18.156, SPRING 2017, PROBLEM SET 3, SOLUTIONS

1. Take arbitrary $x^{0} \in \operatorname{supp} a$. Since $\nabla \Phi(x) \neq 0$, by the inverse mapping theorem there exists open sets $V_{x^{0}} \ni x^{0}, W_{x^{0}}$ in \mathbb{R}^{n} and a diffeomorphism $\psi_{x^{0}}: V_{x^{0}} \rightarrow W_{x^{0}}$ such that $\Phi=x_{1} \circ \psi_{x^{0}}$ on $V_{x^{0}}$, where $x_{1}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is the coordinate map.

The sets $\left\{V_{x^{0}} \mid x^{0} \in \operatorname{supp} a\right\}$ form an open cover of $\operatorname{supp} a$. Take a finite subcover V_{1}, \ldots, V_{m} and let $\psi_{j}: V_{j} \rightarrow W_{j}$ be the corresponding diffeomorphisms. Take a partition of unity $\chi_{1}, \ldots, \chi_{m}$ subordinate to the cover of V_{1}, \ldots, V_{m}. Changing variables in the integral, we have

$$
I(h)=\sum_{j=1}^{m} I_{j}(h), \quad I_{j}(h):=\int_{V_{j}} e^{i \Phi(x) / h} \chi_{j}(x) a(x) d x=\int_{W_{j}} e^{i x_{1} / h} a_{j}(x) d x
$$

where $a_{j}=\left(\chi_{j} a\right) \circ \psi_{j}^{-1} \cdot J_{j} \in C_{c}^{\infty}\left(W_{j}\right)$ and J_{j} is the Jacobian of ψ_{j}^{-1}.
It remains to show that each $I_{j}(h)$ is $\mathcal{O}\left(h^{\infty}\right)$. For that, integrate by parts N times in x_{1} :

$$
I_{j}(h)=\int_{W_{j}}\left(\left(-i h \partial_{x_{1}}\right)^{N} e^{i x_{1} / h}\right) a_{j}(x) d x=(i h)^{N} \int_{W_{j}} e^{i x_{1} / h} \partial_{x_{1}}^{N} a_{j}(x) d x
$$

which gives

$$
\left|I_{j}(h)\right| \leq C_{j, N} h^{N}, \quad C_{j, N}:=\left\|\partial_{x_{1}}^{N} a_{j}\right\|_{L^{1}}
$$

2. We will show the stronger statement

$$
\begin{equation*}
\mathrm{WF}_{h}(u) \subset X:=\left\{\left(x, \partial_{x} \varphi(x, \theta)\right) \mid(x, \theta) \in \operatorname{supp} a, \partial_{\theta} \varphi(x, \theta)=0\right\} \tag{1}
\end{equation*}
$$

Assume that $\left(x_{0}, \xi_{0}\right) \notin X$. Choose $\chi \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ such that $\chi\left(x_{0}\right) \neq 0$ and a small ball $W \subset \mathbb{R}^{n}$ centered at ξ_{0} such that

$$
\begin{equation*}
X \cap(\operatorname{supp} \chi \times \bar{W})=\emptyset \tag{2}
\end{equation*}
$$

We compute for $\xi \in \mathbb{R}^{n}$

$$
\widehat{\chi u}(\xi / h)=\int_{\mathbb{R}^{n+m}} e^{i \Phi_{\xi}(x, \theta) / h} b_{\chi}(x, \theta) d x d \theta
$$

where $\Phi_{\xi} \in C^{\infty}(U ; \mathbb{R}), b_{\chi} \in C_{c}^{\infty}(U ; \mathbb{C})$ are given by

$$
\Phi_{\xi}(x, \theta)=\varphi(x, \theta)-\langle x, \xi\rangle, \quad b_{\chi}(x, \theta)=a(x, \theta) \chi(x)
$$

We have

$$
\partial_{x} \Phi_{\xi}(x, \theta)=\partial_{x} \varphi(x, \theta)-\underset{1}{\xi,} \quad \partial_{\theta} \Phi_{\xi}(x, \theta)=\partial_{\theta} \varphi(x, \theta) .
$$

By (2), for $\xi \in W$ the phase Φ_{ξ} has no stationary points on $\operatorname{supp} b_{\chi}$. Therefore, by Exercise 1

$$
\widehat{\chi u}(\xi / h)=\mathcal{O}\left(h^{\infty}\right), \quad \xi \in W .
$$

The latter statement is in fact uniform in $\xi \in W$, as can be seen by carefully examining the solution of Exercise 1. (Uniformity of nonstationary and stationary phase in a parameter, here ξ, is both true and very useful in semiclassical analysis, but is usually made implicit.) Therefore, we obtain

$$
\left(x_{0}, \xi_{0}\right) \notin \mathrm{WF}_{h}(u)
$$

which gives (1).
3 (a) We write

$$
I_{x a}(h)=\int_{\mathbb{R}} x e^{i x^{2} / h} a(x) d x=-\frac{i h}{2} \int_{\mathbb{R}} \partial_{x}\left(e^{i x^{2} / h}\right) a(x) d x
$$

Integrating by parts (which is fine since a is Schwartz) we obtain

$$
I_{x a}(h)=\frac{i h}{2} \int_{\mathbb{R}} e^{i x^{2} / h} a^{\prime}(x) d x=\frac{i h}{2} I_{a^{\prime}}(h) .
$$

Next, assume that $a(0)=0$. Then we may write $a=x b$ where b is a Schwartz function. Indeed, the fact that $x^{j} \partial_{x}^{k}(a(x) / x)$ is bounded for large $|x|$ is verified directly, and to establish that $a(x) / x$ extends smoothly to $x=0$ we use the representation

$$
a(x)=x b(x), \quad b(x)=\int_{0}^{1} a^{\prime}(t x) d t
$$

Now we have

$$
I_{a}(h)=I_{x b}(h)=\frac{i h}{2} I_{b^{\prime}}(h)=\mathcal{O}(h)
$$

3 (b) Define

$$
F(s)=\int_{\mathbb{R}} e^{-s x^{2}} d x, \quad s \in \mathbb{C}, \quad \operatorname{Re} s>0
$$

The integral converges exponentially fast and the integrated function is holomorphic in s, therefore $F(s)$ is holomorphic in s as well. For real $s>0$, using change of variables $y=s^{1 / 2} x$ and the Gaussian integral we compute

$$
\begin{equation*}
F(s)=\sqrt{\frac{\pi}{s}} \tag{3}
\end{equation*}
$$

Since both sides are holomorphic in $\{\operatorname{Re} s>0\}$, the formula (3) holds for all $\operatorname{Re} s>0$. Here we choose the (usual) branch of the square root \sqrt{z} on $\{\operatorname{Re} z>0\}$ such that $\sqrt{1}=1$. Now we compute for $a(x)=e^{-x^{2}}$,

$$
I(h)=F\left(1-\frac{i}{h}\right)=\sqrt{\frac{\pi h}{h-i}}=\sqrt{\pi} e^{i \pi / 4} h^{1 / 2}+\mathcal{O}\left(h^{3 / 2}\right)
$$

3 (c) We write

$$
a=a(0) e^{-x^{2}}+b, \quad b(0)=0
$$

From Exercise 3(a), we have $I_{b}(h)=\mathcal{O}(h)$. Using the formula from Exercise 3(b), we get

$$
I_{h}(a)=h^{1 / 2} \cdot \sqrt{\pi} e^{i \pi / 4} a(0)+\mathcal{O}(h)
$$

