Math 55: Discrete Mathematics Solutions for the Final Exam

UC Berkeley, Spring 2012

- 1. (a) There are 3^n functions from $\{1, ..., n\}$ to $\{1, 2, 3\}$.
 - (b) If $n \leq 3$ there are P(3, n) injective functions. Hence, there are 3 when n = 1, 6 when n = 2 and 6 when n = 3. If n > 3, then there are 0 injective functions; there cannot be a 1-1 function from A to B if the cardinality of A is greater than the cardinality of B.
 - (c) By inclusion-exclusion, the answer is

$$\begin{split} |\{f: \operatorname{ran}(f) \subseteq \{1, 2, 3\}\}| \\ -|\{f: \operatorname{ran}(f) \subseteq \{1, 2\}\}| - |\{f: \operatorname{ran}(f) \subseteq \{1, 3\}\}| - |\{f: \operatorname{ran}(f) \subseteq \{2, 3\}\}| \\ +|\{f: \operatorname{ran}(f) \subseteq \{1\}\}| + |\{f: \operatorname{ran}(f) \subseteq \{2\}\}| + |\{f: \operatorname{ran}(f) \subseteq \{3\}\}| \\ &= 3^n - 2^n - 2^n - 2^n + 1 + 1 + 1 = 3^n - 3 \cdot 2^n + 3 \end{split}$$

- 2. Let a and b be any two vertices of G. If a and b are in different connected components of G, then there must be an edge from a to b in \overline{G} . If a and b are in the same connected component of G, then there must be a vertex c that is in a different connected component of G from a and b, and hence in \overline{G} there path from a to b via c.
- 3. There are 8 possible outcomes in this experiment, all of them equally likely. Let X be the random variable that counts the number of edges that have both endpoints of the same color. By inspection we find that no outcome satisfies X = 0, six of the outcomes satisfy X = 1, and two of them satisfy X = 3. The expected value of X is then

$$E(X) = \frac{0}{8} \cdot 0 + \frac{6}{8} \cdot 1 + \frac{2}{8} \cdot 3 = \frac{12}{8} = \frac{3}{2}.$$

- 4. We fix the ground set $S = \{a, b, c, d\}$, and we consider the relation $R = \{(a, b), (b, c), (c, d)\}$. Then the transitive closure of R equals $R^* = \{(a, b), (b, c), (c, d), (a, c), (b, d), (a, d)\}$. On the other hand, $R^2 = \{(a, c), (b, d)\}$, and $R^3 = \{(a, d)\}$. Hence R^3 is necessary to get R^* .
- 5. We will prove this claim by induction. For the base case take n = 1. Note that

$$f_0f_1 + f_1f_2 = 0 \cdot 1 + 1 \cdot 1 = 1 = f_2^2.$$

This establishes the claim for n = 1. Now assume the claim is true for n = k, where $k \ge 1$ is some positive integer. Using this inductive hypothesis and the definition of Fibonacci numbers, we have

	$f_0f_1 + f_1f_2 + \dots + f_{2k-1}f_{2k} + f_{2k}f_{2k+1} + f_{2k+1}f_{2k+2}$
=	$f_{2k}^2 + f_{2k}f_{2k+1} + f_{2k+1}f_{2k+2}$
=	$f_{2k}(f_{2k} + f_{2k+1}) + f_{2k+1}f_{2k+2}$
=	$f_{2k}f_{2k+2} + f_{2k+1}f_{2k+2}$
=	$(f_{2k} + f_{2k+1})f_{2k+2}$
=	$f_{2k+2}f_{2k+2}$
=	$f_{2k+2}^2.$

This establishes the claim for n = k + 1. Having completed both the base case n = 1 and the inductive step, we conclude that the claim holds for all positive integers n.

- 6. The set of solutions is the empty set. Indeed, suppose x = 6a + 2 = 9b + 3 for some integers a and b. Then $3 \cdot (2a 3b) = 6a 9b = 3 2 = 1$. Hence three times an integer equals 1. This is impossible, so there are no solutions.
- 7. Let *E* be the event that $x_1 = 1$, and *F* be the event that $x_1 = 1$ or $x_2 = 1$. We want to find the conditional probability $P(E|F) = P(E \cap F)/P(F)$. There are $\binom{11}{3} = 165$ nonnegative integer solutions to the equation $x_1 + x_2 + x_3 + x_4 = 8$. $P(E \cap F)$ is just the probability that $x_1 = 1$. Since there are $\binom{9}{2} = 36$ nonnegative integer solutions to $x_2 + x_3 + x_4 = 7$, this is equal to 36/165. To find P(F), we note that by inclusion-exclusion, there are $\binom{9}{2} + \binom{9}{2} - \binom{7}{1} = 65$ solutions where $x_1 = 1$ or $x_2 = 1$. Hence P(F) = 65/165 and so P(E|F) = 36/65.

8. The characteristic polynomial for this recurrence relation is

$$r^{3} - 2r^{2} - r + 2 = (r+1)(r-1)(r-2)$$

The characteristic roots are r = -1, r = 1, and r = 2. Hence the solutions to this recurrence are of the form

$$a_n = \alpha_1 \cdot (-1)^n + \alpha_2 \cdot 1^n + \alpha_3 \cdot 2^n.$$

To find the constants α_1, α_2 , and α_3 , we'll use the initial conditions. Plugging in n = 0, n = 1, and n = 2, we have

$$a_0 = 1 = \alpha_1 + \alpha_2 + \alpha_3$$

 $a_1 = 0 = -\alpha_1 + \alpha_2 + 2\alpha_3$
 $a_2 = 7 = \alpha_1 + \alpha_2 + 4\alpha_3.$

Subtracting the first equation from the third gives that $6 = 3\alpha_3$, so $\alpha_3 = 2$. The first two equations then become

$$-1 = \alpha_1 + \alpha_2$$
$$-4 = -\alpha_1 + \alpha_2.$$

Adding these two equations gives $-5 = 2\alpha_2$, so $\alpha_2 = -5/2$. Subtracting the second equation from the first gives $3 = 2\alpha_1$, so $\alpha_1 = 3/2$. Hence

$$a_n = 3/2 \cdot (-1)^n - 5/2 \cdot 1^n + 2 \cdot 2^n,$$

which we may rewrite as

$$a_n = 2^{n+1} + (-1)^n \cdot 3/2 - 5/2$$

- 9. The set \mathcal{B} of bit strings with the same number of zeros and ones can be defined recursively as follows.
 - (a) The empty string λ is in \mathcal{B} .
 - (b) If x is in \mathcal{B} then 0x1 is in \mathcal{B} .
 - (c) If x is in \mathcal{B} then 1x0 is in \mathcal{B} .
 - (d) If x and y are in \mathcal{B} then xy is in \mathcal{B} .

By structural induction, we can see that every string that the set \mathcal{B} defined above has the same number of zeros and ones. We must prove the reverse inclusion. Let w be any string that has the same number of zeros and ones. We may assume that w has length at least 2, by (a). If the first and last letter in w are different then structural induction based on cases (b) or (c) shows that w lies in \mathcal{B} . Hence suppose that w starts and ends with the same letter. In that case we claim that w = xy for some strings x and y with the same number of zeros and ones. It suffices to show this if w begins and ends with 0. We examine all proper initial substrings of w from left to right and we count the number of zeros minus the number of ones. This function starts at 1, it ends on -1, and it goes up or down by 1 in each step as we go from left right. Hence the function is 0 for some substring. This gives the desired partition w = xy, and the proof is complete.

10. Each child receives either two, three or four balloons. The desired number is the coefficient of x^{10} in $(x^2 + x^3 + x^4)^4$. It is found to be 10. So, there are 10 ways of distributing the balloons to the four children.