Math 55, First Midterm Exam SOLUTIONS

(1) This problem is $\# 31$ in Section 1.5 on page 67 of Rosen's book. We use the methods explained in the subsection Negating Nested Quantifiers on pages 63-64 to solve these.
(a) The negation is obtained by switching the quantifiers: $\exists x \forall y \exists z \neg T(x, y, z)$.
(b) Negation takes disjunction into conjunction: $\exists x \forall y \neg P(x, y) \wedge \exists x \forall y \neg Q(x, y)$.
(c) Conjunction becomes disjunction: $\exists x \forall y(\neg P(x, y) \vee \forall z \neg R(x, y, z))$.
(d) We use that $p \rightarrow q$ means $\neg p \vee q$ to find the negation $\exists x \forall y(P(x, y) \wedge \neg Q(x, y))$.
(2) We use the method described in the proof of the Chinese Remainder Theorem. We set $m_{1}=7, m_{2}=8$, and $m_{3}=9$, as well as $M_{1}=8 \cdot 9=72, M_{2}=7 \cdot 9=63$ and $M_{3}=7 \cdot 8=56$. For $i=1,2,3$ we need to compute an inverse y_{i} of M_{i} modulo m_{i}.

We can take $y_{1}=4$ because $4 \cdot 72 \equiv 4 \cdot 2 \equiv 1(\bmod 7)$, we can take $y_{2}=-1$ because $(-1) \cdot 63 \equiv(-1)(-1) \equiv 1(\bmod 8)$, and we can take $y_{3}=5$ because $5 \cdot 56 \equiv 5 \cdot 2 \equiv 1(\bmod 9)$. The desired solution is found to be
$1 y_{1} M_{1}+3 y_{2} M_{2}+2 y_{3} M_{3}=1 \cdot 4 \cdot 72+3 \cdot(-1) \cdot 63+2 \cdot 5 \cdot 56=288-189+560=659$.

If we subtract $504=7 \cdot 8 \cdot 9$ then we obtain the smallest positive integer solution $n=\mathbf{1 5 5}$.
(3) The largest amount of postage which cannot be formed with 5 -cent and 6 -cent stamps is 29 cents. This can be found by trial and error, or by the computing Frobenius number as $5 \cdot 6-5-6=19$. Below 19 cents, precisely the following positive integers can be expressed:

$$
5,6,10,11,12,15,16,17,18
$$

Our conjecture states: Every amount of postage of 20 cents or more can be formed using just 5 -cent and 6 -cent stamps. The proof is analogous to that in Example 4 on page 337:

We will use strong induction to prove this result. Let $P(n)$ be the statement that postage of n cents can be formed using 5 -cent and 6 -cent stamps.

Basis step: The propositions $P(20), P(21), P(22), P(23)$ and $P(24)$ are true because $20=5+5+5+5,21=5+5+5+6,22=5+5+6+6,23=5+6+6+6$, and $24=6+6+6+6$.

Inductive step: The inductive hypothesis is the statement $P(j)$ is true for $20 \leq j \leq k$ where k is an integer with $k \geq 24$. Assuming this to be the case, we need to show that $P(k+1)$ is true. Using the inductive hypothesis we can assume that $P(k-4)$ is true because $k-4$ must be at least 20 . Hence we can form postage of $k-4$ cents using 5 -cent and 6 -cent stamps. Just add one extra 5 -cent stamp to the solution for $k-4$ cents and get postage for $k+1$ cents. Hence $P(k+1)$ is true.

Because we have completed the basis step and the inductive step of a strong induction proof, we know by strong induction that $P(n)$ is true for all integers $n \geq 20$.
(4) We use Fermat's Little Theorem (Theorem 3 in Section 4.4 on page 281) which states that $a^{p-1} \equiv 1(\bmod p)$ for all primes p and all integers a not divisible by p.
(a) By Fermat's Little Theorem, we have $19^{12} \equiv 1(\bmod 13)$, and therefore

$$
19^{145}=19^{12 \cdot 12+1}=\left(19^{12}\right)^{12} \cdot 19 \equiv 1^{12} \cdot 19=19 \equiv \mathbf{6}(\bmod 13) .
$$

(b) By Fermat's Little Theorem, we have $(-12)^{6} \equiv 1(\bmod 7)$. We also note that $50 \equiv 1(\bmod 7)$. We conclude $(-12)^{36} \cdot 50^{19} \equiv\left((-12)^{6}\right)^{6} \cdot 1^{19} \equiv \mathbf{1}(\bmod 7)$.
(5) This problem is \# 11 in Section 2.5 on page 176 of Rosen's book. The set \mathbf{Z}^{+}of all positive integers is countably infinite. We also use the fact that any closed interval $[a, b]$, where a and b are real numbers satisfying $a<b$, is an uncountable set.
(a) Let $A=[0,1]$ and $B=[1,2]$. Then $A \cap B=\{1\}$, which is a finite set.
(b) Let $A=[0,1] \cup \mathbf{Z}^{+}$and $B=[1,2] \cup \mathbf{Z}^{+}$. Then $A \cap B=\mathbf{Z}^{+}$is countably infinite.
(c) Let $A=[0,1]$ and $B=[0,1]$. Then $A \cap B=[0,1]$ is uncountable.

