18.156, SPRING 2017, PROBLEM SET 1

Exercises 1–3 concern the Cauchy problem for a one-dimensional wave equation

$$w_{tt} - w_{xx} + V(x)w = g,$$

$$w|_{t=0} = f_0(x), \quad w_t|_{t=0} = f_1(x)$$
(1)

where the potential V is real-valued, smooth, and compactly supported, denoted $V \in C_c^{\infty}(\mathbb{R};\mathbb{R})$. We assume that $f_0, f_1 \in C_c^{\infty}(\mathbb{R})$ and $g \in C_c^{\infty}((0,\infty)_t \times \mathbb{R}_x)$, then (1) has a unique solution $w \in C^{\infty}(\mathbb{R}^2_{t,x})$.

- **1.** Using d'Alembert's formula (moving Vw to the right-hand side), show that:
- (a) for each $t \ge 0$, the function $w(t, \bullet)$ is compactly supported;
- (b) if $r_0 > 0$ is such that supp V, supp f_0 , supp f_1 , supp $g \subset \{|x| < r_0\}$ then

 $w(t,x) = w_{\pm}(x \mp t)$ for $\pm x \ge r_0, t \ge 0$

for some smooth (C^{∞}) functions w_{\pm} .

2. Consider the following energy quantities associated to w:

$$\mathcal{E}(t) := \frac{1}{2} \int_{\mathbb{R}} |w_t(t,x)|^2 + |w_x(t,x)|^2 + V(x)|w(t,x)|^2 dx$$

$$\mathcal{E}_0(t) := \frac{1}{2} \int_{\mathbb{R}} |w_t(t,x)|^2 + |w_x(t,x)|^2 + |w(t,x)|^2 dx.$$

(a) Show that for $t \ge 0$,

$$\mathcal{E}(t) = \mathcal{E}(0) + \int_0^t \int_{\mathbb{R}} \operatorname{Re}(\overline{w_t(s,x)}g(s,x)) \, dx ds.$$

Use this to show that when $V \ge 0$, we have $\mathcal{E}_0(t) \le C(1+t)^2$ for some constant C and all $t \ge 0$.

(b) In the case of general V, show that for some constant C_V depending only on V

$$\mathcal{E}_0'(t) \le C_V \mathcal{E}_0(t) + \int_{\mathbb{R}} |g(t,x)|^2 \, dx.$$

Use this to show that $\mathcal{E}_0(t) \leq C e^{C_V t}$ for some constant C and all $t \geq 0$.

3^{*}. This exercise gives a better condition on the support of w than the one you found in Exercise 1(a). Consider some (t_0, x_0) such that $t_0 \ge 0$ and

$$f_0(x) = f_1(x) = 0 \quad \text{for } |x - x_0| \le t_0;$$

$$g(t, x) = 0 \quad \text{for } 0 \le t \le t_0, \quad |x - x_0| \le t_0 - t.$$

Show that $w(t_0, x_0) = 0$. (Hint: argue similarly to Exercise 2(b) but change the definition of \mathcal{E}_0 to only integrate over the interval $\{|x - x_0| \le t_0 - t\}$.)

Exercises 4–7 concern the Schrödinger operator on $C^{\infty}(\mathbb{R})$,

$$P_V = D_x^2 + V = -\partial_x^2 + V, \quad V \in C_c^{\infty}(\mathbb{R}; \mathbb{R}).$$

They use the Wronskian function of two functions $u, v \in C^1(\mathbb{R})$, defined as

$$W(u,v) = u \cdot v_x - u_x \cdot v.$$

Note that for any u, v and $\lambda \in \mathbb{C}$

$$\partial_x W(u,v) = v \cdot (P_V - \lambda^2)u - u \cdot (P_V - \lambda^2)v.$$

Also, for any u, v_1, v_2 such that $W(v_1, v_2) \neq 0$, we have

$$\begin{pmatrix} u \\ u' \end{pmatrix} = \frac{1}{W(v_1, v_2)} \begin{pmatrix} -v_2 & v_1 \\ -v'_2 & v'_1 \end{pmatrix} \begin{pmatrix} W(u, v_1) \\ W(u, v_2) \end{pmatrix}.$$
(2)

Define the unique solutions $e_{\pm}(x;\lambda)$ to the equation $(P_V - \lambda^2)e_{\pm} = 0$ which satisfy

 $e_{\pm}(x) = e^{\pm i\lambda x}$ for $\pm x \gg 1$,

note that they are smooth in x and holomorphic in λ , and $\mathbf{W}(\lambda) := W(e_+, e_-)$ is constant in x.

4. Assume that λ is such that $\mathbf{W}(\lambda) \neq 0$. Show that for $f \in C_c^{\infty}(\mathbb{R})$ the unique solution u to the problem

$$(P_V - \lambda^2)u = f; \quad u(x) = c_{\pm}e^{\pm i\lambda x} \quad \text{for } \pm x \gg 1 \text{ and some } c_{\pm} \in \mathbb{C}$$

has the form $u = R_V(\lambda)f$ where

$$R_{V}(\lambda)f(x) = \int_{\mathbb{R}} R_{V}(x, y; \lambda)f(y) \, dy,$$

$$R_{V}(x, y; \lambda) = \frac{e_{+}(x)e_{-}(y)[x > y] + e_{-}(x)e_{+}(y)[x < y]}{\mathbf{W}(\lambda)}.$$
(3)

5. Show that

$$W(e_+, e^{i\lambda x})(x) = \int_x^\infty V(y)e_+(y)e^{i\lambda y} \, dy,$$
$$W(e_+, e^{-i\lambda x})(x) = -2i\lambda + \int_x^\infty V(y)e_+(y)e^{-i\lambda y} \, dy.$$

Estimating the right-hand sides by (2), show that for $|\operatorname{Im} \lambda| \leq C_0$, we have as $|\lambda| \to \infty$

$$W(e_+, e^{i\lambda x})(x) = \mathcal{O}(1), \quad W(e_+, e^{-i\lambda x})(x) = -2i\lambda + \mathcal{O}(1)$$

uniformly in x, where the constant in $\mathcal{O}(\cdot)$ depends only on C_0 and V. Using the identity (2), show that for x in any fixed compact set,

$$e_{+}(x) = e^{i\lambda x} + \mathcal{O}(|\lambda|^{-1}), \quad e'_{+}(x) = i\lambda e^{i\lambda x} + \mathcal{O}(1);$$

$$e_{-}(x) = e^{-i\lambda x} + \mathcal{O}(|\lambda|^{-1}), \quad e'_{-}(x) = -i\lambda e^{-i\lambda x} + \mathcal{O}(1).$$
(4)

6. (a) Show that $\mathbf{W}(\lambda)^{-1}$ is meromorphic in λ and conclude that $R_V(\lambda)$ defined in (3) is a meromorphic family of operators $C_c^{\infty}(\mathbb{R}) \to C^{\infty}(\mathbb{R})$.

(b) Using Exercise 5, show that for $|\operatorname{Im} \lambda| \leq C_0$ and $|\operatorname{Re} \lambda|$ large enough, λ is not a pole of R_V and we have the high frequency bound for all $\chi \in C_c^{\infty}(\mathbb{R})$, with the constant C depending only on V, C_0, χ ,

$$\|\chi R_V(\lambda)\chi\|_{L^1\to L^\infty} \le \frac{C}{|\lambda|}.$$

7^{*}. This exercise is a basic case of the WKB (Wentzel-Kramers-Brillouin) approximation, giving an expansion of $e_{\pm}(x; \lambda)$ in nonpositive integer powers of λ which improves over (4). We will assume that $|\operatorname{Im} \lambda| \leq C_0$ for some constant C_0 and study the limit $|\operatorname{Re} \lambda| \to \infty$.

(a) Construct a sequence of smooth functions $a_{\pm}^{(n)}(x)$ such that $a_{\pm}^{(n)}(x)$ are locally constant for $|x| \gg 1$, $a_{\pm}^{(n)}(x) = \delta_{n0}$ for $\pm x \gg 1$, and for each N the function

$$e_{\pm}^{(N)}(x) := e^{\pm i\lambda x} \sum_{n=0}^{N} \lambda^{-n} a_{\pm}^{(n)}(x)$$

satisfies uniformly in x

$$(P_V - \lambda^2) e_{\pm}^{(N)}(x) = \mathcal{O}(|\lambda|^{-N}).$$

(b) Using Wronskians, show that locally uniformly in x

$$e_{\pm}(x) = e_{\pm}^{(N)}(x) + \mathcal{O}(|\lambda|^{-N-1}), \quad \partial_x e_{\pm}(x) = \partial_x e_{\pm}^{(N)}(x) + \mathcal{O}(|\lambda|^{-N}).$$

(c) Show that the scattering matrix $S(\lambda)$ admits an asymptotic expansion in nonpositive integer powers of λ , and write out this expansion modulo $\mathcal{O}(|\lambda|^{-2})$.