18.156, SPRING 2017, PROBLEM SET 2, SOLUTIONS

1 (a) It suffices to show the following estimates for some constant C (depending on λ, V but not on f) and all $f \in C_{c}^{\infty}(\mathbb{R}), u:=R_{V}(\lambda) f$:

$$
\begin{align*}
\|u\|_{L^{2}} & \leq C\|f\|_{L^{2}}, \tag{1}\\
\left\|u^{\prime}\right\|_{L^{2}} & \leq C\|f\|_{L^{2}} \tag{2}\\
\left\|u^{\prime \prime}\right\|_{L^{2}} & \leq C\|f\|_{L^{2}} . \tag{3}
\end{align*}
$$

The estimate (1) is actually the hardest one, in particular it is the only one that uses that λ is not a resonance. To show it, recall from Problemset 1, Exercise 4 that

$$
u=\int_{\mathbb{R}} R_{V}(x, y ; \lambda) f(y) d y, \quad R_{V}(x, y ; \lambda)=\frac{1}{\mathbf{W}(\lambda)} \begin{cases}e_{+}(x) e_{-}(y), & x>y \\ e_{-}(x) e_{+}(y), & x<y\end{cases}
$$

where $\mathbf{W}(\lambda) \neq 0$ since λ is not a resonance. By Schur's inequality it suffices to prove the following estimates for some constant C :

$$
\begin{align*}
& \sup _{x}\left(\left|e_{+}(x)\right| \cdot \int_{-\infty}^{x}\left|e_{-}(y)\right| d y\right) \leq C, \tag{4}\\
& \sup _{x}\left(\left|e_{-}(x)\right| \cdot \int_{x}^{\infty}\left|e_{+}(y)\right| d y\right) \leq C . \tag{5}
\end{align*}
$$

Take $r_{0}>0$ such that $\operatorname{supp} V \subset\left[-r_{0}, r_{0}\right]$. Denote $\nu:=\operatorname{Im} \lambda>0$. We know that $e_{ \pm}(x)=e^{ \pm i \lambda x}$ when $\pm x \geq r_{0}$ and $e_{ \pm}(x)$ is a linear combination of $e^{i \lambda x}, e^{-i \lambda x}$ when $\mp x \geq r_{0}$. Therefore

$$
\begin{aligned}
& \left|e_{ \pm}(x)\right|=e^{-\nu|x|}, \quad \pm x \geq r_{0} \\
& \left|e_{ \pm}(x)\right| \leq C e^{\nu|x|}, \quad x \in \mathbb{R}
\end{aligned}
$$

We now show (4), with (5) proved similarly. We consider the following cases:
(1) $x \geq r_{0}$: then we have

$$
\left|e_{+}(x)\right|=e^{-\nu x}, \quad \int_{-\infty}^{x}\left|e_{-}(y)\right| d y \leq C e^{\nu x}
$$

(2) $x \leq-r_{0}$: then we have

$$
\left|e_{+}(x)\right| \leq C e^{\nu|x|}, \quad \int_{-\infty}^{x}\left|e_{-}(y)\right| d y=\frac{1}{\nu} e^{-\nu|x|}
$$

(3) $-r_{0}<x<r_{0}$: then we have

$$
\left|e_{+}(x)\right| \leq C, \quad \int_{\substack{-\infty \\ 1}}^{x}\left|e_{-}(y)\right| d y \leq C
$$

This finishes the proof of (4) and thus the proof of (1).
To show (2), we integrate by parts (using the rapid decay of u as $|x| \rightarrow \infty$):

$$
\int_{\mathbb{R}} f(x) \overline{u(x)} d x=\int_{\mathbb{R}}\left|u^{\prime}(x)\right|^{2} d x+\int_{\mathbb{R}}\left(V(x)-\lambda^{2}\right)|u(x)|^{2} d x
$$

Bounding the left-hand side by the Cauchy-Schwarz inequality, we get

$$
\int_{\mathbb{R}}\left|u^{\prime}(x)\right|^{2} d x \leq\|f\|_{L^{2}} \cdot\|u\|_{L^{2}}+C\|u\|_{L^{2}}^{2}
$$

Estimating $\|u\|_{L^{2}}$ by (1), we get (2).
Finally, to show (3), we note that $-u^{\prime \prime}+\left(V-\lambda^{2}\right) u=f$ and thus

$$
\left\|u^{\prime \prime}\right\|_{L^{2}} \leq\|f\|_{L^{2}}+C\|u\|_{L^{2}}
$$

it remains to use (1).
1 (b) It suffices to prove that for each $f, u \in C_{c}^{\infty}(\mathbb{R})$, we have

$$
\left(P_{V}-\lambda^{2}\right) R_{V}(\lambda) f=f, \quad R_{V}(\lambda)\left(P_{V}-\lambda^{2}\right) u=u
$$

which follows immediately from the fact that for each $f \in C_{c}^{\infty}(\mathbb{R}), u:=R_{V}(\lambda) f$ is the unique solution to the equation $\left(P_{V}-\lambda^{2}\right) u=f$ which lies in $L^{2}(\mathbb{R})$.

2 (a) Assume first that u is outgoing and $\left(P_{V}-\lambda^{2}\right) u=f$. We have

$$
\partial_{x} W\left(u, e_{1}\right)=f e_{1} .
$$

On the other hand, since both u and e_{1} are outgoing, we have $W\left(u, e_{1}\right)=0$ for $|x| \gg 1$. It follows that

$$
\begin{equation*}
\int_{\mathbb{R}} f(x) e_{1}(x) d x=0 \tag{6}
\end{equation*}
$$

Now, assume that $f \in C_{c}^{\infty}(\mathbb{R})$ satisfies (6) and put $u:=R_{1} f$. Similarly to Problemset 1 , Exercise 4 we see that u solves $\left(P_{V}-\lambda^{2}\right) u=f$. Using (6), we also verify that u is outgoing.
2 (b) Assume first that u, α solve the Grushin problem and u is outgoing. By Exercise 2(a), we have

$$
0=\left\langle\left(P_{V}-\lambda^{2}\right) u, \overline{e_{1}}\right\rangle_{L^{2}}=\left\langle f-\alpha g, \overline{e_{1}}\right\rangle_{L^{2}}=\left\langle f, \overline{e_{1}}\right\rangle_{L^{2}}-\alpha .
$$

It follows that

$$
\begin{equation*}
\alpha=\left\langle f, \overline{e_{1}}\right\rangle_{L^{2}} . \tag{7}
\end{equation*}
$$

Next, $u-R_{1}\left(f-\left\langle f, \overline{e_{1}}\right\rangle_{L^{2}} \cdot g\right)$ is an outgoing function killed by the operator $P_{V}-\lambda^{2}$, thus it is a multiple of e_{1}. That is, for some $c \in \mathbb{C}$

$$
u=c e_{1}+R_{1} f-\left\langle f, \overline{e_{1}}\right\rangle_{L^{2}} \cdot R_{1} g
$$

Using the equation $\langle u, h\rangle_{L^{2}}=\beta$, we find

$$
c=\beta+\left\langle f, \overline{e_{1}}\right\rangle_{L^{2}}\left\langle R_{1} g, h\right\rangle_{L^{2}}-\left\langle R_{1} f, h\right\rangle_{L^{2}}
$$

which implies

$$
\begin{equation*}
u=R_{2} f+\beta e_{1} \tag{8}
\end{equation*}
$$

On the other hand, if f, β are given and u, α are defined by (7),(8), then it is direct to verify that u, α solve the Grushin problem and u is outgoing.
2 (c) The operator $f \mapsto\left\langle f, \overline{e_{1}}\right\rangle_{L^{2}}\left\langle R_{1} g, h\right\rangle_{L^{2}} \cdot e_{1}$ is bounded $L^{2} \rightarrow H^{2}$ since $e_{1} \in H^{2}$. Therefore it suffices to establish the boundedness of the operator \widetilde{R}_{2} given by

$$
\widetilde{R}_{2} f=R_{1} f-\left\langle f, \overline{e_{1}}\right\rangle_{L^{2}} \cdot R_{1} g-\left\langle R_{1} f, h\right\rangle_{L^{2}} \cdot e_{1} .
$$

We compute the integral kernel of \widetilde{R}_{2} :

$$
\begin{aligned}
\widetilde{R}_{2} f(x) & =\int_{\mathbb{R}} \widetilde{R}_{2}(x, y) f(y) d y \\
\widetilde{R}_{2}(x, y) & =R_{1}(x, y)-e_{1}(y) \int_{\mathbb{R}} R_{1}(x, t) g(t) d t-e_{1}(x) \int_{\mathbb{R}} R_{1}(t, y) h(t) d t
\end{aligned}
$$

Recall that $R_{1}(x, y)=e_{1}(x) e_{2}(y)[x>y]+e_{2}(x) e_{1}(y)[x<y]$. Therefore

$$
\begin{align*}
\widetilde{R}_{2}(x, y)= & e_{1}(x) e_{2}(y)([x>y]-H(y)) \\
& +e_{2}(x) e_{1}(y)([x<y]-G(x)) \tag{9}\\
& -e_{1}(x) e_{1}(y)\left(\int_{-\infty}^{x} e_{2}(t) g(t) d t+\int_{-\infty}^{y} e_{2}(t) h(t) d t\right)
\end{align*}
$$

where

$$
G(x)=\int_{x}^{\infty} e_{1}(t) g(t) d t, \quad H(y)=\int_{y}^{\infty} e_{1}(t) h(t) d t
$$

We write $\widetilde{R}_{2}=R_{2}^{(1)}+R_{2}^{(2)}+R_{2}^{(3)}$ where the summands correspond to the three lines in (9). Take $r_{0}>0$ such that $\operatorname{supp} g, \operatorname{supp} h, \operatorname{supp} V \subset\left[-r_{0}, r_{0}\right]$. Put $\nu:=\operatorname{Im} \lambda>0$. Note that

$$
H(y)=0 \quad \text { for } y \geq r_{0}, \quad H(y)=1 \quad \text { for } y \leq-r_{0}
$$

We use Schur's inequality to estimate the $L^{2} \rightarrow L^{2}$ norm of each $R_{2}^{(j)}$:

- $R_{2}^{(1)}$: we need to show

$$
\sup _{x}\left(\left|e_{1}(x)\right| \cdot \int_{\mathbb{R}}\left|e_{2}(y)\right| \cdot|[x>y]-H(y)| d y\right) \leq C
$$

Given the estimate $\left|e_{1}(x)\right| \leq C e^{-\nu|x|}$, we need to prove that for all x,

$$
\begin{equation*}
\int_{\mathbb{R}}\left|e_{2}(y)\right| \cdot|[x>y]-H(y)| d y \leq C e^{\nu|x|} \tag{10}
\end{equation*}
$$

Note that $[x>y]-H(y)$ is bounded. We consider the following cases:
(1) $x \geq r_{0}$: then $[x>y]-H(y)$ is supported in $y \in\left[-r_{0}, x\right]$. Since $\left|e_{2}(y)\right| \leq$ $C e^{\nu|y|}$, we obtain (10).
(2) $x \leq-r_{0}$: then $[x>y]-H(y)$ is supported in $y \in\left[x, r_{0}\right]$. We again obtain (10).
(3) $-r_{0}<x<r_{0}$: then $[x>y]-H(y)$ is supported in $y \in\left[-r_{0}, r_{0}\right]$ so the integrand is bounded.
We also need to show

$$
\sup _{y}\left(\left|e_{2}(y)\right| \cdot \int_{\mathbb{R}}\left|e_{1}(x)\right| \cdot|[x-y]-H(y)| d x\right) \leq C .
$$

For this it suffices to show

$$
\begin{equation*}
\int_{\mathbb{R}}\left|e_{1}(x)\right| \cdot|[x>y]-H(y)| d x \leq C e^{-\nu|y|} \tag{11}
\end{equation*}
$$

We consider the following cases:
(1) $y \geq r_{0}$: then $[x>y]-H(y)$ is supported in $x \in[y, \infty)$. Since $e_{1}(x) \leq$ $C e^{-\nu|x|}$ we obtain (11).
(2) $y \leq-r_{0}$: then $[x>y]-H(y)$ is supported in $x \in(-\infty, y]$. We again obtain (11).
(3) $-r_{0}<y<r_{0}$: the left-hand side of (11) is bounded.

- $R_{2}^{(2)}$: handled similarly to $R_{2}^{(1)}$.
- $R_{2}^{(3)}$: the expression in parentheses is bounded since g, h are compactly supported. It remains to use the fact that e_{1} is exponentially decaying and thus in $L^{1}(\mathbb{R})$.
We have proved that R_{2} extends to a bounded operator $L^{2} \rightarrow L^{2}$. That is, for each $f \in C_{c}^{\infty}(\mathbb{R}), u:=R_{2} f$ we have

$$
\begin{equation*}
\|u\|_{L^{2}} \leq C\|f\|_{L^{2}} \tag{12}
\end{equation*}
$$

Put

$$
\alpha:=\left\langle f, \overline{e_{1}}\right\rangle_{L^{2}}, \quad|\alpha| \leq C\|f\|_{L^{2}} .
$$

By Exercise 2(b) we have

$$
\left(P_{V}-\lambda^{2}\right) u+\alpha g=f
$$

In particular, by (12) we have

$$
\left\|u^{\prime \prime}\right\|_{L^{2}} \leq C\|u\|_{L^{2}}+C\|f\|_{L^{2}} \leq C\|f\|_{L^{2}}
$$

Arguing as in Exercise 1(a), we also get

$$
\left\|u^{\prime}\right\|_{L^{2}} \leq C\|f\|_{L^{2}}
$$

This shows that R_{2} extends to a bounded operator $L^{2}(\mathbb{R}) \rightarrow H^{2}(\mathbb{R})$.
2 (d) Denote

$$
\mathcal{P}:=\left(\begin{array}{cc}
P_{V}-\lambda^{2} & g \\
h^{*} & 0
\end{array}\right): H^{2}(\mathbb{R}) \oplus \mathbb{C} \rightarrow L^{2}(\mathbb{R}) \oplus \mathbb{C}
$$

Using Exercise 2(c) and arguing similarly to Exercise 1(b), we see that \mathcal{P}^{-1} is invertible, in fact

$$
\mathcal{P}^{-1}=\left(\begin{array}{cc}
R_{2} & e_{1} \\
\left(\overline{e_{1}}\right)^{*} & 0
\end{array}\right) .
$$

We now show that $P_{V}-\lambda^{2}: H^{2} \rightarrow L^{2}$ is Fredholm, in fact both the dimension of its kernel and the codimension of its range are equal to 1 :

- Assume $u \in \mathbb{H}^{2}$ satisfies $\left(P_{V}-\lambda^{2}\right) u=0$. Then we have for some $c \in \mathbb{C}$

$$
\mathcal{P}\binom{u}{0}=\binom{0}{c}
$$

which implies that u is a multiple of e_{1}. Thus the kernel of $P_{V}-\lambda^{2}$ is one dimensional (since e_{1} does lie in the kernel).

- Assume $f \in L^{2}$ satisfies $\left\langle f, \overline{e_{1}}\right\rangle_{L^{2}}=0$. Then we have for some $u \in H^{2}(\mathbb{R})$

$$
\mathcal{P}^{-1}\binom{f}{0}=\binom{u}{0}
$$

and we get $\left(P_{V}-\lambda^{2}\right) u=f$. This implies that the range of $P_{V}-\lambda^{2}$ has codimension 1 (since the equation $\left\langle\left(P_{V}-\lambda^{2}\right) u, \overline{e_{1}}\right\rangle_{L^{2}}=0$ holds for all $u \in H^{2}$ by continuous extension from $\left.C_{c}^{\infty}\right)$.

