18.156, SPRING 2017, PROBLEM SET 1, SOLUTIONS

1. Recall d'Alembert's formula for the wave operator $\square_{0}=\partial_{t}^{2}-\partial_{x}^{2}$:

$$
\begin{aligned}
w(t, x)= & \frac{w(0, x-t)+w(0, x+t)}{2}+\frac{1}{2} \int_{x-t}^{x+t} \partial_{t} w(0, y) d y \\
& +\frac{1}{2} \int_{0}^{t} \int_{x-(t-s)}^{x+(t-s)} \square_{0} w(s, y) d s d y, \quad t \geq 0 .
\end{aligned}
$$

In our case, $\square_{0} w=g-V w$, therefore

$$
\begin{align*}
w(t, x)= & \frac{f_{0}(x-t)+f_{0}(x+t)}{2}+\frac{1}{2} \int_{x-t}^{x+t} f_{1}(y) d y \\
& +\frac{1}{2} \int_{0}^{t} \int_{x-(t-s)}^{x+(t-s)} g(s, y)-V(y) w(s, y) d s d y . \tag{1}
\end{align*}
$$

1 (a) Fix $r_{0}>0$ such that $\operatorname{supp} V, \operatorname{supp} f_{0}, \operatorname{supp} f_{1}, \operatorname{supp} g \subset\left\{|x|<r_{0}\right\}$. Then (1) implies

$$
\operatorname{supp} w \cap\{t \geq 0\} \subset\left\{|x| \leq r_{0}+t\right\}
$$

1 (b) We find from (1) that $w(t, x)=w_{ \pm}(x \mp t)$ for $t \geq 0,|x| \geq r_{0}$ where

$$
\begin{aligned}
& w_{+}(x)=\frac{f_{0}(x)}{2}+\frac{1}{2} \int_{x}^{\infty} f_{1}(y) d y+\frac{1}{2} \int_{0}^{\infty} \int_{x+s}^{\infty} g(s, y)-V(y) w(s, y) d y d s \\
& w_{-}(x)=\frac{f_{0}(x)}{2}+\frac{1}{2} \int_{-\infty}^{x} f_{1}(y) d y+\frac{1}{2} \int_{0}^{\infty} \int_{-\infty}^{x-s} g(s, y)-V(y) w(s, y) d y d s .
\end{aligned}
$$

2 (a) Differentiating under the integral sign and integrating by parts (recall that by Exercise 1(a) the support of the integrand is compact) we compute

$$
\mathcal{E}^{\prime}(t)=\operatorname{Re} \int_{\mathbb{R}} \overline{w_{t}} w_{t t}+\overline{w_{x t}} w_{x}+V \overline{w_{t}} w d x=\operatorname{Re} \int_{\mathbb{R}} \overline{w_{t}} g d x
$$

which gives the required identity for $\mathcal{E}(t)$. It follows that $\mathcal{E}(T)$ is constant for T large enough (specifically, as soon as supp $g \subset\{t<T\}$).

Now, assume that $V \geq 0$. Then the quantity

$$
\frac{1}{2} \int_{\mathbb{R}}\left|\partial_{t} w(t, x)\right|^{2}+\left|\partial_{x} w(t, x)\right|^{2} d x \leq \mathcal{E}(t)
$$

is bounded uniformly in t. It remains to show the bound

$$
\int_{\mathbb{R}}|w(t, x)|^{2} d x \leq C(1+t)^{2}, \quad t \geq 0
$$

Recall that $\operatorname{supp} w(t, \bullet)$ is contained in an interval of size $2 t+C$ by Exercise 1(a). Then by Poincaré inequality we have

$$
\int_{\mathbb{R}}|w(t, x)|^{2} d x \leq C(1+t)^{2} \int_{\mathbb{R}}\left|w_{x}(t, x)\right|^{2} d x \leq C(1+t)^{2} \mathcal{E}(t)
$$

which finishes the proof.
2 (b) Put $C_{V}:=\max (2, \sup |V-1|)$. We estimate

$$
\begin{aligned}
\mathcal{E}_{0}^{\prime}(t) & =\operatorname{Re} \int_{\mathbb{R}} \overline{w_{t}} w_{t t}+\overline{w_{x t}} w_{x}+\overline{w_{t}} w d x=\operatorname{Re} \int_{\mathbb{R}} \overline{w_{t}}(g-(V-1) w) d x \\
& \leq \frac{1}{2} \int_{\mathbb{R}} 2\left|w_{t}\right|^{2}+|g|^{2}+|V-1| \cdot|w|^{2} d x \\
& \leq C_{V} \mathcal{E}_{0}(t)+\frac{1}{2} \int_{\mathbb{R}}|g|^{2} d x
\end{aligned}
$$

It remains to use Gronwall's inequality and recall that g is compactly supported.
3. Define the energy quantity

$$
\mathcal{E}_{1}(t):=\frac{1}{2} \int_{x_{0}-t_{0}+t}^{x_{0}+t_{0}-t}\left|w_{t}\right|^{2}+\left|w_{x}\right|^{2}+|w|^{2} d x, \quad 0 \leq t \leq t_{0}
$$

We compute

$$
\begin{aligned}
\mathcal{E}_{1}^{\prime}(t)= & -\frac{\left|w_{t}\left(t, x_{0}-t_{0}+t\right)+w_{x}\left(t, x_{0}-t_{0}+t\right)\right|^{2}+\left|w\left(t, x_{0}-t_{0}+t\right)\right|^{2}}{2} \\
& -\frac{\left|w_{t}\left(t, x_{0}+t_{0}-t\right)-w_{x}\left(t, x_{0}+t_{0}-t\right)\right|^{2}+\left|w\left(t, x_{0}+t_{0}-t\right)\right|^{2}}{2} \\
& +\operatorname{Re} \int_{x_{0}-t_{0}+t}^{x_{0}+t_{0}-t} \overline{w_{t}}(g-(V-1) w) d x .
\end{aligned}
$$

Here we need to be careful because the limits of integration depend on t and integration by parts in x produces boundary terms. We then get as in Exercise 2(b)

$$
\mathcal{E}_{1}^{\prime}(t) \leq C_{V} \mathcal{E}_{1}(t)+\frac{1}{2} \int_{x_{0}-t_{0}+t}^{x_{0}+t_{0}-t}|g|^{2} d x
$$

However, then the vanishing condition on f_{0}, f_{1}, g implies that $\mathcal{E}_{1}^{\prime}(0)=0$ and $\mathcal{E}_{1}^{\prime}(t) \leq$ $C_{V} \mathcal{E}_{1}(t)$, which immediately gives $\mathcal{E}_{1}(t)=0$ for all $t \in\left[0, t_{0}\right]$. This implies that $w(t, x)=0$ almost everywhere for $0 \leq t \leq t_{0}$ and $\left|x-x_{0}\right| \leq t_{0}-t$, which by continuity gives $w\left(t_{0}, x_{0}\right)=0$.
4. We first deal with uniqueness. Assume that u solves

$$
\begin{equation*}
\left(P_{V}-\lambda^{2}\right) u=f ; \quad u(x) \sim e^{ \pm i \lambda x} \quad \text { for } \pm x \gg 1 \tag{2}
\end{equation*}
$$

Then we have

$$
\partial_{x} W\left(u, e_{ \pm}\right)=e_{ \pm} \cdot f ; \quad W\left(u, e_{ \pm}\right)=0 \quad \text { for } \pm x \gg 1
$$

Therefore,

$$
W\left(u, e_{-}\right)(x)=\int_{-\infty}^{x} e_{-}(y) f(y) d y, \quad W\left(u, e_{+}\right)(x)=-\int_{x}^{\infty} e_{+}(y) f(y) d y
$$

Using the identity

$$
u=\frac{W\left(u, e_{-}\right) e_{+}-W\left(u, e_{+}\right) e_{-}}{\mathbf{W}(\lambda)}
$$

we see that

$$
\begin{equation*}
u(x)=\int_{\mathbb{R}} R_{V}(x, y ; \lambda) f(y) d y \tag{3}
\end{equation*}
$$

To show existence, fix f and define u by (3). Then it is straightforward to verify that u solves (2).
5. Denote $W_{ \pm}:=W\left(e_{+}, e^{ \pm i \lambda x}\right)$. Since $\left(P_{V}-\lambda^{2}\right) e^{ \pm i \lambda x}=V e^{ \pm i \lambda x}$, we have

$$
\partial_{x} W_{ \pm}(x)=-V(x) e_{+}(x) e^{ \pm i \lambda x}
$$

and from the fact that $e_{+}(x)=e^{i \lambda x}$ for $x \gg 1$ we have

$$
W_{+}(x)=0, \quad W_{-}(x)=-2 i \lambda \quad \text { for } x \geq r_{0} .
$$

Together these imply the required integral identities.
Next, choose $r_{0}>0$ such that $\operatorname{supp} V \subset\left[-r_{0}, r_{0}\right]$ and put $C_{V}:=e^{2 C_{0} r_{0}} \sup |V|$. Using the identity

$$
e_{+}(x)=\frac{i}{2 \lambda}\left(W_{-}(x) e^{i \lambda x}-W_{+}(x) e^{-i \lambda x}\right)
$$

and the fact that $|\operatorname{Im} \lambda| \leq C_{0}$ we get we get the bound

$$
\sup _{x}\left|V(x) e_{+}(x) e^{ \pm i \lambda x}\right| \leq \frac{C_{V}}{2|\lambda|}\left(\left|W_{+}\right|+\left|W_{-}\right|\right)
$$

Therefore, for $|x| \leq r_{0}$ we have

$$
\left|W_{+}(x)\right|+\left|W_{-}(x)+2 i \lambda\right| \leq \frac{C_{V}}{|\lambda|} \int_{x}^{r_{0}}\left|W_{+}(y)\right|+\left|W_{-}(y)\right| d y
$$

which by Gronwall's inequality implies

$$
\begin{equation*}
\left|W_{+}(x)\right|+\left|W_{-}(x)+2 i \lambda\right| \leq 4 C_{V} r_{0} \exp \left(\frac{2 C_{V} r_{0}}{|\lambda|}\right)=\mathcal{O}(1) \tag{4}
\end{equation*}
$$

for $|x| \leq r_{0}$, and thus for all x since $W_{ \pm}(x)$ are constant for $\pm x>r_{0}$. This gives the required asymptotics of $W_{ \pm}$, which by the identity

$$
\binom{e_{+}(x)}{e_{+}^{\prime}(x)}=\frac{i}{2 \lambda}\left(\begin{array}{cc}
-e^{-i \lambda x} & e^{i \lambda x} \\
i \lambda e^{-i \lambda x} & i \lambda e^{i \lambda x}
\end{array}\right)\binom{W_{+}(x)}{W_{-}(x)}
$$

gives the required asymptotics on e_{+}, e_{+}^{\prime}. The asymptotics of e_{-}, e_{-}^{\prime} are proved similarly.

6 (a). The function $\mathbf{W}(\lambda)$ is holomorphic in $\lambda \in \mathbb{C}$. To show that $\mathbf{W}(\lambda)^{-1}$ is meromorphic it then suffices to prove that $\mathbf{W}(\lambda)$ is not identically zero. One way to see this is to use the asymptotic formulae for $e_{ \pm}$from Exercise 5, which imply

$$
\begin{equation*}
\mathbf{W}(\lambda)=-2 i \lambda+\mathcal{O}(1), \quad|\operatorname{Im} \lambda| \leq C_{0}, \quad|\operatorname{Re} \lambda| \rightarrow \infty \tag{5}
\end{equation*}
$$

Another way is to note that if $\lambda=i s, s^{2}>-\inf V$, then an integration by parts argument shows that there is no nontrivial solution u to the equation $\left(P_{V}-\lambda^{2}\right) u=0$ with $u(x) \sim e^{ \pm i \lambda x}$ for $\pm x \gg 1$, and thus $\mathbf{W}(\lambda) \neq 0$.

Now the meromorphy of $\mathbf{W}(\lambda)^{-1}$ implies the meromorphy of $R_{V}(x, y ; \lambda)$ in λ and thus of the operator R_{V}.
6 (b) By (5), we see that for $|\operatorname{Im} \lambda| \leq C_{0}$ and $|\lambda|$ large enough

$$
|\mathbf{W}(\lambda)|^{-1} \leq|\lambda|^{-1}
$$

In particular, λ is not a resonance. Next, we use the formula for $R_{V}(\lambda)$ and the asymptotics of $e_{ \pm}(x)$ from Exercise 5 to see that for all $f \in L^{1}(\mathbb{R})$ and $\chi \in C_{c}^{\infty}(\mathbb{R})$

$$
\begin{aligned}
\left\|\chi R_{V}(\lambda) \chi f\right\|_{L^{\infty}} & \leq \sup _{x, y}\left|\chi(x) R_{V}(x, y ; \lambda) \chi(y)\right| \cdot\|f\|_{L^{1}} \\
& \leq|\lambda|^{-1} \sup \left|\chi e_{+}\right| \cdot \sup \left|\chi e_{-}\right| \cdot\|f\|_{L^{1}} \\
& \leq C|\lambda|^{-1}\|f\|_{L^{1}}
\end{aligned}
$$

where C depends only on V, C_{0}, χ.
7 (a) For each $a \in C^{\infty}(\mathbb{R})$ we have

$$
\left(P_{V}-\lambda^{2}\right) e^{ \pm i \lambda x} a(x)=i \lambda e^{ \pm i \lambda x}\left(\mp 2 \partial_{x} a(x)-i \lambda^{-1} V(x) a(x)+i \lambda^{-1} \partial_{x}^{2} a(x)\right)
$$

In order to have $\left(P_{V}-\lambda^{2}\right) e^{(N)}(x)=\mathcal{O}\left(|\lambda|^{-N}\right)$, the functions $a_{ \pm}^{(n)}$ should solve the system of transport equations

$$
\begin{aligned}
\mp 2 \partial_{x} a_{ \pm}^{(0)}(x) & =0, \\
\mp 2 \partial_{x} a_{ \pm}^{(n+1)}(x) & =i V(x) a_{ \pm}^{(n)}(x)-i \partial_{x}^{2} a_{ \pm}^{(n)}(x) .
\end{aligned}
$$

These transport equations have unique solutions, given the boundary conditions $a_{ \pm}^{(n)}(x)=$ $\delta_{n 0}$ for $\pm x \gg 1$. Moreover, $a_{ \pm}^{(0)}(x) \equiv 1$ and $a_{ \pm}^{(n)}$ is locally constant for large $|x|$. It is then easy to see that $\left(P_{V}-\lambda^{2}\right) e_{ \pm}^{(N)}(x)=0$ for large $|x|$.

For part (c) below, we also compute $a_{ \pm}^{(1)}$. For $n=0$ the transport equation gives

$$
\mp 2 \partial_{x} a_{ \pm}^{(1)}(x)=i V(x) .
$$

Combining this with the initial condition $a_{ \pm}^{(1)}(x)=0$ for $\pm x \gg 1$, we get

$$
\begin{equation*}
a_{+}^{(1)}(x)=\frac{i}{2} \int_{x}^{\infty} V(s) d s, \quad a_{-}^{(1)}(x)=\frac{i}{2} \int_{-\infty}^{x} V(s) d s \tag{6}
\end{equation*}
$$

7 (b) Put

$$
W_{ \pm}^{+}(x)=W\left(e_{+}^{(N)}, e_{ \pm}\right)(x)
$$

Since locally uniformly in x, we have $e_{ \pm}(x)=\mathcal{O}(1)$ by Exercise 5 and $\left(P_{V}-\lambda^{2}\right) e_{+}^{(N)}(x)=$ $\mathcal{O}\left(|\lambda|^{-N}\right)$ by Exercise 7(a), we find

$$
\partial_{x} W_{ \pm}^{+}(x)=e_{ \pm}(x) \cdot\left(P_{V}-\lambda^{2}\right) e_{+}^{(N)}(x)=\mathcal{O}\left(|\lambda|^{-N}\right)
$$

On the other hand, for large x we have $e_{+}^{(N)}(x)=e^{i \lambda x}=e_{+}(x)$ and thus

$$
W_{ \pm}^{+}(x)=W\left(e_{+}, e_{ \pm}\right) \quad \text { for } x \gg 1
$$

Therefore we have locally uniformly in x,

$$
W_{ \pm}^{+}(x)=W\left(e_{+}, e_{ \pm}\right)+\mathcal{O}\left(|\lambda|^{-N}\right)
$$

Using the identity

$$
\binom{e_{+}^{(N)}(x)}{\partial_{x} e_{+}^{(N)}(x)}=\frac{1}{W\left(e_{+}, e_{-}\right)}\left(\begin{array}{ll}
-e_{-}(x) & e_{+}(x) \\
-e_{-}^{\prime}(x) & e_{+}^{\prime}(x)
\end{array}\right)\binom{W_{+}^{+}(x)}{W_{-}^{+}(x)}
$$

and the fact that $W\left(e_{+}, e_{-}\right)=-2 i \lambda+\mathcal{O}(1)$ by (5), we get the needed bounds for $e_{+}-e_{+}^{(N)}$. Similarly we obtain the bounds for $e_{-}-e_{-}^{(N)}$.
7 (c) Since $a_{ \pm}^{(n)}(x)$ are locally constant for large x, we have for some constants $a_{ \pm}^{(n)}(\infty), a_{ \pm}^{(n)}(-\infty)$

$$
a_{ \pm}^{(n)}(x)= \begin{cases}a_{ \pm}^{(n)}(\infty), & x \gg 1 \\ a_{ \pm}^{(n)}(-\infty), & -x \gg 1\end{cases}
$$

Note that

$$
\begin{equation*}
a_{ \pm}^{(n)}(\pm \infty)=\delta_{n 0}, \quad a_{ \pm}^{(0)}(\mp \infty)=1, \quad a_{ \pm}^{(1)}(\mp \infty)=\frac{i}{2} \int_{\mathbb{R}} V(s) d s \tag{7}
\end{equation*}
$$

where the latter equation follows from (6). By Exercise 7(b) we have locally uniformly in x,

$$
e_{ \pm}(x)= \begin{cases}e^{ \pm i \lambda x}, & \pm x \gg 1 \\ e^{ \pm i \lambda x} \sum_{n=0}^{N} \lambda^{-n} a_{ \pm}^{(n)}(\mp \infty)+\mathcal{O}\left(|\lambda|^{-N-1}\right), & \mp x \gg 1\end{cases}
$$

Recall that the scattering matrix is given by

$$
S(\lambda)=\left(\begin{array}{cc}
T(\lambda) & R_{+}(\lambda) \\
R_{-}(\lambda) & T(\lambda)
\end{array}\right)
$$

and $T(\lambda), R_{ \pm}(\lambda)$ are determined as follows: for any solution u to the equation ($P_{V}-$ $\left.\lambda^{2}\right) u=0, u$ has the form

$$
u(x)= \begin{cases}b_{+} e^{-i \lambda x}+a_{+} e^{i \lambda x}, & x \gg 1 ; \\ b_{-} e^{i \lambda x}+a_{-} e^{-i \lambda x}, & -x \gg 1\end{cases}
$$

and

$$
\binom{a_{+}}{a_{-}}=S(\lambda)\binom{b_{-}}{b_{+}}
$$

Applying this to $u=e_{+}$we get as $|\lambda| \rightarrow \infty$

$$
a_{+}=1, \quad b_{+}=0, \quad a_{-}=\mathcal{O}\left(|\lambda|^{-\infty}\right), \quad b_{-} \sim \sum_{n=0}^{\infty} \lambda^{-n} a_{+}^{(n)}(-\infty)
$$

Similarly putting $u=e_{-}$gives

$$
a_{-}=1, \quad b_{-}=0, \quad a_{+}=\mathcal{O}\left(|\lambda|^{-\infty}\right), \quad b_{+} \sim \sum_{n=0}^{\infty} \lambda^{-n} a_{-}^{(n)}(\infty) .
$$

This gives the asymptotics

$$
T(\lambda)^{-1} \sim \sum_{n=0}^{\infty} \lambda^{-n} a_{+}^{(n)}(-\infty) \sim \sum_{n=0}^{\infty} \lambda^{-n} a_{-}^{(n)}(\infty), \quad R_{ \pm}(\lambda)=\mathcal{O}\left(|\lambda|^{-\infty}\right)
$$

In particular, by (7) we have

$$
T(\lambda)^{-1}=1+\frac{i}{2 \lambda} \int_{\mathbb{R}} V(s) d s+\mathcal{O}\left(|\lambda|^{-2}\right)
$$

and thus

$$
T(\lambda)=1-\frac{i}{2 \lambda} \int_{\mathbb{R}} V(s) d s+\mathcal{O}\left(|\lambda|^{-2}\right)
$$

An corollary of this asymptotic expansion is that the integral of V is determined by the scattering matrix $S(\lambda)$.

