18.156, SPRING 2017, PROBLEM SET 4, SOLUTIONS

1 (a) Consider the operator $\widetilde{A}(\lambda): \mathcal{H}_{1} \oplus \mathbb{C}^{N} \rightarrow \mathcal{H}_{2} \oplus \mathbb{C}^{N}$ defined as follows: $\widetilde{A}(\lambda)(f, \alpha)=$ (g, β) with

$$
\begin{align*}
A(\lambda) f+\sum_{j=1}^{N} \alpha_{j} \partial_{\lambda} A\left(\lambda_{0}\right) u_{j} & =g \tag{1}\\
\left\langle\partial_{\lambda} A\left(\lambda_{0}\right) f, v_{k}\right\rangle_{\mathcal{H}_{2}} & =\beta_{k} \tag{2}
\end{align*}
$$

We make the following observations regarding the equations (1), (2) in the case $\lambda=\lambda_{0}$:

- Since $\left\langle A\left(\lambda_{0}\right) f, v_{k}\right\rangle_{\mathcal{H}_{2}}=\left\langle f, A\left(\lambda_{0}\right)^{*} v_{k}\right\rangle_{\mathcal{H}_{1}}=0$ and $\left\langle\partial_{\lambda} A\left(\lambda_{0}\right) u_{j}, v_{k}\right\rangle_{\mathcal{H}_{2}}=\delta_{j k}$, we obtain

$$
\alpha_{j}=\left\langle g, v_{j}\right\rangle_{\mathcal{H}_{2}} .
$$

- In particular, if $g=0$, then $\alpha=0$ and $A\left(\lambda_{0}\right) f=0$, implying that f is a linear combination of u_{1}, \ldots, u_{N}. This implies

$$
g=0 \quad \Longrightarrow \quad f=\sum_{j=1}^{N} \beta_{j} u_{j} .
$$

- We see that $\widetilde{A}\left(\lambda_{0}\right)$ has no kernel. Since $\widetilde{A}\left(\lambda_{0}\right)$ is Fredholm of index 0 , it is invertible. Thus $\widetilde{A}(\lambda)^{-1}$ is invertible for λ near λ_{0}. Denote the inverse as follows:

$$
\widetilde{A}(\lambda)^{-1}=\left(\begin{array}{ll}
B_{11}(\lambda) & B_{12}(\lambda) \\
B_{21}(\lambda) & B_{22}(\lambda)
\end{array}\right): \mathcal{H}_{2} \oplus \mathbb{C}^{N} \rightarrow \mathcal{H}_{1} \oplus \mathbb{C}^{N}
$$

The above observations imply that

$$
\begin{equation*}
B_{12}\left(\lambda_{0}\right) \beta=\sum_{j=1}^{N} \beta_{j} u_{j}, \quad\left(B_{21}\left(\lambda_{0}\right) g\right)_{j}=\left\langle g, v_{j}\right\rangle_{\mathcal{H}_{2}}, \quad B_{22}\left(\lambda_{0}\right)=0 . \tag{3}
\end{equation*}
$$

Now, using the formula $\partial_{\lambda}\left(\widetilde{A}(\lambda)^{-1}\right)=-\widetilde{A}(\lambda)^{-1} \partial_{\lambda} A(\lambda) \widetilde{A}(\lambda)^{-1}$, we obtain from (3)

$$
\begin{equation*}
\partial_{\lambda} B_{22}\left(\lambda_{0}\right)=-B_{21}\left(\lambda_{0}\right) \partial_{\lambda} A\left(\lambda_{0}\right) B_{12}\left(\lambda_{0}\right)=-I . \tag{4}
\end{equation*}
$$

In particular, we have the Laurent expansion of $B_{22}(\lambda)^{-1}$ (where ... denotes terms homomorphic at λ_{0}):

$$
B_{22}(\lambda)^{-1}=-\frac{I}{\lambda-\lambda_{0}}+\ldots
$$

Using Schur's complement formula

$$
A(\lambda)^{-1}=B_{11}(\lambda)-\underset{1}{B_{12}}(\lambda) B_{22}(\lambda)^{-1} B_{21}(\lambda),
$$

we get the required Laurent expansion:

$$
A(\lambda)^{-1}=\frac{B_{12}\left(\lambda_{0}\right) B_{21}\left(\lambda_{0}\right)}{\lambda-\lambda_{0}}+\ldots
$$

1 (b) First, assume that the matrix $\left(a_{j k}\right)$ is invertible. Changing the basis v_{1}, \ldots, v_{N}, we can make this matrix equal to the identity matrix, in which case $J=1$ by part (a).

Now, assume that $J=1$. Take $w \in \operatorname{ker} A\left(\lambda_{0}\right)^{*}$. Then

$$
w=A(\lambda) A(\lambda)^{-1} w=\frac{A\left(\lambda_{0}\right) A_{1} w}{\lambda-\lambda_{0}}+A\left(\lambda_{0}\right) A_{0}\left(\lambda_{0}\right) w+A^{\prime}\left(\lambda_{0}\right) A_{1} w+\mathcal{O}\left(\lambda-\lambda_{0}\right)
$$

implying that

$$
A\left(\lambda_{0}\right) A_{1} w=0, \quad A\left(\lambda_{0}\right) A_{0}\left(\lambda_{0}\right) w+A^{\prime}\left(\lambda_{0}\right) A_{1} w=w
$$

Pairing the second identity with w and using that $A\left(\lambda_{0}\right)^{*} w=0$, we get

$$
\left\langle A^{\prime}\left(\lambda_{0}\right) A_{1} w, w\right\rangle_{\mathcal{H}_{2}}=\|w\|_{\mathcal{H}_{2}}^{2} .
$$

Thus for each $w \in \operatorname{ker} A\left(\lambda_{0}\right)^{*} \backslash\{0\}$ there exists $u:=A_{1} w \in \operatorname{ker} A\left(\lambda_{0}\right)$ such that $\left\langle A^{\prime}\left(\lambda_{0}\right) u, w\right\rangle_{\mathcal{H}_{2}} \neq 0$. This implies that the matrix $\left(a_{j k}\right)$ is invertible.
2. We have

$$
f=\left(P_{V}-\lambda^{2}\right) u=\left(-\Delta-\lambda^{2}+V\right) u=g+V u \in L_{\text {comp }}^{2}\left(\mathbb{R}^{n}\right) .
$$

To show that $u=R_{V}(\lambda) f$ it suffices to prove the identity

$$
\begin{equation*}
R_{0}(\lambda) g=R_{V}(\lambda)\left(P_{V}-\lambda^{2}\right) R_{0}(\lambda) g \quad \text { for all } g \in L_{\text {comp }}^{2}\left(\mathbb{R}^{n}\right) \tag{5}
\end{equation*}
$$

For $\operatorname{Im} \lambda>0$ and λ not a resonance, (5) is immediate since $R_{V}(\lambda)=\left(P_{V}-\lambda^{2}\right)^{-1}$: $L^{2}\left(\mathbb{R}^{n}\right) \rightarrow H^{2}\left(\mathbb{R}^{n}\right)$ and $R_{0}(\lambda) g \in H^{2}\left(\mathbb{R}^{n}\right)$. For general λ, (5) follows by analytic continuation, where to make sure that the right-hand side is well-defined we rewrite (5) as follows:

$$
R_{0}(\lambda) g=R_{V}(\lambda)\left(g+V R_{0}(\lambda) g\right)
$$

3. Taking $\rho \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ such that $\rho V=V$, we have the identity

$$
\begin{equation*}
R_{V}(\lambda)=R_{0}(\lambda)\left(I+V R_{0}(\lambda) \rho\right)^{-1}\left(I-V R_{0}(\lambda)(1-\rho)\right) \tag{6}
\end{equation*}
$$

It follows that for each $f \in L_{\text {comp }}^{2}\left(\mathbb{R}^{n}\right)$,

$$
\begin{equation*}
\left(I+V R_{0}(\lambda) \rho\right)^{-1} f=\left(-\Delta-\lambda^{2}\right) R_{V}(\lambda)\left(I+V R_{0}(\lambda)(1-\rho)\right) f \in L_{\text {comp }}^{2} \tag{7}
\end{equation*}
$$

Therefore, since $R_{V}(\lambda)$ has a semisimple pole at λ_{0}, so does $\left(I+V R_{0}(\lambda) \rho\right)^{-1}$. We write (with $A_{0}(\lambda)$ holomorphic at λ_{0})

$$
\begin{equation*}
\left(I+V R_{0}(\lambda) \rho\right)^{-1}=A_{0}(\lambda)+\frac{A_{1}}{\lambda^{2}-\lambda_{0}^{2}}: L^{2}\left(\mathbb{R}^{n}\right) \rightarrow L^{2}\left(\mathbb{R}^{n}\right) \tag{8}
\end{equation*}
$$

Note that A_{1} maps $L_{\text {comp }}^{2}\left(\mathbb{R}^{n}\right) \rightarrow L_{\text {comp }}^{2}\left(\mathbb{R}^{n}\right)$ since $\left(I+V R_{0}(\lambda) \rho\right)^{-1}$ does. By writing out the Laurent expansion of (6) we have

$$
\Pi_{0}=R_{0}\left(\lambda_{0}\right) A_{1}\left(I-V R_{0}\left(\lambda_{0}\right)(1-\rho)\right)
$$

Since $A_{1}\left(I-V R_{0}(\lambda)(1-\rho)\right): L_{\text {comp }}^{2}\left(\mathbb{R}^{n}\right) \rightarrow L_{\text {comp }}^{2}\left(\mathbb{R}^{n}\right)$, the range of Π_{0} consists of functions which are outgoing at λ_{0}. Note that this would fail if the expansion (8) had higher negative powers of $\lambda-\lambda_{0}$, since then we would have to involve the derivatives $\partial_{\lambda}^{j} R_{0}\left(\lambda_{0}\right)$ for $j \geq 1$ and these do not give outgoing functions.

Given the statement that $\left(P_{V}-\lambda_{0}^{2}\right) \Pi_{0}=0$ (which follows by writing out the Laurent expansion of the identity $\left.\left(P_{V}-\lambda^{2}\right) R_{V}(\lambda)=I\right)$, we see that

$$
\Pi_{0}\left(L_{\text {comp }}^{2}\left(\mathbb{R}^{n}\right)\right) \subset\left\{u \in H_{\mathrm{loc}}^{2}\left(\mathbb{R}^{n}\right) \mid\left(P_{V}-\lambda_{0}^{2}\right) u=0, u \text { is outgoing at } \lambda_{0}\right\} .
$$

To show the opposite containment, assume that $u=R_{0}\left(\lambda_{0}\right) g$ for some $g \in L_{\text {comp }}^{2}\left(\mathbb{R}^{n}\right)$ and $\left(P_{V}-\lambda_{0}^{2}\right) u=0$. Then $g=-V R_{0}\left(\lambda_{0}\right) g$, which also implies that $g=\rho g$. Then

$$
\left(I+V R_{0}(\lambda) \rho\right) g=V\left(R_{0}(\lambda)-R_{0}\left(\lambda_{0}\right)\right) g
$$

Take the following family of functions holomorphic in λ :

$$
G(\lambda)=\frac{V\left(R_{0}(\lambda)-R_{0}\left(\lambda_{0}\right)\right) g}{\lambda^{2}-\lambda_{0}^{2}} \in L_{\text {comp }}^{2}\left(\mathbb{R}^{n}\right)
$$

Taking the constant term in the Laurent expansion at $\lambda=\lambda_{0}$ of the identity

$$
\left(I+V R_{0}(\lambda) \rho\right)^{-1}\left(\lambda^{2}-\lambda_{0}^{2}\right) G(\lambda)=g
$$

we see that

$$
g=A_{1} G\left(\lambda_{0}\right)
$$

Since $\rho G\left(\lambda_{0}\right)=G\left(\lambda_{0}\right)$, we get

$$
\begin{aligned}
u & =R_{0}\left(\lambda_{0}\right) g=R_{0}\left(\lambda_{0}\right) A_{1}\left(I-V R_{0}\left(\lambda_{0}\right)(1-\rho)\right) G\left(\lambda_{0}\right) \\
& =\Pi_{0} G\left(\lambda_{0}\right)
\end{aligned}
$$

and thus u lies in the range of Π_{0} as required.
4. Take ρ as in Exercise 3. It follows from (7) that the singular part of the Laurent expansion of $\left(I+V R_{0}(\lambda) \rho\right)^{-1}$ at λ_{0} only has powers $\left(\lambda-\lambda_{0}\right)^{-1}, \ldots,\left(\lambda-\lambda_{0}\right)^{-J}$. Let A_{J} be the highest order term in this expansion, namely

$$
\left(I+V R_{0}(\lambda) \rho\right)^{-1}=\frac{A_{J}}{\left(\lambda^{2}-\lambda_{0}^{2}\right)^{J}}+\mathcal{O}\left(\left(\lambda-\lambda_{0}\right)^{1-J}\right)
$$

Then (6) gives

$$
R_{V}(\lambda)=\frac{R_{0}\left(\lambda_{0}\right) A_{J}\left(I-V R_{0}\left(\lambda_{0}\right)(1-\rho)\right)}{\left(\lambda^{2}-\lambda_{0}^{2}\right)^{J}}+\mathcal{O}\left(\left(\lambda-\lambda_{0}\right)^{1-J}\right)
$$

It follows that

$$
\left(P_{V}-\lambda_{0}^{2}\right)^{J-1} \Pi_{\lambda_{0}}=R_{0}\left(\lambda_{0}\right) A_{J}\left(I-V R_{0}\left(\lambda_{0}\right)(1-\rho)\right)
$$

This implies that the range of $\left(P_{V}-\lambda_{0}^{2}\right)^{J-1} \Pi_{\lambda_{0}}$ consists of outgoing functions, and writing out the Laurent expansion of the identity $\left(P_{V}-\lambda^{2}\right) R_{V}(\lambda)=I$ at $\lambda=\lambda_{0}$ we see that functions in this range also solve $\left(P_{V}-\lambda_{0}^{2}\right) u=0$.

