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1. Recall d’Alembert’s formula for the wave operator �0 = ∂2t − ∂2x:

w(t, x) =
w(0, x− t) + w(0, x+ t)

2
+

1

2

∫ x+t

x−t
∂tw(0, y) dy

+
1

2

∫ t

0

∫ x+(t−s)

x−(t−s)
�0w(s, y) dsdy, t ≥ 0.

In our case, �0w = g − V w, therefore

w(t, x) =
f0(x− t) + f0(x+ t)

2
+

1

2

∫ x+t

x−t
f1(y) dy

+
1

2

∫ t

0

∫ x+(t−s)

x−(t−s)
g(s, y)− V (y)w(s, y) dsdy.

(1)

1 (a) Fix r0 > 0 such that suppV, supp f0, supp f1, supp g ⊂ {|x| < r0}. Then (1)

implies

suppw ∩ {t ≥ 0} ⊂ {|x| ≤ r0 + t}.

1 (b) We find from (1) that w(t, x) = w±(x∓ t) for t ≥ 0, |x| ≥ r0 where

w+(x) =
f0(x)

2
+

1

2

∫ ∞
x

f1(y) dy +
1

2

∫ ∞
0

∫ ∞
x+s

g(s, y)− V (y)w(s, y) dyds,

w−(x) =
f0(x)

2
+

1

2

∫ x

−∞
f1(y) dy +

1

2

∫ ∞
0

∫ x−s

−∞
g(s, y)− V (y)w(s, y) dyds.

2 (a) Differentiating under the integral sign and integrating by parts (recall that by

Exercise 1(a) the support of the integrand is compact) we compute

E ′(t) = Re

∫
R
wtwtt + wxtwx + V wtw dx = Re

∫
R
wtg dx

which gives the required identity for E(t). It follows that E(T ) is constant for T large

enough (specifically, as soon as supp g ⊂ {t < T}).
Now, assume that V ≥ 0. Then the quantity

1

2

∫
R
|∂tw(t, x)|2 + |∂xw(t, x)|2 dx ≤ E(t)

is bounded uniformly in t. It remains to show the bound∫
R
|w(t, x)|2 dx ≤ C(1 + t)2, t ≥ 0.

1
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Recall that suppw(t, •) is contained in an interval of size 2t + C by Exercise 1(a).

Then by Poincaré inequality we have∫
R
|w(t, x)|2 dx ≤ C(1 + t)2

∫
R
|wx(t, x)|2 dx ≤ C(1 + t)2E(t)

which finishes the proof.

2 (b) Put CV := max(2, sup |V − 1|). We estimate

E ′0(t) = Re

∫
R
wtwtt + wxtwx + wtw dx = Re

∫
R
wt(g − (V − 1)w) dx

≤ 1

2

∫
R

2|wt|2 + |g|2 + |V − 1| · |w|2 dx

≤ CV E0(t) +
1

2

∫
R
|g|2 dx.

It remains to use Gronwall’s inequality and recall that g is compactly supported.

3. Define the energy quantity

E1(t) :=
1

2

∫ x0+t0−t

x0−t0+t
|wt|2 + |wx|2 + |w|2 dx, 0 ≤ t ≤ t0.

We compute

E ′1(t) = − |wt(t, x0 − t0 + t) + wx(t, x0 − t0 + t)|2 + |w(t, x0 − t0 + t)|2

2

− |wt(t, x0 + t0 − t)− wx(t, x0 + t0 − t)|2 + |w(t, x0 + t0 − t)|2

2

+ Re

∫ x0+t0−t

x0−t0+t
wt(g − (V − 1)w) dx.

Here we need to be careful because the limits of integration depend on t and integration

by parts in x produces boundary terms. We then get as in Exercise 2(b)

E ′1(t) ≤ CV E1(t) +
1

2

∫ x0+t0−t

x0−t0+t
|g|2 dx.

However, then the vanishing condition on f0, f1, g implies that E ′1(0) = 0 and E ′1(t) ≤
CV E1(t), which immediately gives E1(t) = 0 for all t ∈ [0, t0]. This implies that

w(t, x) = 0 almost everywhere for 0 ≤ t ≤ t0 and |x−x0| ≤ t0− t, which by continuity

gives w(t0, x0) = 0.

4. We first deal with uniqueness. Assume that u solves

(PV − λ2)u = f ; u(x) ∼ e±iλx for ± x� 1. (2)

Then we have

∂xW (u, e±) = e± · f ; W (u, e±) = 0 for ± x� 1.
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Therefore,

W (u, e−)(x) =

∫ x

−∞
e−(y)f(y) dy, W (u, e+)(x) = −

∫ ∞
x

e+(y)f(y) dy.

Using the identity

u =
W (u, e−)e+ −W (u, e+)e−

W(λ)

we see that

u(x) =

∫
R
RV (x, y;λ)f(y) dy. (3)

To show existence, fix f and define u by (3). Then it is straightforward to verify that

u solves (2).

5. Denote W± := W (e+, e
±iλx). Since (PV − λ2)e±iλx = V e±iλx, we have

∂xW±(x) = −V (x)e+(x)e±iλx

and from the fact that e+(x) = eiλx for x� 1 we have

W+(x) = 0, W−(x) = −2iλ for x ≥ r0.

Together these imply the required integral identities.

Next, choose r0 > 0 such that suppV ⊂ [−r0, r0] and put CV := e2C0r0 sup |V |.
Using the identity

e+(x) =
i

2λ

(
W−(x)eiλx −W+(x)e−iλx

)
and the fact that | Imλ| ≤ C0 we get we get the bound

sup
x
|V (x)e+(x)e±iλx| ≤ CV

2|λ|
(
|W+|+ |W−|

)
.

Therefore, for |x| ≤ r0 we have

|W+(x)|+ |W−(x) + 2iλ| ≤ CV
|λ|

∫ r0

x

|W+(y)|+ |W−(y)| dy,

which by Gronwall’s inequality implies

|W+(x)|+ |W−(x) + 2iλ| ≤ 4CV r0 exp
(2CV r0
|λ|

)
= O(1) (4)

for |x| ≤ r0, and thus for all x since W±(x) are constant for ±x > r0. This gives the

required asymptotics of W±, which by the identity(
e+(x)

e′+(x)

)
=

i

2λ

(
−e−iλx eiλx

iλe−iλx iλeiλx

)(
W+(x)

W−(x)

)
gives the required asymptotics on e+, e

′
+. The asymptotics of e−, e

′
− are proved simi-

larly.
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6 (a). The function W(λ) is holomorphic in λ ∈ C. To show that W(λ)−1 is mero-

morphic it then suffices to prove that W(λ) is not identically zero. One way to see

this is to use the asymptotic formulae for e± from Exercise 5, which imply

W(λ) = −2iλ+O(1), | Imλ| ≤ C0, |Reλ| → ∞. (5)

Another way is to note that if λ = is, s2 > − inf V , then an integration by parts

argument shows that there is no nontrivial solution u to the equation (PV − λ2)u = 0

with u(x) ∼ e±iλx for ±x� 1, and thus W(λ) 6= 0.

Now the meromorphy of W(λ)−1 implies the meromorphy of RV (x, y;λ) in λ and

thus of the operator RV .

6 (b) By (5), we see that for | Imλ| ≤ C0 and |λ| large enough

|W(λ)|−1 ≤ |λ|−1.

In particular, λ is not a resonance. Next, we use the formula for RV (λ) and the

asymptotics of e±(x) from Exercise 5 to see that for all f ∈ L1(R) and χ ∈ C∞c (R)

‖χRV (λ)χf‖L∞ ≤ sup
x,y
|χ(x)RV (x, y;λ)χ(y)| · ‖f‖L1

≤ |λ|−1 sup |χe+| · sup |χe−| · ‖f‖L1

≤ C|λ|−1‖f‖L1

where C depends only on V,C0, χ.

7 (a) For each a ∈ C∞(R) we have

(PV − λ2)e±iλxa(x) = iλe±iλx
(
∓ 2∂xa(x)− iλ−1V (x)a(x) + iλ−1∂2xa(x)

)
.

In order to have (PV − λ2)e(N)(x) = O(|λ|−N), the functions a
(n)
± should solve the

system of transport equations

∓2∂xa
(0)
± (x) = 0,

∓2∂xa
(n+1)
± (x) = iV (x)a

(n)
± (x)− i∂2xa

(n)
± (x).

These transport equations have unique solutions, given the boundary conditions a
(n)
± (x) =

δn0 for ±x � 1. Moreover, a
(0)
± (x) ≡ 1 and a

(n)
± is locally constant for large |x|. It is

then easy to see that (PV − λ2)e(N)
± (x) = 0 for large |x|.

For part (c) below, we also compute a
(1)
± . For n = 0 the transport equation gives

∓2∂xa
(1)
± (x) = iV (x).

Combining this with the initial condition a
(1)
± (x) = 0 for ±x� 1, we get

a
(1)
+ (x) =

i

2

∫ ∞
x

V (s) ds, a
(1)
− (x) =

i

2

∫ x

−∞
V (s) ds. (6)
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7 (b) Put

W+
± (x) = W (e

(N)
+ , e±)(x).

Since locally uniformly in x, we have e±(x) = O(1) by Exercise 5 and (PV−λ2)e(N)
+ (x) =

O(|λ|−N) by Exercise 7(a), we find

∂xW
+
± (x) = e±(x) · (PV − λ2)e(N)

+ (x) = O(|λ|−N).

On the other hand, for large x we have e
(N)
+ (x) = eiλx = e+(x) and thus

W+
± (x) = W (e+, e±) for x� 1.

Therefore we have locally uniformly in x,

W+
± (x) = W (e+, e±) +O(|λ|−N).

Using the identity(
e
(N)
+ (x)

∂xe
(N)
+ (x)

)
=

1

W (e+, e−)

(
−e−(x) e+(x)

−e′−(x) e′+(x)

)(
W+

+ (x)

W+
− (x)

)
and the fact that W (e+, e−) = −2iλ + O(1) by (5), we get the needed bounds for

e+ − e(N)
+ . Similarly we obtain the bounds for e− − e(N)

− .

7 (c) Since a
(n)
± (x) are locally constant for large x, we have for some constants

a
(n)
± (∞), a

(n)
± (−∞)

a
(n)
± (x) =

{
a
(n)
± (∞), x� 1;

a
(n)
± (−∞), −x� 1.

Note that

a
(n)
± (±∞) = δn0, a

(0)
± (∓∞) = 1, a

(1)
± (∓∞) =

i

2

∫
R
V (s) ds (7)

where the latter equation follows from (6). By Exercise 7(b) we have locally uniformly

in x,

e±(x) =

{
e±iλx, ±x� 1;

e±iλx
∑N

n=0 λ
−na

(n)
± (∓∞) +O(|λ|−N−1), ∓x� 1.

Recall that the scattering matrix is given by

S(λ) =

(
T (λ) R+(λ)

R−(λ) T (λ)

)
and T (λ), R±(λ) are determined as follows: for any solution u to the equation (PV −
λ2)u = 0, u has the form

u(x) =

{
b+e

−iλx + a+e
iλx, x� 1;

b−e
iλx + a−e

−iλx, −x� 1
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and (
a+
a−

)
= S(λ)

(
b−
b+

)
.

Applying this to u = e+ we get as |λ| → ∞

a+ = 1, b+ = 0, a− = O(|λ|−∞), b− ∼
∞∑
n=0

λ−na
(n)
+ (−∞).

Similarly putting u = e− gives

a− = 1, b− = 0, a+ = O(|λ|−∞), b+ ∼
∞∑
n=0

λ−na
(n)
− (∞).

This gives the asymptotics

T (λ)−1 ∼
∞∑
n=0

λ−na
(n)
+ (−∞) ∼

∞∑
n=0

λ−na
(n)
− (∞), R±(λ) = O(|λ|−∞).

In particular, by (7) we have

T (λ)−1 = 1 +
i

2λ

∫
R
V (s) ds+O(|λ|−2)

and thus

T (λ) = 1− i

2λ

∫
R
V (s) ds+O(|λ|−2).

An corollary of this asymptotic expansion is that the integral of V is determined by

the scattering matrix S(λ).


