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We present a particle-based nonlinear filtering scheme, related to
recent work on chainless Monte Carlo, designed to focus parti-
cle paths sharply so that fewer particles are required. The main
features of the scheme are a representation of each new prob-
ability density function by means of a set of functions of Gaus-
sian variables (a distinct function for each particle and step) and
a resampling based on normalization factors and Jacobians. The
construction is demonstrated on a standard ill-conditioned test
problem.
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Introduction.
There are many problems in science in which the state of a system must
be identified from an uncertain equation supplemented by a stream of
noisy data (see e.g. [1]). A natural model of this situation consists of
a stochastic differential equation (SDE):�����	��
��
��������������
��
�����������

[1]

where
����
��! "����#$�"%&%"%"���(')�

is an * -dimensional vector,
�

is * -
dimensional Brownian motion,

�
is an * -dimensional vector function,

and
��
��
�����

is an * by * diagonal matrix. The Brownian motion en-
capsulates all the uncertainty in this equation. The initial state

�+
-,��
is assumed given and may be random as well.

As the experiment unfolds, it is observed, and the values .
/ of a
measurement process are recorded at times

� / . For simplicity assume� / �1032 , where
2

is a fixed time interval and
0

is an integer. The
measurements are related to the evolving state

�4
5���
by. / �	64
�� / ���87)9 / � [2 ]

where
6

is a : -dimensional, generally nonlinear, vector function with:<;=* ,
7

is a diagonal matrix,
� / ���+
�032>�

, and
9 / is a vec-

tor whose components are independent Gaussian variables of mean 0
and variance 1, independent also of the Brownian motion in equation
(1). The task is to estimate

�
on the basis of equation (1) and the

observations (2).
If the system (1) and equation (2) are linear and the data are

Gaussian, the solution can be found via the Kalman-Bucy filter (see
e.g. [2]). In the general case, it is natural to try to estimate

�
via its

evolving probability density. The initial state
�

is known and so is
its probability density; all one has to do is evaluate sequentially the
density ? /�@  of

� />@  given the probability densities ?
A of
� A for:B; 0 and the data .C/>@  . This can be done by following “particles"

(replicas of the system) whose empirical distribution approximates? / . In a Bayesian filter (see e.g [3, 4, 5, 6, 7, 8, 9, 10]), one uses
the pdf ? / and equation (1) to generate a prior density, and then one
uses the new data . />@  to generate a posterior density ? /�@  . In addi-
tion, one has to sample backward to take into account the information
each measurement provides about the past, as well as avoid having
too many identical particles. This can be very expensive, in particular
because the number of particles needed can grow catastrophically (see
e.g. [11, 12]).

In this paper we offer an alternative to the standard approach,
in which ? />@  is sampled more directly and backward sampling is
done without chains [13]. Our direct sampling is based on a pseudo-
Gaussian representation of a variable with density ? /�@  , i.e. a rep-
resentation by a collection of functions of Gaussian variables with

sample-dependent parameters. The construction is related to chain-
less sampling as described in [13]. The idea in chainless sampling is to
produce a sample of a large set of variables by sequentially sampling
a growing sequence of nested conditionally independent subsets, with
discrepancies balanced by sampling weights. As observed in [14, 15],
chainless sampling for a SDE reduces to interpolatory sampling, as
explained below. Our construction will be explained in the following
sections through an example where the position of a ship is deduced
from the measurements of an azimuth, already used as a test bed in a
number of previous papers (see e.g. [7, 16, 17]). We call our sampling
“implicit" by analogy with implicit schemes for solving differential
equations, where the determination of a next value requires the solu-
tion of algebraic equations.

If the SDE (1) and observation equation (2) are linear, our con-
struction becomes a reformulation of sequential importance sampling
with an optimal importance function, see [5, 6].

Sampling by interpolation and iteration.
First we explain how to sample via interpolation and iteration in a
simple problem, related to the example and the construction in [14].
Consider the scalar SDE���D�FE!
������������3�	G HI��JK�

[3]

where
H

is a constant. We want to find sample paths
�L�M�N
5���

,, ; � ;	O , subject to the conditions
�N
-,>�+�<,

,
�N
 O �+�QP .

Let R 
�S(��TU� denote a Gaussian variable with mean
S

and varianceT
. We first discretize equation (3) on a regular mesh

��V$���  �"%W%&%"����X
,

where
� / �Y032 , 2Z� OW[&R ,

, ; 0 ;YR , with
� / �=�!
5� / � , and,

following [14], use a balanced implicit discretization [18, 19]:� />@  �Q� / �8E!
�� / ��� / ��2\�<
�� /�@  
] � / ��E_^`
�� / ��� / ��2a�cb /�@  �
where

E ^ 
�� / ��� / �d� e$fehgWi 
�� / ��� / � and
b /�@  is R 
-,U��H [&R � .

The joint probability density of the variables
�  �"%"%&%"��� Xkj  

islmj  _n&oUp 
 ]�q X\j  V r / � , where
l

is the normalization constant and

r / �ts 
 O ] 2�E ^ �&
�� />@  ] � / � ] 2�Evu #w H�2�ts � />@  ] � / ] 2>E [ 
 O ] 2>E ^ � u #w H / �
where

E_�xE ^
are functions of the

� / ��� / , and
H / �=H�2 [ 
 O ] 2>E ^ � #(see [20]). One can obtain sample solutions by sampling this den-

sity, e.g. by Markov chain Monte Carlo, or one can obtain them by
interpolation (chainless sampling), as follows.
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Let
S / �	E!
�� / ��� / ��2 [ 
 O ] 2�E ^ 
�� / ��� / ��� . Consider first the spe-

cial case
E!
��!�y���)�zE!
5���

, so that in particular
E ^ �z,

; we recover a
version of a Brownian bridge (see [21]). Each increment

� /�@  ] � / is
now a R 
�S / ��H [{R � variable, with the

S / �FE!
5� / ��2 known explicitly.
Let R be a power of

w
. Consider the variable

� XN| #
. On one hand,

� XN| # � XN| #}  
�� / ] � / j  �
~ R 
-�  � r  �{�
where

�  � q XN| # S / � r  ��H [ w . On the other hand,

P��<� XN| # � X}XN| # @  
�� /
] � / j  �{�

so that � XN| # ~ R 
-� # � r # �{�
with �m#k�QP ] X\j  }XN| # S / � r #\� r  &%
The pdf of

� X!| #
is the product of the two pdfs; one can check thatn{o�p�� ] 
�� ] �  � #w r  � n{o�p�� ] 
�� ] � # � #w r # �� n{o�p�� ] 
�� ]8�S_� #w �T � n&oUp 
 ]�� �{�

where
�T�� �h�x�W��$� @ �W� ,

�S������{��� @ �h�x����h� @ �W� , and
� ��� ��� j �!�x� �# � �$� @ �W�&� ; � j(� is

the probability of getting from the origin to
P

, up to a normalization
constant.

Pick a sample �  from the R 
-,�� O � density; one obtains a sample
of
� XN| #

by setting
� XN| # � �SI�c� �T �  . Given a sample of

� X!| #
one

can similarly sample
� XN|�� ���(� XN|��

, then
� XN|��

,
�v� XN|x�

, etc., until all
the
���

have been sampled. If we define � ��
 �  W� � #h�"%"%"%W� � X\j  x� , then
for each choice of � we find a sample

����
��  �W%"%"%&��� X\j  �
such thatn&oUp�� ] � # �Q�"�W��� � #Xkj  w � n&oUp�� ] 
�P ]�q / S / � #w H �� n&oUp�� ] 
��  ] � V ] S V � #w H [{R ] 
�� # ] �  ] S  � #w H [&R] �"�"� ] 
�� X ] � Xkj  ] S X\j  � #w H [&R � � [4 ]

where the factor
n&oUpB� ] ��� j(  iC¡ i � �#�¢ £ on the left is the probability

of the fixed end value
P

up to a normalization constant. In this lin-
ear problem, this factor is the same for all the samples and therefore
harmless. The Jacobian ¤ of the variables

�  �"%"%"%W����X\j  
with respect

to the variables �  �"%¥%¥%¦� � X\j  can be seen to be a constant independent
of the sample and is also immaterial. One can repeat this sampling
process for multiple choices of the variables � ; each sample of the
corresponding set of

� / is independent of any previous samples of
this set.

Now return to the general case. The functions
E

,
E ^

are now func-
tions of the

���
. We obtain a sample of the probability density we want

by iteration. The simplest iteration proceeds as follows. First pick� �§
 �  � � # �"%W%"%"� � X\j  � , where each ��¨ �x©!� O �"%"%&%W� R ] O , is drawn
independently from the R 
-,�� O � density (this vector remains fixed dur-
ing the iteration). Make a first guess

� V �§
��  V ��� #V �W%"%"%"��� X\j  V �
(for

example, if
Pdª�	,

, pick
� V �F, ). Evaluate the functions

E_�xE ^
at
� �

(note that now
E ^ ª�<,

, and therefore the variances of the various dis-
placements are no longer constants). We are back in the previous case,

and can find values of the increments
� /�@  � @  ] � /� @  corresponding to

the values of
E_�xE ^

we have. Repeat the process starting with the new
iterate. If the vectors

� � converge to a vector
���§
��  �"%W%"%&��� X\j  �

,
we obtain, in the limit, equation (4), where now on the right side

H
depends on

0
so that

Hc�«H / , and both
S / ��H / are functions of the

final
�

. The left hand side of (4) becomes:n&oUp�� ] � # ���W�"��� � #Xkj  w � n&oUp�� ] 
�P ]�q / S / � #w q / H / � %
The factor ¬ � n&oUpB� ] ��� j�  iC¡ i � �#   i ¢ i £ is now different from sample
to sample, and changes the relative weights of the different samples.
The Jacobian ¤ of the

�
variables with respect to the � variables is

now also a function of the sample. It can be evaluated step by step the
last time the iteration is carried out, either by an implicit differentia-
tion, or by repeating the iteration for a slightly different value of the
relevant � and differencing. In averaging, one should take the product¬ � ¤ � as weight, or resample as described at the end of the following
section. In order to obtain more uniform weights, one also can use
the strategies in [13, 14].

One can readily see that this iteration converges if­�®c¯ O � [5]

where
­

is the Lipshitz constant of
E

, and
®

is the length of the
interval on which one works (here

® � O ). If this iteration fails to
converge, more sophisticated iterations are available. One should of
course choose R large enough so that the results are converged in R .
We do not provide more details here because they are extraneous to
our purpose, which is to explain chainless/interpolatory sampling and
the use of reference variables in a simple context.

Finally, we chose the reference density to be a product of inde-
pendent R 
-,�� O � variables, which is a convenient but not mandatory
choice. In applications one may well want to choose other variances
or make the variables be dependent.

The ship azimuth problem.
The problem we focus on is discussed in [7, 16, 17], where it is used
to demonstrate the capabilities of particular filters. A ship sets out
from a point


�� V ��° V �
in the plane and undergoes a random walk,� />@  �Q� / �²± />@  �° />@  �Q° / ��T /�@  � [6 ]

for
0«³=,

,
± /�@  � R 
�± / ��HN� , T />@  � R 
�T / ��HC� , i.e., each dis-

placement is a sample of a Gaussian random variable whose varianceH
does not change from step to step and whose mean is the value of

the previous displacement. An observer makes noisy measurements
of the azimuth ´�µ�¶&·x´$¸ 
�° /_[ � / � (for the sake of definiteness, we take
the branch in

]I¹ º [ w � º [ w � ), recording» / � ´hµ�¶{·x´$¸ ° /� / � R 
-,U�{¼��{% [7 ]

where the variance
¼

is also fixed; here the observed quantity
» / is

scalar and is not be denoted by a boldfaced letter. The problem is to
reconstruct the positions

� / �½
�� / ��° / � from equations (6,7). We
take the same parameters as [7]:

� V �«,U% , O ��° V � w , , ±  �«,U% ,>, w ,T  � ] ,�% ,>¾
,
H�� O � O , j(¿ ��¼K� w$À � O , jv¿ . We follow numericallyÁ

particles, all starting from
P VÂ �1� V ��Ã VÂ �1° V , as described in

the following sections, and we estimate the ship’s position at time
0�2

as the mean of the locations Ä /Â �§
�P /Â ��Ã /Â �{��Å4� O �W%"%"%&� Á of the
particles at that time. The authors of [7] also show numerical results
for runs with varying data and constants; we discuss those refinements
in the numerical results section below.
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Forward step.
Assume we have a collection of

Á
particles Ä / at time

� / �=032
whose empirical density approximates ? / ; now we find displace-
ments Æ /�@  �Ç
yÈ />@  ��T /�@  � such that the empirical density ofÄ /�@  � Ä / � Æ /�@  approximates ? /�@  . ? /�@  is known implic-
itly: it is the product of the density that can be deduced from the
dynamics and the one that comes from the observations, with the ap-
propriate normalization. If one is given sample displacements, their
probabilities É (the densities ? />@  evaluated at the resulting positionsÄÊ/�@  ) can be evaluated, so É is a function of Æ�/�@  , É � É 
 Æ�/>@  � .
For each particle

Å
, we are going to sample a reference density, obtain

a reference sample of probability Ë , then attempt to solve (by iteration)
the equation Ë � É 
 Æ /�@  Â �

[8]

to obtain Æ /�@  Â .
Define

E!
�����°��Z� ´hµ�¶{·x´$¸ 
�° [ �(� and
E / ��E!
�P / ��Ã / � . We

are working on one particle at a time, so the index
Å

can be tem-
porarily suppressed. Pick two independent samples � g , ��Ì from aR 
-,�� O � density (the reference density in the present calculation), and

set Ë �  #�Í n{o�p � ]ÏÎ �Ð# ] Î �Ñ# � ; the variables � g , ��Ì remain unchanged

until the end of the iteration. We are looking for displacements
È /�@  ,r /�@  , and parameters

S g ��S Ì ��T g ��T Ì � � , such that:w º Ë � n&oUp � ] 
yÈ />@  ] È / � #w H ] 
 r /�@  ] r / � #w H] 
`E /�@  ] » />@  � #w ¼ � n&oUp 
 � �� n&oUp�� ] 
yÈ />@  ] S g � #w T g ] 
 r /�@  ] S Ì � #w T Ì � [9 ]

The first equality states what we wish to accomplish. Indeed, divide
this first equality by

n{o�p 
 � �
. The equality now defines implicitly new

displacements
È /�@  � r /�@  , functions of � g � ��Ì , with the probability

of these displacements with respect to ? /�@  given (up to an unknown
normalization constant). The second equality in equations (9) defines
parameters

S g ��S Ì ��T g ��T Ì � (all functions of Ä / and � g � � Ì ) that will be
used to actually find the displacements

È />@  � r />@  . One should re-
member that in our example the mean of

È />@  before the observation
is taken into account is

È / , and similarly for r /�@  .
We use the second equality in (9) to set up an iteration for vec-

tors Æ /�@  �Ò � 
`� Æ � for brevity) that converges to Æ />@  . Start withÆ V �<, . We now explain how to compute Æ � @  given Æ � .
Approximate the observation equation (7) byE!
 Ä � �_��E g ��
yÈ � @  !] È � �v��E Ì ��
 r � @  �] r � �
�Q» /�@  � R 
-,U�{¼��{�

[10 ]
where the derivatives

E g �xE Ì are, like
E

, evaluated at Ä � � Ä / � Æ � ,
i.e., approximate the observation equation by its Taylor series ex-
pansion around the previous iterate. Define a variable Ó � @  �
`E g ��È � @  �8E Ì � r � @  � [ G E #g �cE #Ì . The approximate observation
equation says that Ó � @  is a R 
�S( "��TU {� variable, withS  � ] E ] E g �$Èa� ] E Ì � r � ] » /�@  G E #g �8E #Ì �

T  � ¼E #g �8E #Ì % [11]

On the other hand, from the equations of motion one finds that Ó � @  
is R 
�S # ��T # � , with

S # ��
`E g �`È / �BE Ì � r / � [ G E #g �cE #Ì and
T # ��H

.
Hence the pdf of Ó � @  is, up to normalization factors,n&oUp�� ] 
�� ] S( x� #w T  ] 
�� ] S�#W� #w T # � � n{o�p�� ] 
�� ]8�SU� #w �T � n&oUp 
 ]�� �{�

where
�TÔ�ÖÕ{�xÕ��Õ&� @ Õ�� ,

�S×� ¡ ��Õx� @ ¡ ��Õ��Õ&� @ Õ�� ,
� � � ¡ � j ¡ �{� �# � Õ{� @ Õ��&� � � � @  .

We can also define a variable Ó � @  @ that is a linear combination ofÈ � @  , r � @  and is uncorrelated with Ó � @  :
Ó � @  @ � ] E Ì ��È � @  �8E g � r � @  G E #g �8E #Ì %

The observations do not affect Ó � @  @ , so its mean and variance are
known. Given the means and variances of Ó � @  , Ó � @  @ one can easily
invert the orthogonal matrix that connects them to

È � @  , r � @  and
find the means and variances

S g ��T g of
È � @  and

S Ì ��T Ì of r � @  after
their modification by the observation (the subscripts on

S���T
are labels,

not differentiations). Now one can produce values for
È � @  � r � @  :

È � @  �QS g � � T g � g � r � @  �<S Ì � � T Ì � Ì �
where � g , �WÌ are the samples from R 
-,U� O � chosen at the beginning
of the iteration. This completes the iteration.

This iteration converges to Ä /�@  such that
E!
 Ä />@  �
�Q» />@  �R 
-,U�{¼�� , and the phases

� �
converge to a limit

� � � Â , where the
particle index

Å
has been restored. The time interval over which the

solution is updated in each step is short, and there are no problems
with convergence, either here or in the next section (see equation (5));
in all cases the iteration converges in a small number of steps.

We now calculate the Jacobian ¤ of the Æ />@  variables with re-
spect to � g � � Ì . The relation between these variables is laid out in the
first of equations (9). Take the log of this equation, partition it into
a part parallel to the direction in which the observation is made (i.e.,
parallel to the vector


`E g ��E Ì )) and a part orthogonal to that direction.
Since the increment

È />@  , r />@  is now known, the evaluation of ¤ is
merely an exercise in implicit differentiation. ¤ can also be evaluated
numerically, by finding the increment

È /�@  � r />@  that corresponds
to nearby values of � g , � Ì , and differencing.

Do this for all the particles and obtain new positions with weightsb � � n&oUp 
 ]�� � � � ¤ � � , where ¤ � is the Jacobian for the Ø -th parti-
cle. One can get rid of the weights by resampling, i.e., for each
of
Á

random numbers Ù$A � : � O �"%"%W%&� Á drawn from the uni-
form distribution on

¹ ,U� O{Ú , choose a new ÛÄ />@  A � Ä />@  Â such that� j  q Â j  �&Ü  b � ¯ ÙhA�; � j  q Â�&Ü  b � (where
�Ý� qFÞ�{Ü  b � ),

and then suppress the hat. We have traded the usual Bayesian re-
sampling based on the posterior probabilities of the samples for a
resampling based on the normalizing factors of the several Gaussian
densities; this is a worthwhile trade because in a Bayesian filter one
gets a set of samples many of which may have low probability with
respect to ? />@  , and here we have a set of samples each one of which
has high probability with respect to a pdf close to ? />@  (see the nu-
merical results and conclusion sections).

Note also that the resampling does not have to be done at ev-
ery step- for example, one can add up the phases for a given particle
and resample only when the ratio of the largest cumulative weightn{o�p 
 ]�q 
 � Â ]�ß¦à$á � ¤ Â � ��� to the smallest such weight exceeds some
limit

®
(the summation is over the weights accrued to a particular

particle
Å

since the last resampling). If one is worried by too many
particles being close to each other ("depletion" in the Bayesian ter-
minology), one can divide the set of particles into subsets of small
size and resample only inside those subsets, creating a greater diver-
sity. As will be seen in the numerical results section, none of these
strategies will be used here and we will resample fully at every step.

Finally, note that if the SDE (1) and observation equation (2) are
linear, and if at time

0�2
one is given the means and the covariance

matrix of a Gaussian
�

, then our algorithm produces, in one iteration,
the means and the covariance matrix of a standard Kalman filter.
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Backward sampling.
The algorithm of the previous section is sufficient to create a filter,
but accuracy, when the problem is not Gaussian, may require an ad-
ditional step. Every observation provides information not only about
the future but also about the past- it may, for example, tag as improba-
ble earlier states that had seemed probable before the observation was
made; in general one has to go back and correct the past after every
observation (this backward sampling is often misleadingly motivated
solely by the need to create greater diversity among the particles in a
Bayesian filter). As will be seen below, this backward sampling does
not provide a significant boost to accuracy in the present problem, but
it must be described for the filter to be of general use, as well as be
generalizable to problems involving smoothing.

Given a set of particles at time

�0â� O ��2 , after a forward step

and maybe a subsequent resampling, one can figure out where each
particle

Å
was in the previous two steps, and have a partial history for

each particle
Å
: Ä / j  Â � Ä /Â � Ä /�@  Â (if resamples had occurred, some

parts of that history may be shared among several current particles).
Knowing the first and the last members of this sequence, one can inter-
polate for the middle term as in section 2, thus projecting information
backward. This requires that one recompute Æ / .

Let Æ tot � Æ / � Æ />@  ; in the present section this quantity is
assumed known and remains fixed. In the azimuth problem discussed
here, one has to deal with the slight complication due to the fact that the
mean of each displacement is the value of the previous one, so that two
successive displacements are related in a slightly more complicated
way than usual. The displacement

È / is a R 
yÈ / j  ��HC� variable, andÈ /�@  is a R 
yÈ / ��HC� variable, so that one goes from
P / j  to

P /�@  
by sampling first a


 w È / j  ��ã$HN� variable that takes us from
P / j  to

an intermediate point ? , with a correction by the observation half way
up this first leg, and then one samples a R 
yÈ tot ��HN� variable to reachP />@  , and similarly for

Ã
. Let the variable that connects Ä / j  to? be Æ new, so that what replaces Æ�/ is Æ new [ w . Accordingly, we

are looking for a new displacement Æ new �M
yÈ new � r new � , and for
parameters

S newg ��S newÌ ��T newg ��T newÌ such that

w º n&oUp�� ] � #g � � #Ìw �� n&oUp�� ] 
yÈ new
] w È / j  � #ä H ] 
 r new

] w r / j  � #ä H �
å n{o�p�� ] 
`E new

] » / � #w ¼ �å n{o�p�� ] 
yÈ new
] È tot � #w H ] 
 r new

] r tot � #w H � n{o�p 
 � �� n&oUp�� ] 
yÈ new
]8�S g � #w T newg ] 
 r new

]8�S Ì � #w T newÌ � �
where

E new �æE!
�P / j  �<È new [ w ��Ã / j  � r new [ w � and � g , ��Ì are
independent R 
-,U� O � Gaussian variables. As in equation (9), the first
equality embodies what we wish to accomplish- find displacements,
functions of the reference variables, that sample the new pdf at time0�2

defined by the forward motion, the constraint imposed by the ob-
servation, and by knowledge of the position at time


�0Ê� O ��2h� . The
second equality states that this is done by finding particle-dependent
parameters for a Gaussian density.

We again find these parameters as well as the displacements by it-
eration. Much of the work is separate for the

P
and

Ã
components of

the equations of motion, so we write some of the equations for the
P

component only. Again set up an iteration for variables
È new

Ò � �çÈ �
which converge to

È new. Start with
È V �Ý,

. To find
È � @  givenÈ �

, approximate the observation equation (7), as before, by equation
(10); define again variables Ó � @  � Ó � @  @ , one in the direction of the
approximate constraint and one orthogonal to it; in the direction of
the constraint multiply the pdfs as in the previous section; construct

new means
S  g ��S  Ì and new variances

T  g ��T  Ì for at time
0

, taking into
account the observation at time

0
, again as before. This also produces

a phase
� � � V .

Now take into account that the location of the ship at time
0D� O

is known; this creates a new mean
�S g , a new variance

�T g , and a new
phase

� g , by
�TB�èÕ{�xÕ��Õ{� @ Õ�� ,

�S g � ¡ ��Õ�� @ ¡ �xÕ&�Õ{� @ Õ�� ,
� g � � ¡ � j ¡ �{� �Õ{� @ Õ�� , whereS  � w S  ��T  �«ã>T  g ��S # �«P tot ��T # �éH . Finally, find a new inter-

polated position
Èk� @  � ¡ newÐ # �Fê Õ newÐ � � g (the calculation for r � @  

is similar, with a phase
� Ì ), and we are done. The total phase for

this iteration is
� � � V � � g � � Ì . As the iterates

È �
converge toÈ new, the phases converge to a limit

� � � Â . One also has to compute
Jacobians and set up a resampling. Once one has values for Ä new, a
forward step gives corrected values of Ä /�@  ; one can use this interpo-
lation process to correct estimates of Ä A by subsequent observations
for : �<0 ] O � : �Q0 ] w �W%&%"% , as many as are useful.

Numerical results.
Before presenting examples of numerical results for the azimuth prob-
lem, we discuss the accuracy one can expect. We run the ship once
and record synthetic observations (with the appropriate noise) which
will remain fixed. Then we find other ship trajectories compatible
with these fixed observations as follows. We have 160 observations.
We note that the maximum likelihood estimate of

¼
given 160 obser-

vations is a random variable with mean zero and variance
% O>O ¼ . Then

we make other runs of the ship, record the azimuths along the path
and calculate the differences between these azimuths and the fixed
observations. If the set of these differences in any run is a likely set of
160 samples of a R 
-,U�{¼�� variable (which what the noise is supposed
to be), then we declare that the new run is compatible with the fixed
observations. We view the set of differences as likely if their empir-
ical variance is within one standard variation (

% O$O ¼ ) of the nominal
variance

¼
of the observation noise. One can impose further require-

ments (for example, one may demand that the empirical covariance
of two successive noises be within a standard deviation of zero), but
these turn out to be weaker requirements. To lighten the burden of
computation we make the new ship runs have fixed displacements in
the observed direction (equal to those that the first ship experienced)
and sample new displacements only in the direction orthogonal to
the observed direction. We use the variability of the compatible runs
as a an estimate of the lower bound on the possible accuracy of the
reconstruction.

In Table I we display the standard deviations of the differences
between the resulting paths and the original path that produced the
observations after the number of steps indicated there (the means of
these differences are statistically indistinguishable from zero). This
Table provides an estimate of the accuracy we can expect. It is fair
to assume that these standard deviations are underestimates of the
uncertainty- a maximum variation of a single standard deviation in

¼
is a strict requirement, and we allowed no variability in

H
. In partic-

ular, our construction, together with the particular set of directions in
the linearized observation equations that arises with our data, conspire
to make the error estimate in the x-component unrealistically small.

Table I
Intrinsic uncertainty in the azimuth problem

step
�

component
°

component
40 .0005 .21
80 .004 .58
120 .010 .88
160 .017 .95

If one wants reliable information about the performance of the
filter, it is not sufficient to run the ship once, record observations, and
then use the filter to reconstruct the ship’s path, because the differ-
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ence between the true path and the reconstruction is a random variable
which may be accidentally atypically small or atypically large. We
have therefore run a large number of such reconstructions and com-
puted the means and standard deviations of the discrepancies between
path and reconstruction as a function of the number of steps and of
other parameters. In Tables II and III we display the means and stan-
dard deviations of these discrepancies (not of their mean!) in the the
x and y components of the paths with 2000 runs, at the steps and
numbers of particles indicated, with no backward sampling. (Ref. [7]
used 100 particles). On the average the error is zero so that the filter
is unbiased, and the standard deviation of the discrepancies cannot
be expected to be better than the lower bound of Table I, and in fact
it is compatible to that lower bound. The standard deviation of the
discrepancy is not catastrophically larger with one particle (and no re-
sampling at all !) than with 100- the main source of the discrepancy is
the insufficiency of the data for accurate estimation of the trajectories.
The more sophisticated resampling strategies discussed above make
no discernible difference here, because they are unable to remedy the
limitations of the data set. One can check that backward sampling
does not make much difference either for this problem where the un-
derlying motion is Gaussian and the variance of the observation noise
is much larger than the variance in the model.

Table IIa
Mean and standard variation of the discrepancy between synthetic

data and their reconstruction, 2000 runs, no back step, 100 particles

n. of steps x component y component
mean s.d. mean s.d.

40 .0004 .04 .001 .17
80 -.001 .04 -.01 .54
120 -.0008 .07 -.03 1.02
160 -.002 .18 -.05 1.62

Table IIb
Mean and standard variation of the discrepancy between synthetic
data and their reconstruction, 2000 runs, no back step, one particle

n. of steps x component y component
mean s.d. mean s.d.

40 -.003 .20 -.0008 .19
80 -.01 .54 -.019 .56
120 -.01 .84 -.027 1.04
160 -.016 .94 -.02 1.62

Figure 1: Some ship trajectories (explained in the text)
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In Figure 1 we plot a sample ship path, its reconstruction, and the
reconstructions obtained (i) when the initial data for the reconstruction
are strongly perturbed (here, the initial data for

�!��°
were perturbed

initially by, respectively,
% O and

% ã
), and (ii) when the value of

H
as-

sumed in the reconstruction is random:
H8� R 
5H V ��ë�H V � , where

H V
is the constant value used until now and

ëm�«,U% ã
but the calculation

is otherwise identical. This produces variations in
H

of the order ofã�,>ì
; any larger variance in the perturbations produced here a negative

value of
H

. The differences between the reconstructions and the true
path remain within the acceptable range of errors. These graphs show
that the filter has little sensitivity to perturbations (we did not calculate
statistics here because the insensitivity holds for each individual run).

We now show that the parameter
H

can be estimated from the data.
The filter needs an estimate of

H
to function, call this estimate

H
assumed.

If
H

assumed
ª�§H

, the other assumptions used to produce the data set
(e.g. independence of the displacements and of the observations) are
also false, and all one has to do is detect the fallacy. We do it by
picking a trajectory of a particle and computing the quantityí � 
 q	î# 
yÈ � @  ] ��È � ��� # �Q
 qFî# 
 r � @  ] r � ��� #q î# 
yÈ � @  ] È � � # � q î# 
 r � @  ] r � � # %
If the displacements are independent then on the average

í � O ; we
will try to find the real

H
by finding a value of

H
assumed for which this

happens. We chose
­ �Qã�,

(the early part of a trajectory is less noisy
than the later parts).

As we already know, a single run cannot provide an accurate es-
timate of

H
, and accuracy in the reconstruction depends on how many

runs are used. In Table III we display some values of
í

averaged
over 200 and over 3000 runs as a function of the ratio of

H
assumed to the

value of
H

used to generate the data. From the longer computation one
can find the correct value of

H
with an error of about ï ì , while with

200 runs the uncertainty is about O ,�ì . The limited accuracy reported
in previous work can of course be achieved with a single run. A de-
tailed discussion of parameter estimation using our algorithm will be
presented elsewhere.

Table III
The mean of the discriminant D as a function of ð assumed [hð , 30

particlesð assumed [�ð 3000 runs 200 runs
.5 1.15 ñ .01 1.15 ñ .06
.6 1.07 ñ .01 1.07 ñ .06
.7 1.07 ñ .01 1.07 ñ .05
.8 1.04 ñ .01 1.04 ñ .05
.9 1.02 ñ .01 1.02 ñ .05
1.0 1.01 ñ .01 1.00 ñ .05
1.1 .95 ñ .01 1.01 ñ .05
1.2 .95 ñ .01 .95 ñ .04
1.3 .94 ñ .01 .96 ñ .05
1.4 .90 ñ .01 .88 ñ .04
1.5 .89 ñ .01 .88 ñ .04
2.0 .85 ñ .01 .83 ñ .04

Conclusions.
The numerical results for the test problem are comparable to those
produced by other filters. What should be noted is that our filter be-
haves well as the number of particles decreases (in the test problem,
down to a single particle). There is no linearization or other uncon-
trollable approximation. This good behavior persists as the number
of variables increases. The difficulty encountered by Bayesian par-
ticle filters when the number of variables increase is due to the fact
that the relative size of that part of space that the data designate as
probable decreases, so that it is harder for a Bayesian filter to produce
probable samples. This situation can be modeled as the limit of a
problem where both the variance

H
of the model and the variance

¼
of the observation noise tend to zero; it is easy to see that in this limit
our iteration produces the correct trajectories without difficulty. In
[11, 12] Snyder, Bickel, et al. produced a simple many-dimensional
problem where a Bayesian filter collapses because a single particle
hogs all the probability; one can see that in that problem our filter
produces the same weights for all the particles with any number of
variables. We shall exhibit examples of many-dimensional nonlinear
applications of our filter in subsequent publications.
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