18.156, SPRING 2017, PROBLEM SET 5, SOLUTIONS

We denote by Diff_{h} the space of all semiclassical differential operators acting on $C^{\infty}\left(\mathbb{R}^{n}\right)$ with smooth coefficients which are polynomial in h, that is operators which have the following form for some N :

$$
\begin{equation*}
\sum_{|\alpha| \leq N} \sum_{j=0}^{N} h^{j} a_{\alpha j}(x)\left(h D_{x}\right)^{\alpha} \tag{1}
\end{equation*}
$$

where $a_{\alpha j} \in C^{\infty}\left(\mathbb{R}^{n}\right)$. It is easy to see that the class Diff is closed under compositions and adjoints. We also have the following

Lemma 0.1. 1. If $a \in \operatorname{Poly}_{h}^{k}$, then $A:=\mathrm{Op}_{h}(a)$ lies in Diff_{h} and for all $(x, \eta) \in \mathbb{R}^{2 n}$,

$$
\begin{equation*}
\left(A e^{\frac{i}{h}\langle\bullet, \eta\rangle}\right)(x)=e^{\frac{i}{h}\langle x, \eta\rangle} a(x, \eta) \tag{2}
\end{equation*}
$$

2. If $A \in \operatorname{Diff}_{h}$ and (2) holds for some $a \in \operatorname{Poly}_{h}^{k}$, then $A=\operatorname{Op}_{h}(a)$.

Proof. 1. It suffices to consider the case when $a(x, \xi)=a_{\alpha}(x) \xi^{\alpha}$ for some multiindex α. Then

$$
\left(A e^{\frac{i}{h}\langle\bullet, \eta\rangle}\right)(x)=a_{\alpha}(x)\left(h D_{x}\right)^{\alpha} e^{\frac{i}{h}\langle x, \eta\rangle}=e^{\frac{i}{h}\langle x, \eta\rangle} a_{\alpha}(x) \eta^{\alpha} .
$$

2. We write A in the form (1) and compute

$$
a(x, \eta)=e^{-\frac{i}{h}\langle x, \eta\rangle}\left(A e^{\frac{i}{h}\langle\bullet, \eta\rangle}\right)(x)=\sum_{|\alpha| \leq N} \sum_{j=0}^{N} h^{j} a_{\alpha j}(x) \eta^{\alpha}
$$

For x, h fixed, both sides of this equation are polynomials in η. Then $a_{\alpha j}(x)$ are uniquely determined by a and we get $A=\mathrm{Op}_{h}(a)$.

1. We first note that for each $\eta \in \mathbb{R}^{n}$,

$$
e^{-\frac{i}{h}\langle x, \eta\rangle} \operatorname{Op}_{h}(a) e^{\frac{i}{h}\langle x, \eta\rangle}=\operatorname{Op}_{h}\left(a_{\eta}\right), \quad a_{\eta} \in \operatorname{Poly}_{h}^{k}, \quad a_{\eta}(x, \xi ; h)=a(x, \xi+\eta ; h)
$$

Indeed, it suffices to consider the case $a(x, \xi)=a_{\alpha}(x) \xi^{\alpha}$. This case follows by noting that $a_{\alpha}(x)$ commutes with $e^{\frac{i}{h}\langle x, \eta\rangle}$ (both being multiplication operators) and

$$
e^{-\frac{i}{h}\langle x, \eta\rangle}\left(h D_{x_{r}}\right) e^{\frac{i}{h}\langle x, \eta\rangle}=h D_{x_{r}}+\eta_{r}
$$

Next, we have for $q \in C^{\infty}\left(\mathbb{R}^{n}\right)$

$$
\begin{equation*}
\mathrm{Op}_{h}(a) q(x)=\sum_{j=0}^{\infty} h^{j} \sum_{\substack{|\beta|=j \\ 1}} \frac{1}{\beta!} \partial_{\xi}^{\beta} a(x, 0) D_{x}^{\beta} q(x) \tag{3}
\end{equation*}
$$

where again it suffices to consider the case $a(x, \xi)=a_{\alpha}(x) \xi^{\alpha}$. Applying (3) to the symbol a_{η}, we finish the proof.
2. We compute for each $\eta \in \mathbb{R}^{n}$, using (2) and Exercise 1,

$$
\begin{gathered}
\left(\mathrm{Op}_{h}(a) \mathrm{Op}_{h}(b) e^{\frac{i}{h}\langle\bullet, \eta\rangle}\right)(x)=\left(\mathrm{Op}_{h}(a)\left(e^{\frac{i}{h}\langle\bullet, \eta\rangle} b(\bullet, \eta)\right)\right)(x)=e^{\frac{i}{h}\langle x, \eta\rangle} c(x, \eta), \\
c(x, \xi ; h)=\sum_{j=0}^{\infty} h^{j} c_{j}(x, \xi), \quad c_{j}(x, \xi ; h)=\sum_{|\alpha|=j} \frac{1}{\alpha!} \partial_{\xi}^{\alpha} a(x, \xi ; h) \cdot D_{x}^{\alpha} b(x, \xi ; h)
\end{gathered}
$$

We have $c_{j}(x, \xi ; h) \in \operatorname{Poly}_{h}^{k+\ell-j}$, since $\partial_{\xi}^{\alpha} a \in \operatorname{Poly}_{h}^{k-j}$ and $D_{x}^{\alpha} b \in \operatorname{Poly}{ }_{h}^{\ell}$. Then $c \in$ Poly ${ }_{h}^{k+\ell}$. Now part 2 of Lemma 0.1 gives $\mathrm{Op}_{h}(a) \mathrm{Op}_{h}(b)=\mathrm{Op}_{h}(c)$. The formulas for the principal parts of $\mathrm{Op}_{h}(a) \mathrm{Op}_{h}(b)$ and $\left[\mathrm{Op}_{h}(a), \mathrm{Op}_{h}(b)\right]$ follow immediately from the expansion for c.
3. It suffices to consider the case $a(x, \xi)=a_{\beta}(x) \xi^{\beta}$. Integrating by parts, we have for all $u, v \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ (recalling that $D=-i \partial$)

$$
\int_{\mathbb{R}^{n}} \overline{v(x)} \cdot\left(h D_{x}\right)^{\beta} u(x) d x=\int_{\mathbb{R}^{n}} u(x) \cdot \overline{\left(h D_{x}\right)^{\beta} v(x)} d x
$$

that is $\left(\left(h D_{x}\right)^{\beta}\right)^{*}=\left(h D_{x}\right)^{\beta}$. Since $a_{\beta}(x)^{*}=\overline{a_{\beta}(x)}$, we have

$$
\mathrm{Op}_{h}(a)^{*}=\left(a_{\beta}(x)\left(h D_{x}\right)^{\beta}\right)^{*}=\left(h D_{x}\right)^{\beta} \overline{a_{\beta}(x)}=\mathrm{Op}_{h}\left(\xi^{\beta}\right) \mathrm{Op}_{h}\left(\overline{a_{\beta}(x)}\right)
$$

and the latter product is computed by Exercise 2.
4. It suffices to consider the case $a(x, \xi)=a_{\alpha}(x) \xi^{\alpha}$. We have

$$
e^{-i \varphi / h} \operatorname{Op}_{h}(a) e^{i \varphi / h}=a_{\alpha}(x) e^{-i \varphi / h}\left(h D_{x_{1}}\right)^{\alpha_{1}} \cdots\left(h D_{x_{n}}\right)^{\alpha_{n}} e^{i \varphi / h}
$$

Since

$$
e^{-i \varphi / h}\left(h D_{x_{r}}\right) e^{i \varphi / h}=h D_{x_{r}}+\varphi_{x_{r}}^{\prime}=\mathrm{Op}_{h}\left(\xi_{r}+\varphi_{x_{r}}^{\prime}\right)
$$

we have

$$
e^{-i \varphi / h} \mathrm{Op}_{h}(a) e^{i \varphi / h}=a_{\alpha}(x) \mathrm{Op}_{h}\left(\xi_{1}+\varphi_{x_{1}}^{\prime}\right)^{\alpha_{1}} \cdots \mathrm{Op}_{h}\left(\xi_{n}+\varphi_{x_{n}}^{\prime}\right)^{\alpha_{n}}
$$

By Exercise 2 this is equal to

$$
\operatorname{Op}_{h}\left(a_{\alpha}(x)\left(\xi_{1}+\varphi_{x_{1}}^{\prime}\right)^{\alpha_{1}} \cdots\left(\xi_{n}+\varphi_{x_{n}}^{\prime}\right)^{\alpha_{n}}+h \operatorname{Poly}_{h}^{k-1}\right)
$$

and it remains to note that

$$
a_{\alpha}(x)\left(\xi_{1}+\varphi_{x_{1}}^{\prime}\right)^{\alpha_{1}} \cdots\left(\xi_{n}+\varphi_{x_{n}}^{\prime}\right)^{\alpha_{n}}=a(x, \xi+\nabla \varphi(x))
$$

5. It suffices to consider the case when $a(x, \xi)=a_{\alpha}(x) \xi^{\alpha}$. By the Fourier inversion formula and a change of variables, we have

$$
u(x)=(2 \pi)^{-n} \int_{\mathbb{R}^{n}} e^{i\langle x, \eta\rangle} \hat{u}(\eta) d \eta=(2 \pi h)^{-n} \int_{\mathbb{R}^{n}} e^{\frac{i}{h}\langle x, \xi\rangle} \hat{u}(\xi / h) d \xi
$$

Differentiating under the integral sign, we obtain

$$
\left(h D_{x}\right)^{\alpha} u(x)=(2 \pi h)^{-n} \int_{\mathbb{R}^{n}} e^{\frac{i}{h}\langle x, \xi\rangle} \xi^{\alpha} \hat{u}(\xi / h) d \xi .
$$

It follows that

$$
\mathrm{Op}_{h}(a) u(x)=a_{\alpha}(x)\left(h D_{x}\right)^{\alpha} u(x)=(2 \pi h)^{-n} \int_{\mathbb{R}^{n}} e^{\frac{i}{h}\langle x, \xi\rangle} a(x, \xi) \hat{u}(\xi / h) d \xi
$$

