18.156, SPRING 2017, PROBLEM SET 1

Exercises 1-3 concern the Cauchy problem for a one-dimensional wave equation

$$
\begin{gather*}
w_{t t}-w_{x x}+V(x) w=g \\
\left.w\right|_{t=0}=f_{0}(x),\left.\quad w_{t}\right|_{t=0}=f_{1}(x) \tag{1}
\end{gather*}
$$

where the potential V is real-valued, smooth, and compactly supported, denoted $V \in$ $C_{c}^{\infty}(\mathbb{R} ; \mathbb{R})$. We assume that $f_{0}, f_{1} \in C_{c}^{\infty}(\mathbb{R})$ and $g \in C_{c}^{\infty}\left((0, \infty)_{t} \times \mathbb{R}_{x}\right)$, then (1) has a unique solution $w \in C^{\infty}\left(\mathbb{R}_{t, x}^{2}\right)$.

1. Using d'Alembert's formula (moving $V w$ to the right-hand side), show that:
(a) for each $t \geq 0$, the function $w(t, \bullet)$ is compactly supported;
(b) if $r_{0}>0$ is such that $\operatorname{supp} V, \operatorname{supp} f_{0}, \operatorname{supp} f_{1}, \operatorname{supp} g \subset\left\{|x|<r_{0}\right\}$ then

$$
w(t, x)=w_{ \pm}(x \mp t) \quad \text { for } \pm x \geq r_{0}, t \geq 0
$$

for some smooth $\left(C^{\infty}\right)$ functions $w_{ \pm}$.
2. Consider the following energy quantities associated to w :

$$
\begin{aligned}
\mathcal{E}(t) & :=\frac{1}{2} \int_{\mathbb{R}}\left|w_{t}(t, x)\right|^{2}+\left|w_{x}(t, x)\right|^{2}+V(x)|w(t, x)|^{2} d x \\
\mathcal{E}_{0}(t) & :=\frac{1}{2} \int_{\mathbb{R}}\left|w_{t}(t, x)\right|^{2}+\left|w_{x}(t, x)\right|^{2}+|w(t, x)|^{2} d x
\end{aligned}
$$

(a) Show that for $t \geq 0$,

$$
\mathcal{E}(t)=\mathcal{E}(0)+\int_{0}^{t} \int_{\mathbb{R}} \operatorname{Re}\left(\overline{w_{t}(s, x)} g(s, x)\right) d x d s
$$

Use this to show that when $V \geq 0$, we have $\mathcal{E}_{0}(t) \leq C(1+t)^{2}$ for some constant C and all $t \geq 0$.
(b) In the case of general V, show that for some constant C_{V} depending only on V

$$
\mathcal{E}_{0}^{\prime}(t) \leq C_{V} \mathcal{E}_{0}(t)+\int_{\mathbb{R}}|g(t, x)|^{2} d x
$$

Use this to show that $\mathcal{E}_{0}(t) \leq C e^{C_{V} t}$ for some constant C and all $t \geq 0$.
3^{*}. This exercise gives a better condition on the support of w than the one you found in Exercise 1(a). Consider some $\left(t_{0}, x_{0}\right)$ such that $t_{0} \geq 0$ and

$$
\begin{gathered}
f_{0}(x)=f_{1}(x)=0 \quad \text { for }\left|x-x_{0}\right| \leq t_{0} \\
g(t, x)=0 \quad \text { for } 0 \leq t \leq t_{0}, \quad\left|x-x_{0}\right| \leq t_{0}-t
\end{gathered}
$$

Show that $w\left(t_{0}, x_{0}\right)=0$. (Hint: argue similarly to Exercise 2(b) but change the definition of \mathcal{E}_{0} to only integrate over the interval $\left\{\left|x-x_{0}\right| \leq t_{0}-t\right\}$.)

Exercises 4-7 concern the Schrödinger operator on $C^{\infty}(\mathbb{R})$,

$$
P_{V}=D_{x}^{2}+V=-\partial_{x}^{2}+V, \quad V \in C_{c}^{\infty}(\mathbb{R} ; \mathbb{R})
$$

They use the Wronskian function of two functions $u, v \in C^{1}(\mathbb{R})$, defined as

$$
W(u, v)=u \cdot v_{x}-u_{x} \cdot v
$$

Note that for any u, v and $\lambda \in \mathbb{C}$

$$
\partial_{x} W(u, v)=v \cdot\left(P_{V}-\lambda^{2}\right) u-u \cdot\left(P_{V}-\lambda^{2}\right) v .
$$

Also, for any u, v_{1}, v_{2} such that $W\left(v_{1}, v_{2}\right) \neq 0$, we have

$$
\binom{u}{u^{\prime}}=\frac{1}{W\left(v_{1}, v_{2}\right)}\left(\begin{array}{cc}
-v_{2} & v_{1} \tag{2}\\
-v_{2}^{\prime} & v_{1}^{\prime}
\end{array}\right)\binom{W\left(u, v_{1}\right)}{W\left(u, v_{2}\right)} .
$$

Define the unique solutions $e_{ \pm}(x ; \lambda)$ to the equation $\left(P_{V}-\lambda^{2}\right) e_{ \pm}=0$ which satisfy

$$
e_{ \pm}(x)=e^{ \pm i \lambda x} \quad \text { for } \pm x \gg 1
$$

note that they are smooth in x and holomorphic in λ, and $\mathbf{W}(\lambda):=W\left(e_{+}, e_{-}\right)$is constant in x.
4. Assume that λ is such that $\mathbf{W}(\lambda) \neq 0$. Show that for $f \in C_{c}^{\infty}(\mathbb{R})$ the unique solution u to the problem

$$
\left(P_{V}-\lambda^{2}\right) u=f ; \quad u(x)=c_{ \pm} e^{ \pm i \lambda x} \quad \text { for } \pm x \gg 1 \text { and some } c_{ \pm} \in \mathbb{C}
$$

has the form $u=R_{V}(\lambda) f$ where

$$
\begin{align*}
R_{V}(\lambda) f(x) & =\int_{\mathbb{R}} R_{V}(x, y ; \lambda) f(y) d y \\
R_{V}(x, y ; \lambda) & =\frac{e_{+}(x) e_{-}(y)[x>y]+e_{-}(x) e_{+}(y)[x<y]}{\mathbf{W}(\lambda)} \tag{3}
\end{align*}
$$

5. Show that

$$
\begin{aligned}
W\left(e_{+}, e^{i \lambda x}\right)(x) & =\int_{x}^{\infty} V(y) e_{+}(y) e^{i \lambda y} d y \\
W\left(e_{+}, e^{-i \lambda x}\right)(x) & =-2 i \lambda+\int_{x}^{\infty} V(y) e_{+}(y) e^{-i \lambda y} d y
\end{aligned}
$$

Estimating the right-hand sides by (2), show that for $|\operatorname{Im} \lambda| \leq C_{0}$, we have as $|\lambda| \rightarrow \infty$

$$
W\left(e_{+}, e^{i \lambda x}\right)(x)=\mathcal{O}(1), \quad W\left(e_{+}, e^{-i \lambda x}\right)(x)=-2 i \lambda+\mathcal{O}(1)
$$

uniformly in x, where the constant in $\mathcal{O}(\cdot)$ depends only on C_{0} and V. Using the identity (2), show that for x in any fixed compact set,

$$
\begin{array}{cl}
e_{+}(x)=e^{i \lambda x}+\mathcal{O}\left(|\lambda|^{-1}\right), \quad e_{+}^{\prime}(x)=i \lambda e^{i \lambda x}+\mathcal{O}(1) \\
e_{-}(x)=e^{-i \lambda x}+\mathcal{O}\left(|\lambda|^{-1}\right), & e_{-}^{\prime}(x)=-i \lambda e^{-i \lambda x}+\mathcal{O}(1) \tag{4}
\end{array}
$$

6. (a) Show that $\mathbf{W}(\lambda)^{-1}$ is meromorphic in λ and conclude that $R_{V}(\lambda)$ defined in (3) is a meromorphic family of operators $C_{c}^{\infty}(\mathbb{R}) \rightarrow C^{\infty}(\mathbb{R})$.
(b) Using Exercise 5, show that for $|\operatorname{Im} \lambda| \leq C_{0}$ and $|\operatorname{Re} \lambda|$ large enough, λ is not a pole of R_{V} and we have the high frequency bound for all $\chi \in C_{c}^{\infty}(\mathbb{R})$, with the constant C depending only on V, C_{0}, χ,

$$
\left\|\chi R_{V}(\lambda) \chi\right\|_{L^{1} \rightarrow L^{\infty}} \leq \frac{C}{|\lambda|}
$$

7^{*}. This exercise is a basic case of the WKB (Wentzel-Kramers-Brillouin) approximation, giving an expansion of $e_{ \pm}(x ; \lambda)$ in nonpositive integer powers of λ which improves over (4). We will assume that $|\operatorname{Im} \lambda| \leq C_{0}$ for some constant C_{0} and study the limit $|\operatorname{Re} \lambda| \rightarrow \infty$.
(a) Construct a sequence of smooth functions $a_{ \pm}^{(n)}(x)$ such that $a_{ \pm}^{(n)}(x)$ are locally constant for $|x| \gg 1, a_{ \pm}^{(n)}(x)=\delta_{n 0}$ for $\pm x \gg 1$, and for each N the function

$$
e_{ \pm}^{(N)}(x):=e^{ \pm i \lambda x} \sum_{n=0}^{N} \lambda^{-n} a_{ \pm}^{(n)}(x)
$$

satisfies uniformly in x

$$
\left(P_{V}-\lambda^{2}\right) e_{ \pm}^{(N)}(x)=\mathcal{O}\left(|\lambda|^{-N}\right)
$$

(b) Using Wronskians, show that locally uniformly in x

$$
e_{ \pm}(x)=e_{ \pm}^{(N)}(x)+\mathcal{O}\left(|\lambda|^{-N-1}\right), \quad \partial_{x} e_{ \pm}(x)=\partial_{x} e_{ \pm}^{(N)}(x)+\mathcal{O}\left(|\lambda|^{-N}\right)
$$

(c) Show that the scattering matrix $S(\lambda)$ admits an asymptotic expansion in nonpositive integer powers of λ, and write out this expansion modulo $\mathcal{O}\left(|\lambda|^{-2}\right)$.

