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UC Berkeley, Spring 2012

1. (a) There are 3n functions from {1, . . . , n} to {1, 2, 3}.

(b) If n ≤ 3 there are P (3, n) injective functions. Hence, there are 3
when n = 1, 6 when n = 2 and 6 when n = 3. If n > 3, then there
are 0 injective functions; there cannot be a 1-1 function from A
to B if the cardinality of A is greater than the cardinality of B.

(c) By inclusion-exclusion, the answer is

|{f : ran(f) ⊆ {1, 2, 3}}|

−|{f :ran(f) ⊆ {1, 2}}|−|{f :ran(f) ⊆ {1, 3}}|−|{f :ran(f) ⊆ {2, 3}}|

+|{f : ran(f) ⊆ {1}}|+|{f : ran(f) ⊆ {2}}|+|{f : ran(f) ⊆ {3}}|

= 3n − 2n − 2n − 2n + 1 + 1 + 1 = 3n − 3 · 2n + 3

2. Let a and b be any two vertices ofG. If a and b are in different connected
components of G, then there must be an edge from a to b in G. If a
and b are in the same connected component of G, then there must be
a vertex c that is in a different connected component of G from a and
b, and hence in G there path from a to b via c.

3. There are 8 possible outcomes in this experiment, all of them equally
likely. Let X be the random variable that counts the number of edges
that have both endpoints of the same color. By inspection we find that
no outcome satisfies X = 0, six of the outcomes satisfy X = 1, and two
of them satisfy X = 3. The expected value of X is then

E(X) =
0

8
· 0 +

6

8
· 1 +

2

8
· 3 =

12

8
=

3

2
.
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4. We fix the ground set S = {a, b, c, d}, and we consider the relation
R = {(a, b), (b, c), (c, d)}. Then the transitive closure of R equals
R∗ = {(a, b), (b, c), (c, d), (a, c), (b, d), (a, d)}. On the other hand, R2 =
{(a, c), (b, d)}, and R3 = {(a, d)}. Hence R3 is necessary to get R∗.

5. We will prove this claim by induction. For the base case take n = 1.
Note that

f0f1 + f1f2 = 0 · 1 + 1 · 1 = 1 = f 2

2 .

This establishes the claim for n = 1. Now assume the claim is true
for n = k, where k ≥ 1 is some positive integer. Using this inductive
hypothesis and the definition of Fibonacci numbers, we have

f0f1 + f1f2 + ...+ f2k−1f2k + f2kf2k+1 + f2k+1f2k+2

= f 2

2k + f2kf2k+1 + f2k+1f2k+2

= f2k(f2k + f2k+1) + f2k+1f2k+2

= f2kf2k+2 + f2k+1f2k+2

= (f2k + f2k+1)f2k+2

= f2k+2f2k+2

= f 2

2k+2.

This establishes the claim for n = k + 1. Having completed both the
base case n = 1 and the inductive step, we conclude that the claim
holds for all positive integers n.

6. The set of solutions is the empty set. Indeed, suppose x = 6a + 2 =
9b + 3 for some integers a and b. Then 3 · (2a − 3b) = 6a − 9b =
3− 2 = 1. Hence three times an integer equals 1. This is impossible,
so there are no solutions.

7. Let E be the event that x1 = 1, and F be the event that x1 = 1
or x2 = 1. We want to find the conditional probability P (E|F ) =
P (E ∩ F )/P (F ). There are

(

11

3

)

= 165 nonnegative integer solutions
to the equation x1 + x2 + x3 + x4 = 8. P (E ∩ F ) is just the probabilty
that x1 = 1. Since there are

(

9

2

)

= 36 nonnegative integer solutions to
x2 + x3 + x4 = 7, this is equal to 36/165. To find P (F ), we note that
by inclusion-exclusion, there are

(

9

2

)

+
(

9

2

)

−
(

7

1

)

= 65 solutions where
x1 = 1 or x2 = 1. Hence P (F ) = 65/165 and so P (E|F ) = 36/65.
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8. The characteristic polynomial for this recurrence relation is

r3 − 2r2 − r + 2 = (r + 1)(r − 1)(r − 2)

The characteristic roots are r = −1, r = 1, and r = 2. Hence the
solutions to this recurrence are of the form

an = α1 · (−1)n + α2 · 1
n + α3 · 2

n.

To find the constants α1, α2, and α3, we’ll use the initial conditions.
Plugging in n = 0, n = 1, and n = 2, we have

a0 = 1 = α1 + α2 + α3

a1 = 0 = −α1 + α2 + 2α3

a2 = 7 = α1 + α2 + 4α3.

Subtracting the first equation from the third gives that 6 = 3α3, so
α3 = 2. The first two equations then become

−1 = α1 + α2

−4 = −α1 + α2.

Adding these two equations gives−5 = 2α2, so α2 = −5/2. Subtracting
the second equation from the first gives 3 = 2α1, so α1 = 3/2. Hence

an = 3/2 · (−1)n − 5/2 · 1n + 2 · 2n,

which we may rewrite as

an = 2n+1 + (−1)n · 3/2 − 5/2

9. The set B of bit strings with the same number of zeros and ones can
be defined recursively as follows.

(a) The empty string λ is in B.

(b) If x is in B then 0x1 is in B.

(c) If x is in B then 1x0 is in B.

(d) If x and y are in B then xy is in B.
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By structural induction, we can see that every string that the set B
defined above has the same number of zeros and ones. We must prove
the reverse inclusion. Let w be any string that has the same number
of zeros and ones. We may assume that w has length at least 2, by (a).
If the first and last letter in w are different then structural induction
based on cases (b) or (c) shows that w lies in B. Hence suppose that
w starts and ends with the same letter. In that case we claim that
w = xy for some strings x and y with the same number of zeros and
ones. It suffices to show this if w begins and ends with 0. We examine
all proper initial substrings of w from left to right and we count the
number of zeros minus the number of ones. This function starts at 1,
it ends on −1, and it goes up or down by 1 in each step as we go from
left right. Hence the function is 0 for some substring. This gives the
desired partition w = xy, and the proof is complete.

10. Each child receives either two, three or four balloons. The desired
number is the coefficient of x10 in (x2 + x3 + x4)4. It is found to be 10.
So, there are 10 ways of distributing the balloons to the four children.
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