^{\alpha} \partial_{\theta}^{\beta} a$ is bounded. Taking $j<N$, we see that any order $<N$ derivative of a in x, ρ, θ is $\mathcal{O}(\rho)$. It follows that $a \in C^{N-1}\left(\bar{T}^{*} \mathbb{R}^{n}\right)$ and all order $<N$ derivatives of a vanish on $\{\rho=0\}$.

4 (a) By induction we see that for each multiindices α, β the derivative $\partial_{x}^{\alpha} \partial_{\xi}^{\beta}(1 / a)$ is a linear combination with constant coefficients of terms of the form

$$
\begin{equation*}
a^{-m-1}\left(\partial_{x}^{\alpha_{1}} \partial_{\xi}^{\beta_{1}} a\right) \cdots\left(\partial_{x}^{\alpha_{m}} \partial_{\xi}^{\beta_{m}} a\right) \tag{9}
\end{equation*}
$$

where $\alpha_{1}+\cdots+\alpha_{m}=\alpha, \beta_{1}+\cdots+\beta_{m}=\beta$. Indeed, $1 / a$ has the form (9) with $m=0$ and if we differentiate (9) once in either x_{j} or ξ_{j}, we obtain a linear combination of terms of the form (9) (with updated α or β).

Now it remains to estimate each of the terms (9) using the derivative bounds on $a \in S_{1,0, h}^{k}$ and the ellipticity bound $|a| \geq c\langle\xi\rangle^{k}$:

$$
\left|a^{-m-1}\left(\partial_{x}^{\alpha_{1}} \partial_{\xi}^{\beta_{1}} a\right) \cdots\left(\partial_{x}^{\alpha_{m}} \partial_{\xi}^{\beta_{m}} a\right)\right| \leq C\langle\xi\rangle^{-(m+1) k} \cdot\langle\xi\rangle^{k-\left|\beta_{1}\right|} \cdots\langle\xi\rangle^{k-\left|\beta_{m}\right|}=C\langle\xi\rangle^{-k-|\beta|}
$$

4 (b) We use Exercise 3, where we proved that $a \in S^{k}$ if and only if $b:=\langle\xi\rangle^{-1} a$ admits a smooth extension to $\bar{T}^{*} \mathbb{R}^{n}$. Ellipticity of a implies that b is nonvanishing, thus $1 / b$ is smooth on $\bar{T}^{*} \mathbb{R}^{n}$. Therefore, if $a \in S^{k}$ is elliptic, then $1 / a \in S^{-k}$.

Now, assume that $a \in S_{h}^{k}$, namely

$$
a \sim \sum_{j=0}^{\infty} h^{j} a_{j}, \quad a_{j} \in S^{k-j} .
$$

We also assume that a is elliptic and thus a_{0} is elliptic. Then $1 / a_{0} \in S^{-k}$, so that $a / a_{0} \in S_{h}^{0}$. Since $1 / a=\left(1 / a_{0}\right) \cdot\left(a / a_{0}\right)^{-1}$, by replacing a by a / a_{0} we may assume that $a_{0} \equiv 1$. We then write $a=1-h q$ where $q \in S_{h}^{-1}$. Then we have $1 / a \in S_{h}^{0}$, more precisely

$$
1 / a \sim \sum_{j=0}^{\infty} h^{j} q^{j}
$$

Indeed, we have for all J

$$
1 / a-\sum_{j=0}^{J-1} h^{j} q^{j}=h^{J} q^{J} / a
$$

Since $h^{J} q^{J} \in h^{J} S_{1,0, h}^{-J}$ and by part (a) $1 / a \in S_{1,0, h}^{0}$, we have $h^{J} q^{J} / a \in h^{J} S_{1,0, h}^{-J}$, giving the asymptotic expansion.
5. We compute the principal symbol $p=\sigma_{h}(P)$:

$$
p(x, \xi)=i \xi+1
$$

Since $|p(x, \xi)|=\langle\xi\rangle$ it follows that $\operatorname{ell}_{h}(P)=\bar{T}^{*} \mathbb{R}$. Then the elliptic estimate gives the inequality required by the problem:

$$
\begin{equation*}
\left\|\chi_{0} u\right\|_{L^{2}}=\mathcal{O}\left(h^{\infty}\right)\|\chi u\|_{L^{2}} \quad \text { when } P u=0 \tag{10}
\end{equation*}
$$

Now, the set of solutions to $P u=0$ is spanned by the function

$$
u=e^{-x / h}
$$

This function satisfies (10) because χ is chosen depending on χ_{0}, in particular we will always have supp $\chi_{0} \subset\{\chi=1\}$, which implies that $|\chi| \geq 1 / 2$ on some neighborhood of supp χ_{0}. Therefore there exists $C=C\left(\chi_{0}, \chi\right)>0$ such that

$$
\left\|\chi_{0} u\right\|_{L^{2}} \leq C e^{-1 /(C h)}\|\chi u\|_{L^{2}}
$$

and this gives (10).

