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1 (a) It suffices to show the following estimates for some constant C (depending on λ, V

but not on f) and all f ∈ C∞c (R), u := RV (λ)f :

‖u‖L2 ≤ C‖f‖L2 , (1)

‖u′‖L2 ≤ C‖f‖L2 , (2)

‖u′′‖L2 ≤ C‖f‖L2 . (3)

The estimate (1) is actually the hardest one, in particular it is the only one that uses

that λ is not a resonance. To show it, recall from Problemset 1, Exercise 4 that

u =

∫
R
RV (x, y;λ)f(y) dy, RV (x, y;λ) =

1

W(λ)

{
e+(x)e−(y), x > y;

e−(x)e+(y), x < y

where W(λ) 6= 0 since λ is not a resonance. By Schur’s inequality it suffices to prove

the following estimates for some constant C:

sup
x

(
|e+(x)| ·

∫ x

−∞
|e−(y)| dy

)
≤ C, (4)

sup
x

(
|e−(x)| ·

∫ ∞
x

|e+(y)| dy
)
≤ C. (5)

Take r0 > 0 such that suppV ⊂ [−r0, r0]. Denote ν := Imλ > 0. We know that

e±(x) = e±iλx when ±x ≥ r0 and e±(x) is a linear combination of eiλx, e−iλx when

∓x ≥ r0. Therefore
|e±(x)| = e−ν|x|, ± x ≥ r0;

|e±(x)| ≤ Ceν|x|, x ∈ R.
We now show (4), with (5) proved similarly. We consider the following cases:

(1) x ≥ r0: then we have

|e+(x)| = e−νx,

∫ x

−∞
|e−(y)| dy ≤ Ceνx;

(2) x ≤ −r0: then we have

|e+(x)| ≤ Ceν|x|,

∫ x

−∞
|e−(y)| dy =

1

ν
e−ν|x|;

(3) −r0 < x < r0: then we have

|e+(x)| ≤ C,

∫ x

−∞
|e−(y)| dy ≤ C.

1
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This finishes the proof of (4) and thus the proof of (1).

To show (2), we integrate by parts (using the rapid decay of u as |x| → ∞):∫
R
f(x)u(x) dx =

∫
R
|u′(x)|2 dx+

∫
R
(V (x)− λ2)|u(x)|2 dx.

Bounding the left-hand side by the Cauchy–Schwarz inequality, we get∫
R
|u′(x)|2 dx ≤ ‖f‖L2 · ‖u‖L2 + C‖u‖2L2 .

Estimating ‖u‖L2 by (1), we get (2).

Finally, to show (3), we note that −u′′ + (V − λ2)u = f and thus

‖u′′‖L2 ≤ ‖f‖L2 + C‖u‖L2 ;

it remains to use (1).

1 (b) It suffices to prove that for each f, u ∈ C∞c (R), we have

(PV − λ2)RV (λ)f = f, RV (λ)(PV − λ2)u = u,

which follows immediately from the fact that for each f ∈ C∞c (R), u := RV (λ)f is the

unique solution to the equation (PV − λ2)u = f which lies in L2(R).

2 (a) Assume first that u is outgoing and (PV − λ2)u = f . We have

∂xW (u, e1) = fe1.

On the other hand, since both u and e1 are outgoing, we have W (u, e1) = 0 for |x| � 1.

It follows that ∫
R
f(x)e1(x) dx = 0. (6)

Now, assume that f ∈ C∞c (R) satisfies (6) and put u := R1f . Similarly to Problem-

set 1, Exercise 4 we see that u solves (PV − λ2)u = f . Using (6), we also verify that u

is outgoing.

2 (b) Assume first that u, α solve the Grushin problem and u is outgoing. By Exer-

cise 2(a), we have

0 = 〈(PV − λ2)u, e1〉L2 = 〈f − αg, e1〉L2 = 〈f, e1〉L2 − α.

It follows that

α = 〈f, e1〉L2 . (7)

Next, u−R1(f − 〈f, e1〉L2 · g) is an outgoing function killed by the operator PV − λ2,
thus it is a multiple of e1. That is, for some c ∈ C

u = ce1 +R1f − 〈f, e1〉L2 ·R1g.

Using the equation 〈u, h〉L2 = β, we find

c = β + 〈f, e1〉L2〈R1g, h〉L2 − 〈R1f, h〉L2
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which implies

u = R2f + βe1. (8)

On the other hand, if f, β are given and u, α are defined by (7),(8), then it is direct to

verify that u, α solve the Grushin problem and u is outgoing.

2 (c) The operator f 7→ 〈f, e1〉L2〈R1g, h〉L2 · e1 is bounded L2 → H2 since e1 ∈ H2.

Therefore it suffices to establish the boundedness of the operator R̃2 given by

R̃2f = R1f − 〈f, e1〉L2 ·R1g − 〈R1f, h〉L2 · e1.

We compute the integral kernel of R̃2:

R̃2f(x) =

∫
R
R̃2(x, y)f(y) dy,

R̃2(x, y) = R1(x, y)− e1(y)

∫
R
R1(x, t)g(t) dt− e1(x)

∫
R
R1(t, y)h(t) dt.

Recall that R1(x, y) = e1(x)e2(y)[x > y] + e2(x)e1(y)[x < y]. Therefore

R̃2(x, y) = e1(x)e2(y)
(
[x > y]−H(y)

)
+ e2(x)e1(y)

(
[x < y]−G(x)

)
− e1(x)e1(y)

(∫ x

−∞
e2(t)g(t) dt+

∫ y

−∞
e2(t)h(t) dt

) (9)

where

G(x) =

∫ ∞
x

e1(t)g(t) dt, H(y) =

∫ ∞
y

e1(t)h(t) dt.

We write R̃2 = R
(1)
2 + R

(2)
2 + R

(3)
2 where the summands correspond to the three lines

in (9). Take r0 > 0 such that supp g, supph, suppV ⊂ [−r0, r0]. Put ν := Imλ > 0.

Note that

H(y) = 0 for y ≥ r0, H(y) = 1 for y ≤ −r0.

We use Schur’s inequality to estimate the L2 → L2 norm of each R
(j)
2 :

• R(1)
2 : we need to show

sup
x

(
|e1(x)| ·

∫
R
|e2(y)| ·

∣∣[x > y]−H(y)
∣∣ dy) ≤ C.

Given the estimate |e1(x)| ≤ Ce−ν|x|, we need to prove that for all x,∫
R
|e2(y)| ·

∣∣[x > y]−H(y)
∣∣ dy ≤ Ceν|x|. (10)

Note that [x > y]−H(y) is bounded. We consider the following cases:

(1) x ≥ r0: then [x > y] −H(y) is supported in y ∈ [−r0, x]. Since |e2(y)| ≤
Ceν|y|, we obtain (10).
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(2) x ≤ −r0: then [x > y] − H(y) is supported in y ∈ [x, r0]. We again

obtain (10).

(3) −r0 < x < r0: then [x > y] − H(y) is supported in y ∈ [−r0, r0] so the

integrand is bounded.

We also need to show

sup
y

(
|e2(y)| ·

∫
R
|e1(x)| ·

∣∣[x− y]−H(y)
∣∣ dx) ≤ C.

For this it suffices to show∫
R
|e1(x)| ·

∣∣[x > y]−H(y)
∣∣ dx ≤ Ce−ν|y|. (11)

We consider the following cases:

(1) y ≥ r0: then [x > y] − H(y) is supported in x ∈ [y,∞). Since e1(x) ≤
Ce−ν|x| we obtain (11).

(2) y ≤ −r0: then [x > y] − H(y) is supported in x ∈ (−∞, y]. We again

obtain (11).

(3) −r0 < y < r0: the left-hand side of (11) is bounded.

• R(2)
2 : handled similarly to R

(1)
2 .

• R(3)
2 : the expression in parentheses is bounded since g, h are compactly sup-

ported. It remains to use the fact that e1 is exponentially decaying and thus

in L1(R).

We have proved that R2 extends to a bounded operator L2 → L2. That is, for each

f ∈ C∞c (R), u := R2f we have

‖u‖L2 ≤ C‖f‖L2 . (12)

Put

α := 〈f, e1〉L2 , |α| ≤ C‖f‖L2 .

By Exercise 2(b) we have

(PV − λ2)u+ αg = f.

In particular, by (12) we have

‖u′′‖L2 ≤ C‖u‖L2 + C‖f‖L2 ≤ C‖f‖L2 .

Arguing as in Exercise 1(a), we also get

‖u′‖L2 ≤ C‖f‖L2 .

This shows that R2 extends to a bounded operator L2(R)→ H2(R).

2 (d) Denote

P :=

(
PV − λ2 g

h∗ 0

)
: H2(R)⊕ C→ L2(R)⊕ C.
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Using Exercise 2(c) and arguing similarly to Exercise 1(b), we see that P−1 is invertible,

in fact

P−1 =

(
R2 e1

(e1)
∗ 0

)
.

We now show that PV − λ2 : H2 → L2 is Fredholm, in fact both the dimension of its

kernel and the codimension of its range are equal to 1:

• Assume u ∈ H2 satisfies (PV − λ2)u = 0. Then we have for some c ∈ C

P
(
u

0

)
=

(
0

c

)
which implies that u is a multiple of e1. Thus the kernel of PV − λ2 is one

dimensional (since e1 does lie in the kernel).

• Assume f ∈ L2 satisfies 〈f, e1〉L2 = 0. Then we have for some u ∈ H2(R)

P−1
(
f

0

)
=

(
u

0

)
and we get (PV − λ2)u = f . This implies that the range of PV − λ2 has

codimension 1 (since the equation 〈(PV − λ2)u, e1〉L2 = 0 holds for all u ∈ H2

by continuous extension from C∞c ).


