Orbitopes and Theta bodies

Raman Sanyal (UC Berkeley)

based on joint work with
Bernd Sturmfels and Frank Sottile
and ongoing work with
Philipp Rostalski

Or•bi•tope ['or bi tovp]. an orbitope is the convex hull of the orbit of an element v in a real representation V of a compact group G,

$$
\operatorname{conv}(G \cdot v)=\operatorname{conv}\{g \cdot A: g \in G\} \subset V .
$$

\mathfrak{S}_{n}-orbitope

$S O(n)$-orbitope

Or•bi•tope ['or bi toup]. an orbitope is the convex hull of the orbit of an element v in a real representation V of a compact group G,

$$
\operatorname{conv}(G \cdot v)=\operatorname{conv}\{g \cdot A: g \in G\} \subset V
$$

\mathfrak{S}_{n}-orbitope

$S O(n)$-orbitope
here: G linear algebraic group, V rational representation

- $G \cdot v$ real algebraic variety and $\operatorname{conv}(G \cdot v)$ convex semi-algebraic set

Or•bi•tope ['or bi tovp]. an orbitope is the convex hull of the orbit of an element v in a real representation V of a compact group G,

$$
\operatorname{conv}(G \cdot v)=\operatorname{conv}\{g \cdot A: g \in G\} \subset V
$$

\mathfrak{S}_{n}-orbitope

$S O(n)$-orbitope
here: G linear algebraic group, V rational representation

- $G \cdot v$ real algebraic variety and $\operatorname{conv}(G \cdot v)$ convex semi-algebraic set

Perspectives of Convex Algebraic Geometry

Convex geometry: faces, face lattices, dual bodies
Algebraic geometry: algebraic boundary, its equation, Whitney stratification Optimization: How to optimize over an orbitope?

Why do we care?

finite groups

- classic geometry platonic solids, Permutahedra, Birkhoff polytopes, ...
- combinatorial optimization (see [Onn'93]) matching polytope, traveling salesman polytope, graph isomorphism, ...

compact groups

- protein structure prediction [Longinetti-Sgheri-Sottile'08] magnetic susceptibility of folding proteins \rightarrow SO(3)-orbitopes
- Calibrated geometries à la [Harvey-Lawson'82] 'local geometry’ of area-minimizing smooth manifolds faces of Grassmann orbitopes: convex hull of Grassmann manifold
- norm balls with transitive G-action balls, ellipses, operator norms, nuclear norms,...
- non-negative trigonometric polyn. are dual to Carathéodory orbitopes
- non-negative k-forms are dual to Veronese orbitopes
fascinating objects - plenty in supply!

How to compute with orbitopes? How to represent them?

Basic question: What is the dimension of a face of \mathcal{O}_{v} in a given direction?

How to compute with orbitopes? How to represent them?

Basic question: What is the dimension of a face of \mathcal{O}_{v} in a given direction?
Easy, if orbitope can be represented as spectrahedron, i.e. feasible region of semidefinite program:
$S=\left\{y: A_{0}+y_{1} A_{1}+\cdots+y_{d} A_{d} \succeq 0\right\}$ (positive semidefinite)
A_{0}, \ldots, A_{d} symmetric $n \times n$-matrices.
S is a polyhedron if the A_{i} are commuting.
Example: Set of symmetric matrices A with eigenvalues at most λ

$$
\lambda i d-A \succeq 0
$$

How to compute with orbitopes? How to represent them?

Basic question: What is the dimension of a face of \mathcal{O}_{v} in a given direction?
Easy, if orbitope can be represented as spectrahedron, i.e. feasible region of semidefinite program:
$S=\left\{y: A_{0}+y_{1} A_{1}+\cdots+y_{d} A_{d} \succeq 0\right\}$ (positive semidefinite)
A_{0}, \ldots, A_{d} symmetric $n \times n$-matrices.
S is a polyhedron if the A_{i} are commuting.
Example: Set of symmetric matrices A with eigenvalues at most λ

$$
\lambda i d-A \succeq 0
$$

Further Benefits

- information about facial structure; e.g. all faces exposed!
- readily available presentation for algebraic boundary

Caveat: Class of spectrahedra not closed under projection!
Alternatives: spectrahedral shadows such as Theta bodies

60 second commercial: Project proposals (with Philipp)

When is a spectrahedron a polytope?

$$
S=\left\{y: A_{0}+y_{1} A_{1}+\cdots+y_{d} A_{d} \succeq 0\right\}
$$

If the A_{i} do not commute, it might still be a polytope.
How do you check that algorithmically?
How do you prove that theoretically?

Is there such a 3-dim'I spectrahedron?

I.e. smooth boundary except for a single edge?
 If No then this has intersting consequences for hyperbolic polynomials...
Degtyarev and Itenberg construct interesting/extremal 3 -spectrahedra with 10 singular points in the boundary. Maybe degenerations thereof?
Kind of a sub-project to Anand Kulkarni projects regarding the combinatorial types of 3 -spectrahedra.

In this talk

Tautological orbitopes for $O(n)$ and $S O(n)$

$$
\mathcal{O}=\operatorname{conv}\{\text { (special) orthogonal matrices }\} \subset \mathbb{R}^{n \times n}
$$

(Tautological orbitope is convex hull over the representation $G \subset \operatorname{End}(V)$) \mathcal{O} is the norm ball in the operator norm for $\mathbb{R}^{n \times n}$

Grassmann orbitopes

$$
\mathcal{G}(k, n)=\operatorname{conv}\left\{\text { oriented } k \text {-dim subspaces of } \mathbb{R}^{n}\right\} \subset \wedge_{k} \mathbb{R}^{n}
$$

Known as the mass ball in differential geometry

Tautological orbitope for the orthogonal group

$$
\mathcal{O}_{n}=\operatorname{conv}(O(n))=\operatorname{conv}\left\{g \in \mathbb{R}^{n \times n}: g \cdot g^{T}=\operatorname{Id}\right\}
$$

- \mathcal{O}_{n} convex body of dimension n^{2}
- all faces are exposed and isomorphic to \mathcal{O}_{k} for $k \leq n$
- equation algebraic boundary is $f(A)=\operatorname{det}\left(A \cdot A^{T}-\mathrm{Id}\right)$
- \mathcal{O}_{n} is the spectrahedron

$$
A:\left(\begin{array}{cc}
\mathrm{Id} & A \\
A^{T} & \mathrm{Id}
\end{array}\right) \succeq 0
$$

Tautological orbitope for the orthogonal group

$$
\mathcal{O}_{n}=\operatorname{conv}(O(n))=\operatorname{conv}\left\{g \in \mathbb{R}^{n \times n}: g \cdot g^{T}=\operatorname{Id}\right\}
$$

- \mathcal{O}_{n} convex body of dimension n^{2}
- all faces are exposed and isomorphic to \mathcal{O}_{k} for $k \leq n$
- equation algebraic boundary is $f(A)=\operatorname{det}\left(A \cdot A^{T}-\mathrm{Id}\right)$
- \mathcal{O}_{n} is the spectrahedron

$$
A:\left(\begin{array}{cc}
\mathrm{Id} & A \\
A^{T} & \mathrm{Id}
\end{array}\right) \succeq 0
$$

Key observation

T^{n} diagonal matrices, $\operatorname{Pr}_{T^{n}}: \mathbb{R}^{n \times n} \rightarrow T^{n}$ orthogonal projection

$$
\left.\mathcal{O}_{n} \cap T^{n}=\operatorname{Pr}_{T^{n}}\left(\mathcal{O}_{n}\right)=[-1,+1]^{n} \text { (} n \text {-cube }\right)
$$

Tautological orbitope for the orthogonal group

$$
\mathcal{O}_{n}=\operatorname{conv}(O(n))=\operatorname{conv}\left\{g \in \mathbb{R}^{n \times n}: g \cdot g^{T}=\operatorname{Id}\right\}
$$

- \mathcal{O}_{n} convex body of dimension n^{2}
- all faces are exposed and isomorphic to \mathcal{O}_{k} for $k \leq n$
- equation algebraic boundary is $f(A)=\operatorname{det}\left(A \cdot A^{T}-\mathrm{Id}\right)$
- \mathcal{O}_{n} is the spectrahedron

$$
A:\left(\begin{array}{cc}
\mathrm{Id} & A \\
A^{T} & \mathrm{Id}
\end{array}\right) \succeq 0
$$

Key observation

T^{n} diagonal matrices, $\operatorname{Pr}_{T^{n}}: \mathbb{R}^{n \times n} \rightarrow T^{n}$ orthogonal projection

$$
\left.\mathcal{O}_{n} \cap T^{n}=\operatorname{Pr}_{T^{n}}\left(\mathcal{O}_{n}\right)=[-1,+1]^{n} \text { (} n \text {-cube }\right)
$$

- \mathcal{O}_{n} is the unit ball for the operator norm (=max singular value ≤ 1) \rightarrow projects to unit ball for ℓ_{∞}-norm
- dual body \mathcal{O}_{n}° is the unit ball for the nuclear norm (=sum of sing. vals ≤ 1) \rightarrow projects to unit ball for ℓ_{1}-norm

Tautological orbitope for the special orthogonal group

$$
\mathcal{S O}_{n}=\operatorname{conv}(S O(n))=\operatorname{conv}\left\{g \in \mathbb{R}^{n \times n}: g \cdot g^{T}=\operatorname{Id}, \operatorname{det}(g)=1\right\}
$$

- $\mathcal{S O}_{n}$ convex body of dimension n^{2}, for $n \geq 3$
- faces are linearly isomorphic to $\mathcal{S O}_{k}$ for $k \leq n$ or free spectrahedra

$$
\mathcal{F}_{k}=\operatorname{conv}\left\{u u^{T}:\|u\|=1\right\}=\mathrm{PSD}_{k} \cap\{\text { trace }=1\} \subset \mathbb{R}^{k \times k}
$$

- equation of the algebraic boundary is not known
- is $\mathcal{S O}_{n}$ a spectrahedron???

Tautological orbitope for the special orthogonal group

$$
\mathcal{S O}_{n}=\operatorname{conv}(S O(n))=\operatorname{conv}\left\{g \in \mathbb{R}^{n \times n}: g \cdot g^{T}=\operatorname{Id}, \operatorname{det}(g)=1\right\}
$$

- $\mathcal{S O}_{n}$ convex body of dimension n^{2}, for $n \geq 3$
- faces are linearly isomorphic to $\mathcal{S O}_{k}$ for $k \leq n$ or free spectrahedra

$$
\mathcal{F}_{k}=\operatorname{conv}\left\{u u^{T}:\|u\|=1\right\}=\mathrm{PSD}_{k} \cap\{\text { trace }=1\} \subset \mathbb{R}^{k \times k}
$$

- equation of the algebraic boundary is not known
- is $\mathcal{S O}_{n}$ a spectrahedron???
T^{n} diagonal matrices, $\operatorname{Pr}_{T^{n}}: \mathbb{R}^{n \times n} \rightarrow T^{n}$ orthogonal projection

$$
\mathcal{S O}_{n} \cap T^{n}=\operatorname{Pr}_{T^{n}}\left(\mathcal{S O}_{n}\right)=H_{n}(n \text {-halfcube })
$$

Tautological orbitope for the special orthogonal group

$$
\mathcal{S O}_{n}=\operatorname{conv}(S O(n))=\operatorname{conv}\left\{g \in \mathbb{R}^{n \times n}: g \cdot g^{T}=\operatorname{Id}, \operatorname{det}(g)=1\right\}
$$

- $\mathcal{S O}_{n}$ convex body of dimension n^{2}, for $n \geq 3$
- faces are linearly isomorphic to $\mathcal{S O}_{k}$ for $k \leq n$ or free spectrahedra

$$
\mathcal{F}_{k}=\operatorname{conv}\left\{u u^{T}:\|u\|=1\right\}=\mathrm{PSD}_{k} \cap\{\text { trace }=1\} \subset \mathbb{R}^{k \times k}
$$

- equation of the algebraic boundary is not known
- is $\mathcal{S O}_{n}$ a spectrahedron???
T^{n} diagonal matrices, $\operatorname{Pr}_{T^{n}}: \mathbb{R}^{n \times n} \rightarrow T^{n}$ orthogonal projection

$$
\mathcal{S O}_{n} \cap T^{n}=\operatorname{Pr}_{T^{n}}\left(\mathcal{S O}_{n}\right)=H_{n}(n \text {-halfcube })
$$

n-Halfcube

$$
H_{n}=\operatorname{conv}\left\{x \in\{-1,+1\}^{n}: \text { even number of } x_{i}=-1\right\}
$$

for $n=1,2,3,4$ the halfcubes are: point, segment, tetrahedron, octahedron

Grassmann orbitopes

Exterior algebra $\wedge_{k} \mathbb{R}^{n}=\mathbb{R}\left\{e_{J}: J \subseteq[n],|J|=k\right\} \cong \mathbb{R}^{\binom{n}{k}}$

$$
\mathbb{R}^{k \times n} \ni\left(v_{1}, \ldots, v_{k}\right) \mapsto v_{1} \wedge \cdots \wedge v_{k}=\sum_{J} p_{J} e_{J}
$$

$S O(n)$ acts on $\wedge_{k} \mathbb{R}^{n}$ by $g \cdot v_{1} \wedge \cdots \wedge v_{k}=g v_{1} \wedge \cdots \wedge g v_{k}$

Grassmann orbitopes

Exterior algebra $\wedge_{k} \mathbb{R}^{n}=\mathbb{R}\left\{e_{J}: J \subseteq[n],|J|=k\right\} \cong \mathbb{R}^{\binom{n}{k}}$

$$
\mathbb{R}^{k \times n} \ni\left(v_{1}, \ldots, v_{k}\right) \mapsto v_{1} \wedge \cdots \wedge v_{k}=\sum_{J} p_{J} e_{J}
$$

$S O(n)$ acts on $\wedge_{k} \mathbb{R}^{n}$ by $g \cdot v_{1} \wedge \cdots \wedge v_{k}=g v_{1} \wedge \cdots \wedge g v_{k}$
Grassmannian of oriented k-planes

$$
G(k, n):=S O(n) \cdot e_{1} \wedge e_{2} \wedge \cdots \wedge e_{k}
$$

Grassmann orbitope $\mathcal{G}(k, n)=\operatorname{conv} G(k, n)$

Grassmann orbitopes

Exterior algebra $\wedge_{k} \mathbb{R}^{n}=\mathbb{R}\left\{e_{J}: J \subseteq[n],|J|=k\right\} \cong \mathbb{R}\binom{n}{k}$

$$
\mathbb{R}^{k \times n} \ni\left(v_{1}, \ldots, v_{k}\right) \mapsto v_{1} \wedge \cdots \wedge v_{k}=\sum_{J} p_{J} e_{J}
$$

$S O(n)$ acts on $\wedge_{k} \mathbb{R}^{n}$ by $g \cdot v_{1} \wedge \cdots \wedge v_{k}=g v_{1} \wedge \cdots \wedge g v_{k}$
Grassmannian of oriented k-planes

$$
G(k, n):=S O(n) \cdot e_{1} \wedge e_{2} \wedge \cdots \wedge e_{k}
$$

Grassmann orbitope $\mathcal{G}(k, n)=\operatorname{conv} G(k, n)$
$v_{1} \wedge \cdots \wedge v_{k}$ decomposable and $p=\left(p_{J}\right)_{J}$ decomposable iff p satisfies the Plücker relations $\mathrm{I}_{k, n} \subset \mathbb{R}\left[x_{J}:|J|=k\right]$

Grassmann orbitopes

Exterior algebra $\wedge_{k} \mathbb{R}^{n}=\mathbb{R}\left\{e_{J}: J \subseteq[n],|J|=k\right\} \cong \mathbb{R}\binom{n}{k}$

$$
\mathbb{R}^{k \times n} \ni\left(v_{1}, \ldots, v_{k}\right) \mapsto v_{1} \wedge \cdots \wedge v_{k}=\sum_{J} p_{J} e_{J}
$$

$S O(n)$ acts on $\wedge_{k} \mathbb{R}^{n}$ by $g \cdot v_{1} \wedge \cdots \wedge v_{k}=g v_{1} \wedge \cdots \wedge g v_{k}$
Grassmannian of oriented k-planes

$$
G(k, n):=S O(n) \cdot e_{1} \wedge e_{2} \wedge \cdots \wedge e_{k}
$$

Grassmann orbitope $\mathcal{G}(k, n)=\operatorname{conv} G(k, n)$
$v_{1} \wedge \cdots \wedge v_{k}$ decomposable and $p=\left(p_{\jmath}\right)_{\jmath}$ decomposable iff p satisfies the Plücker relations $\mathrm{I}_{k, n} \subset \mathbb{R}\left[x_{J}:|J|=k\right]$

Grassmannian $G(k, n)=V\left(I_{k, n}\right) \cap$ \{unit sphere $\}$ is a compact real variety

The Grassmannian $G(2,4)$ of 2-planes in 4-space
$\wedge_{2} \mathbb{R}^{4}=\mathbb{R}\left\{e_{i} \wedge e_{j}: 1 \leq i<j \leq 4\right\}=\mathbb{R}\left\{p_{12}, p_{13}, p_{14}, p_{23}, p_{24}, p_{34}\right\}$ 6-dim'l vector space

The Grassmannian $G(2,4)$ of 2-planes in 4-space

$\wedge_{2} \mathbb{R}^{4}=\mathbb{R}\left\{e_{i} \wedge e_{j}: 1 \leq i<j \leq 4\right\}=\mathbb{R}\left\{p_{12}, p_{13}, p_{14}, p_{23}, p_{24}, p_{34}\right\} 6$-dim'l vector space for $u, v \in \mathbb{R}^{4}$

$$
u \wedge v=p_{12} e_{12}+\cdots+p_{34} e_{34} \quad \text { with } \quad p_{i j}=\operatorname{det}\left(\begin{array}{cc}
u_{i} & v_{i} \\
u_{j} & v_{j}
\end{array}\right)
$$

The Grassmannian $G(2,4)$ of 2-planes in 4-space

$\wedge_{2} \mathbb{R}^{4}=\mathbb{R}\left\{e_{i} \wedge e_{j}: 1 \leq i<j \leq 4\right\}=\mathbb{R}\left\{p_{12}, p_{13}, p_{14}, p_{23}, p_{24}, p_{34}\right\}$ 6-dim'| vector space for $u, v \in \mathbb{R}^{4}$

$$
u \wedge v=p_{12} e_{12}+\cdots+p_{34} e_{34} \quad \text { with } \quad p_{i j}=\operatorname{det}\left(\begin{array}{ll}
u_{i} & v_{i} \\
u_{j} & v_{j}
\end{array}\right)
$$

Plücker relations + unit sphere determine unit decomposable vectors

$$
\left\langle p_{12} p_{34}-p_{13} p_{24}+p_{14} p_{23}, p_{12}^{2}+p_{13}^{2}+p_{14}^{2}+p_{23}^{2}+p_{24}^{2}+p_{34}^{2}-1\right\rangle
$$

The Grassmannian $G(2,4)$ of 2-planes in 4-space

$\wedge_{2} \mathbb{R}^{4}=\mathbb{R}\left\{e_{i} \wedge e_{j}: 1 \leq i<j \leq 4\right\}=\mathbb{R}\left\{p_{12}, p_{13}, p_{14}, p_{23}, p_{24}, p_{34}\right\} 6$-dim'l vector space for $u, v \in \mathbb{R}^{4}$

$$
u \wedge v=p_{12} e_{12}+\cdots+p_{34} e_{34} \quad \text { with } \quad p_{i j}=\operatorname{det}\left(\begin{array}{cc}
u_{i} & v_{i} \\
u_{j} & v_{j}
\end{array}\right)
$$

Plücker relations + unit sphere determine unit decomposable vectors

$$
\left\langle p_{12} p_{34}-p_{13} p_{24}+p_{14} p_{23}, p_{12}^{2}+p_{13}^{2}+p_{14}^{2}+p_{23}^{2}+p_{24}^{2}+p_{34}^{2}-1\right\rangle
$$

A linear change of coordinates

$$
\begin{array}{lll}
u=\frac{1}{\sqrt{2}}\left(p_{12}+p_{34}\right), & v=\frac{1}{\sqrt{2}}\left(p_{13}-p_{24}\right), & w=\frac{1}{\sqrt{2}}\left(p_{14}+p_{23}\right), \\
x=\frac{1}{\sqrt{2}}\left(p_{12}-p_{34}\right), & y=\frac{1}{\sqrt{2}}\left(p_{13}+p_{24}\right), & z=\frac{1}{\sqrt{2}}\left(p_{14}-p_{23}\right) .
\end{array}
$$

yields

$$
\left\langle u^{2}+v^{2}+w^{2}-\frac{1}{2}, x^{2}+y^{2}+z^{2}-\frac{1}{2}\right\rangle \subset \mathbb{R}[x, y, z, u, v, w]
$$

So, $G(2,4)=S^{2} \times S^{2}$ is the Cartesian product of two 2-spheres.

$$
\mathcal{G}(2,4)=\operatorname{conv} G(2,4) \text { is the Cartesian product of two 3-balls. }
$$

Area-minimizing manifolds and Grassmann orbitopes

Audience participation: Which 1-manifold is area-minimizing?

a smooth k-dim'l manifold M is area-minimizing if it has the least volume among all manifolds with the same boundary.

Area-minimizing manifolds and Grassmann orbitopes

Audience participation: Which 1-manifold is area-minimizing?

a smooth k-dim'l manifold M is area-minimizing if it has the least volume among all manifolds with the same boundary.

Theorem [Harvey-Lawson'82]. If all tangent k-planes of $M \subset \mathbb{R}^{n}$ lie in a common proper face F of $\mathcal{G}(k, n)$, then M is area-minimizing.

Area-minimizing manifolds and Grassmann orbitopes

Audience participation: Which 1-manifold is area-minimizing?

a smooth k-dim'l manifold M is area-minimizing if it has the least volume among all manifolds with the same boundary.

Theorem [Harvey-Lawson'82]. If all tangent k-planes of $M \subset \mathbb{R}^{n}$ lie in a common proper face F of $\mathcal{G}(k, n)$, then M is area-minimizing.

Area-minimizing manifolds and Grassmann orbitopes

Audience participation: Which 1-manifold is area-minimizing?

a smooth k-dim'l manifold M is area-minimizing if it has the least volume among all manifolds with the same boundary.

Theorem [Harvey-Lawson'82]. If all tangent k-planes of $M \subset \mathbb{R}^{n}$ lie in a common proper face F of $\mathcal{G}(k, n)$, then M is area-minimizing.

The collection of extreme points $F \cap G(k, n)$ is called a calibrated geometry. Elements of the dual face F^{\diamond} are calibrations.

What we know about Grassmann orbitopes

$\mathcal{G}(n, k)$ is a convex body of dimension $\operatorname{dim} \mathcal{G}(k, n)=\binom{n}{k}$

- $\mathcal{G}(1, n)$ and $\mathcal{G}(n-1, n)$ are balls
line segments are area-minimizing

What we know about Grassmann orbitopes

$\mathcal{G}(n, k)$ is a convex body of dimension $\operatorname{dim} \mathcal{G}(k, n)=\binom{n}{k}$

- $\mathcal{G}(1, n)$ and $\mathcal{G}(n-1, n)$ are balls line segments are area-minimizing
- $\mathcal{G}(2,4)$ linearly isomorphic to product of two 3-balls positive dimensional faces are 3-balls

What we know about Grassmann orbitopes

$\mathcal{G}(n, k)$ is a convex body of dimension $\operatorname{dim} \mathcal{G}(k, n)=\binom{n}{k}$

- $\mathcal{G}(1, n)$ and $\mathcal{G}(n-1, n)$ are balls line segments are area-minimizing
- $\mathcal{G}(2,4)$ linearly isomorphic to product of two 3-balls positive dimensional faces are 3-balls
- $\mathcal{G}(2, n)$ and $\mathcal{G}(n-2, n)$ are rank 2 skew Schur-Horn orbitopes up to symmetry only one face of a given dimension calibrated geometries correspond to complex structures

What we know about Grassmann orbitopes

$\mathcal{G}(n, k)$ is a convex body of dimension $\operatorname{dim} \mathcal{G}(k, n)=\binom{n}{k}$

- $\mathcal{G}(1, n)$ and $\mathcal{G}(n-1, n)$ are balls line segments are area-minimizing
- $\mathcal{G}(2,4)$ linearly isomorphic to product of two 3-balls positive dimensional faces are 3-balls
- $\mathcal{G}(2, n)$ and $\mathcal{G}(n-2, n)$ are rank 2 skew Schur-Horn orbitopes up to symmetry only one face of a given dimension calibrated geometries correspond to complex structures
- $\mathcal{G}(3,6)$ described in [Dadok-Harvey'83] face-dimensions 0,1 (doubletons), $3\left(\mathbb{C P}^{1}\right.$), and 12 (special Lagrangian) inclusion maximal faces: doubletons, special Lagrangians up to symmetry only finitely many Lagrangians but a moduli of edges non-exposed faces \rightarrow not a spectrahedron!

What we know about Grassmann orbitopes

$\mathcal{G}(n, k)$ is a convex body of dimension $\operatorname{dim} \mathcal{G}(k, n)=\binom{n}{k}$

- $\mathcal{G}(1, n)$ and $\mathcal{G}(n-1, n)$ are balls line segments are area-minimizing
- $\mathcal{G}(2,4)$ linearly isomorphic to product of two 3-balls positive dimensional faces are 3-balls
- $\mathcal{G}(2, n)$ and $\mathcal{G}(n-2, n)$ are rank 2 skew Schur-Horn orbitopes up to symmetry only one face of a given dimension calibrated geometries correspond to complex structures
- $\mathcal{G}(3,6)$ described in [Dadok-Harvey'83] face-dimensions 0,1 (doubletons), $3\left(\mathbb{C P}^{1}\right)$, and 12 (special Lagrangian) inclusion maximal faces: doubletons, special Lagrangians up to symmetry only finitely many Lagrangians but a moduli of edges non-exposed faces \rightarrow not a spectrahedron!
- $\mathcal{G}(3,7)$ is understood but difficult [Harvey-Morgan'86]

What we know about Grassmann orbitopes

$\mathcal{G}(n, k)$ is a convex body of dimension $\operatorname{dim} \mathcal{G}(k, n)=\binom{n}{k}$

- $\mathcal{G}(1, n)$ and $\mathcal{G}(n-1, n)$ are balls line segments are area-minimizing
- $\mathcal{G}(2,4)$ linearly isomorphic to product of two 3-balls positive dimensional faces are 3-balls
- $\mathcal{G}(2, n)$ and $\mathcal{G}(n-2, n)$ are rank 2 skew Schur-Horn orbitopes up to symmetry only one face of a given dimension calibrated geometries correspond to complex structures
- $\mathcal{G}(3,6)$ described in [Dadok-Harvey'83] face-dimensions 0,1 (doubletons), $3\left(\mathbb{C P}^{1}\right)$, and 12 (special Lagrangian) inclusion maximal faces: doubletons, special Lagrangians up to symmetry only finitely many Lagrangians but a moduli of edges non-exposed faces \rightarrow not a spectrahedron!
- $\mathcal{G}(3,7)$ is understood but difficult [Harvey-Morgan'86]
- $\mathcal{G}(4,8)$ partial knowledge, very difficult [Dadok-Harvey-Morgan'88]

What we know about Grassmann orbitopes

$\mathcal{G}(n, k)$ is a convex body of dimension $\operatorname{dim} \mathcal{G}(k, n)=\binom{n}{k}$

- $\mathcal{G}(1, n)$ and $\mathcal{G}(n-1, n)$ are balls line segments are area-minimizing
- $\mathcal{G}(2,4)$ linearly isomorphic to product of two 3-balls positive dimensional faces are 3-balls
- $\mathcal{G}(2, n)$ and $\mathcal{G}(n-2, n)$ are rank 2 skew Schur-Horn orbitopes up to symmetry only one face of a given dimension calibrated geometries correspond to complex structures
- $\mathcal{G}(3,6)$ described in [Dadok-Harvey'83] face-dimensions 0,1 (doubletons), $3\left(\mathbb{C P}^{1}\right)$, and 12 (special Lagrangian) inclusion maximal faces: doubletons, special Lagrangians up to symmetry only finitely many Lagrangians but a moduli of edges non-exposed faces \rightarrow not a spectrahedron!
- $\mathcal{G}(3,7)$ is understood but difficult [Harvey-Morgan'86]
- $\mathcal{G}(4,8)$ partial knowledge, very difficult [Dadok-Harvey-Morgan'88]
- $\mathcal{G}(n, k)$ complete understanding probably hopeless!?

What we know about Grassmann orbitopes

$\mathcal{G}(n, k)$ is a convex body of dimension $\operatorname{dim} \mathcal{G}(k, n)=\binom{n}{k}$

- $\mathcal{G}(1, n)$ and $\mathcal{G}(n-1, n)$ are balls line segments are area-minimizing
- $\mathcal{G}(2,4)$ linearly isomorphic to product of two 3-balls positive dimensional faces are 3-balls
- $\mathcal{G}(2, n)$ and $\mathcal{G}(n-2, n)$ are rank 2 skew Schur-Horn orbitopes up to symmetry only one face of a given dimension calibrated geometries correspond to complex structures
- $\mathcal{G}(3,6)$ described in [Dadok-Harvey'83] face-dimensions 0,1 (doubletons), $3\left(\mathbb{C P}^{1}\right)$, and 12 (special Lagrangian) inclusion maximal faces: doubletons, special Lagrangians up to symmetry only finitely many Lagrangians but a moduli of edges non-exposed faces \rightarrow not a spectrahedron!
- $\mathcal{G}(3,7)$ is understood but difficult [Harvey-Morgan'86]
- $\mathcal{G}(4,8)$ partial knowledge, very difficult [Dadok-Harvey-Morgan'88]
- $\mathcal{G}(n, k)$ complete understanding probably hopeless!?

> What about computer experimentation?

Back to the Basic Question

Basic question: What is the dimension of a face of \mathcal{O}_{v} in direction $\ell(\mathbf{x})$?
The orbit is a real variety $G \cdot v=V_{\mathbb{R}}(\mathrm{I})$ for $\mathrm{I} \subseteq \mathbb{R}[\mathbf{x}]$

Back to the Basic Question

Basic question: What is the dimension of a face of \mathcal{O}_{v} in direction $\ell(\mathbf{x})$?
The orbit is a real variety $G \cdot v=V_{\mathbb{R}}(\mathrm{I})$ for $\mathrm{I} \subseteq \mathbb{R}[\mathrm{x}]$
Rephrased: What is the affine dimension of set of solutions to the optimization problem max $\ell(x)$ subject to $x \in V_{\mathbb{R}}(\mathrm{I})$?

Back to the Basic Question

Basic question: What is the dimension of a face of \mathcal{O}_{v} in direction $\ell(\mathbf{x})$?
The orbit is a real variety $G \cdot v=V_{\mathbb{R}}(\mathrm{I})$ for $\mathrm{I} \subseteq \mathbb{R}[\mathrm{x}]$
Rephrased: What is the affine dimension of set of solutions to the optimization problem max $\ell(x)$ subject to $x \in V_{\mathbb{R}}(\mathrm{I})$?

- Polynomial optimization is hard but powerful relaxations (SOS, moment) are available [Parrilo, Lasserre, Laurent...]!
- The geometry behind (particular) relaxations are called Theta bodies [Gouveia, Parrilo, Thomas'08].
- In particular, Theta bodies are projected spectrahedra.

If the relaxation is exact, then local information about \mathcal{O}_{v} are computable!

SOS relaxations and Theta bodies

Sum-of-Squares relaxation of degree k for $\ell(\mathbf{x})$ and $\mathrm{I} \subset \mathbb{R}[\mathbf{x}]$
$\min \delta$
s.t. $\delta-\ell(\mathbf{x})=\sum_{i=1}^{m} h_{i}(\mathbf{x})^{2} \bmod I$
for $h_{1}, \ldots, h_{m} \in \mathbb{R}[\mathbf{x}]$ polynomials of degree $\leq k . \delta-\ell(\mathbf{x})$ is called k-SOS $\bmod \mathrm{I}$

SOS relaxations and Theta bodies

Sum-of-Squares relaxation of degree k for $\ell(\mathbf{x})$ and $\mathrm{I} \subset \mathbb{R}[\mathbf{x}]$
$\min \delta$

$$
\text { s.t. } \delta-\ell(\mathbf{x})=\sum_{i=1}^{m} h_{i}(\mathbf{x})^{2} \bmod I
$$

for $h_{1}, \ldots, h_{m} \in \mathbb{R}[\mathbf{x}]$ polynomials of degree $\leq k . \delta-\ell(\mathbf{x})$ is called k-SOS $\bmod \mathrm{I}$ The k-th Theta body $\mathrm{TH}_{k}(\mathrm{I}) \subset \mathbb{R}^{n}$ is the convex body bounded by k-SOS supporting planes
$\mathrm{TH}_{k}(\mathrm{I})=\left\{p \in \mathbb{R}^{n}: \delta-\ell(p) \geq 0\right.$ for all $\left.\delta-\ell(\mathbf{x}) k-\mathrm{SOS} \bmod \mathrm{I}\right\}$

SOS relaxations and Theta bodies

Sum-of-Squares relaxation of degree k for $\ell(\mathbf{x})$ and $\mathrm{I} \subset \mathbb{R}[\mathbf{x}]$
$\min \delta$

$$
\text { s.t. } \delta-\ell(\mathbf{x})=\sum_{i=1}^{m} h_{i}(\mathbf{x})^{2} \bmod I
$$

for $h_{1}, \ldots, h_{m} \in \mathbb{R}[\mathbf{x}]$ polynomials of degree $\leq k . \delta-\ell(\mathbf{x})$ is called k-SOS $\bmod \mathrm{I}$ The k-th Theta body $\mathrm{TH}_{k}(\mathrm{I}) \subset \mathbb{R}^{n}$ is the convex body bounded by k-SOS supporting planes

$$
\mathrm{TH}_{k}(\mathrm{I})=\left\{p \in \mathbb{R}^{n}: \delta-\ell(p) \geq 0 \text { for all } \delta-\ell(\mathbf{x}) k-\mathrm{SOS} \bmod \mathrm{I}\right\}
$$

Chain of convex bodies

$$
\mathrm{TH}_{1}(\mathrm{I}) \supseteq \mathrm{TH}_{2}(\mathrm{I}) \supseteq \cdots \supseteq \overline{\operatorname{conv} V_{\mathbb{R}}(\mathrm{I})}
$$

I is TH_{k}-exact if $\mathrm{TH}_{k}(\mathrm{I})=\overline{\operatorname{conv} V_{\mathbb{R}}(\mathrm{I})}$
The Theta rank $\mathrm{TH}-\operatorname{rank}(\mathrm{I})$ is the least k for which I is TH_{k}-exact

Theta ranks

Let $V \subset \mathbb{R}^{n}$ be a finite set and $\mathrm{I}=\mathrm{I}(V) \subset \mathbb{R}[\mathbf{x}]$ its ideal.
A linear function $\ell(\mathbf{x})$ has m-levels with respect to V if $\ell(\mathbf{x})$ takes m distinct values on $V . V$ is m-level if every facet direction is.

Theta ranks

Let $V \subset \mathbb{R}^{n}$ be a finite set and $\mathrm{I}=\mathrm{I}(V) \subset \mathbb{R}[\mathbf{x}]$ its ideal.
A linear function $\ell(\mathbf{x})$ has m-levels with respect to V if $\ell(\mathbf{x})$ takes m distinct values on $V . V$ is m-level if every facet direction is.
Proposition. If every facet direction of $\operatorname{conv}(V)$ has $\leq m$ levels, then I has Theta rank $\leq m-1$. In particular, if V is 2 -level, then V is TH_{1}-exact.

- actual Theta rank might be much smaller!
- SOS relaxations for polytopes might be bad!
- 2-level polytopes are special

Theta ranks

Let $V \subset \mathbb{R}^{n}$ be a finite set and $\mathrm{I}=\mathrm{I}(V) \subset \mathbb{R}[\mathbf{x}]$ its ideal.
A linear function $\ell(\mathbf{x})$ has m-levels with respect to V if $\ell(\mathbf{x})$ takes m distinct values on $V . V$ is m-level if every facet direction is.
Proposition. If every facet direction of $\operatorname{conv}(V)$ has $\leq m$ levels, then I has Theta rank $\leq m-1$. In particular, if V is 2 -level, then V is TH_{1}-exact.

- actual Theta rank might be much smaller!
- SOS relaxations for polytopes might be bad!
- 2-level polytopes are special

Example. TH-rank of the regular heptagon. For what k is $\delta \pm \ell(x) k$-SOS?

Theta ranks

$V \subset \mathbb{R}^{n}$ arbitrary real variety with $\mathrm{I}=\mathrm{I}(V), \mathrm{TH}_{1}$-exact is particularly desirable: geometry determined by convex quadrics, projection of spectrahedron of tractable size.

Theorem.[Gouveia,Parrilo,Thomas'08] If I is TH_{1}-exact, then

$$
\operatorname{conv}(V)=\left\{x \in \mathbb{R}^{n}: q(x) \leq 0 \text { for all } q \in \mathrm{I} \text { convex quadric }\right\}
$$

A useful tool for bounding Theta rank is
Lemma. If $L \subset \mathbb{R}^{n}$ is a linear space such that

$$
\operatorname{conv}(V \cap L)=\operatorname{conv}(V) \cap L
$$

then $\mathrm{TH}-\operatorname{rank}(\mathrm{I}) \geq \mathrm{TH}-\operatorname{rank}(\mathrm{I}+\mathrm{I}(L))$.

- Theta-rank monotone with respect to (empty) faces (L supporting plane)
- Theta-rank can be bounded from above by special cross-sections

Theta ranks

$V \subset \mathbb{R}^{n}$ arbitrary real variety with $\mathrm{I}=\mathrm{I}(V), \mathrm{TH}_{1}$-exact is particularly desirable: geometry determined by convex quadrics, projection of spectrahedron of tractable size.

Theorem.[Gouveia,Parrilo,Thomas'08] If I is TH_{1}-exact, then

$$
\operatorname{conv}(V)=\left\{x \in \mathbb{R}^{n}: q(x) \leq 0 \text { for all } q \in \mathrm{I} \text { convex quadric }\right\}
$$

A useful tool for bounding Theta rank is
Lemma. If $L \subset \mathbb{R}^{n}$ is a linear space such that

$$
\operatorname{conv}(V \cap L)=\operatorname{conv}(V) \cap L
$$

then $\mathrm{TH}-\operatorname{rank}(\mathrm{I}) \geq \mathrm{TH}-\operatorname{rank}(\mathrm{I}+\mathrm{I}(L))$.

- Theta-rank monotone with respect to (empty) faces (L supporting plane)
- Theta-rank can be bounded from above by special cross-sections
- Both $O(n)$ and $S O(n)$ have such special cross-sections
- $G(3,6)$ has such a special cross section, the Segre orbitope

Theta ranks for some Orbitopes

Theta rank for $O(n)$

- cross-section with diagonal matrices $L=T^{n}$

$$
\operatorname{conv}(O(n)) \cap L=[-1,+1]^{n}=\operatorname{conv}\{-1,+1\}^{n}=\operatorname{conv}(O(n) \cap L)
$$

the n-cube is 2 -level $\rightarrow \mathrm{TH}-\operatorname{rank}(O(n)) \geq 2$ (ok, trivial)

- up to symmetry only one facet direction: $\ell(X)=X_{11}$

$$
1-X_{11} \equiv \frac{1}{2}\left(X_{11}-1\right)^{2}+\frac{1}{2} X_{21}^{2}+\cdots+\frac{1}{2} X_{n 1}^{2} \text { on } O(n)
$$

Theta ranks for some Orbitopes

Theta rank for $O(n)$

- cross-section with diagonal matrices $L=T^{n}$

$$
\operatorname{conv}(O(n)) \cap L=[-1,+1]^{n}=\operatorname{conv}\{-1,+1\}^{n}=\operatorname{conv}(O(n) \cap L)
$$

the n-cube is 2 -level $\rightarrow \mathrm{TH}-\operatorname{rank}(O(n)) \geq 2$ (ok, trivial)

- up to symmetry only one facet direction: $\ell(X)=X_{11}$

$$
1-X_{11} \equiv \frac{1}{2}\left(X_{11}-1\right)^{2}+\frac{1}{2} X_{21}^{2}+\cdots+\frac{1}{2} X_{n 1}^{2} \text { on } O(n)
$$

Theta rank for $S O(n)$

- up to symmetry two facet directions: X_{11} is 2-SOS, trace (X) is $\left\lceil\frac{n}{2}\right\rceil-S O S$
- cross-section with diagonal matrices $L=T^{n}$ is the halfcube H_{n}

Theta ranks for some Orbitopes

Theta rank for $O(n)$

- cross-section with diagonal matrices $L=T^{n}$

$$
\operatorname{conv}(O(n)) \cap L=[-1,+1]^{n}=\operatorname{conv}\{-1,+1\}^{n}=\operatorname{conv}(O(n) \cap L)
$$

the n-cube is 2 -level $\rightarrow \operatorname{TH}-\operatorname{rank}(O(n)) \geq 2$ (ok, trivial)

- up to symmetry only one facet direction: $\ell(X)=X_{11}$

$$
1-X_{11} \equiv \frac{1}{2}\left(X_{11}-1\right)^{2}+\frac{1}{2} X_{21}^{2}+\cdots+\frac{1}{2} X_{n 1}^{2} \text { on } O(n)
$$

Theta rank for $S O(n)$

- up to symmetry two facet directions: X_{11} is 2-SOS, trace (X) is $\left\lceil\frac{n}{2}\right\rceil-S O S$
- cross-section with diagonal matrices $L=T^{n}$ is the halfcube H_{n}

Proposition. The n-dim'l halfcube H_{n} is has Theta rank $\left\lceil\frac{n}{2}\right\rceil$. In particular, H_{n} and $S O(n)$ have the same Theta rank.

Slightly simpler yoga as in the case for the heptagon...

Theta rank of Grassmann orbitopes

Theorem. The Grassmann orbitopes $\mathcal{G}(2, n)$ and $\mathcal{G}(n-2, n)$ are TH_{1}-exact.

- there is only one inclusion maximal face up to symmetry
\rightarrow show that facet direction is $1-\mathrm{SOS}$ for $G(k, n)$

Theta rank of Grassmann orbitopes

Theorem. The Grassmann orbitopes $\mathcal{G}(2, n)$ and $\mathcal{G}(n-2, n)$ are TH_{1}-exact.

- there is only one inclusion maximal face up to symmetry
\rightarrow show that facet direction is $1-\mathrm{SOS}$ for $G(k, n)$
based on computer experiments we
Conjecture. All Grassmann orbitopes $\mathcal{G}(k, n)$ are TH_{1}-exact.
For $\mathcal{G}(3,6)$ there are up to symmetry only finitely many special Lagrangian faces but infinitely many doubletons (edges).
\rightarrow show that the family doubleton directions is 1-SOS.
For $\mathcal{G}(3,7)$ and $\mathcal{G}(4,8)$ we recover 'all' known faces.
Experimentation is fast: For $\mathcal{G}(3,9)$ the ideal has $1050+1$ generators on 84 variables. Computations in $<10 \mathrm{~min}$ on laptop

Conjecture of Harvey-Lawson

In their 1982 paper we found that Harvey and Lawson conjecture that if

$$
\lambda-\ell(x) \geq 0 \text { on } \mathcal{G}(k, n)
$$

then there are linear polynomials $h_{1}(\mathbf{x}), \ldots, h_{m}(\mathbf{x})$ such that

$$
\lambda\|x\|^{2}-\ell(x)=\sum_{i} h_{i}(x)^{2} \quad \bmod I_{k, n}
$$

$\mathrm{I}_{k, n}$ is the homogeneous Plücker ideal

Conjecture of Harvey-Lawson

In their 1982 paper we found that Harvey and Lawson conjecture that if

$$
\lambda-\ell(x) \geq 0 \text { on } \mathcal{G}(k, n)
$$

then there are linear polynomials $h_{1}(\mathbf{x}), \ldots, h_{m}(\mathbf{x})$ such that

$$
\lambda\|x\|^{2}-\ell(x)=\sum_{i} h_{i}(x)^{2} \quad \bmod I_{k, n}
$$

$\mathrm{I}_{k, n}$ is the homogeneous Plücker ideal
Theorem. H-L conjecture is equivalent to $G(n, k)$ being TH_{1}-exact.

Take home messages

Orbitopes are a rich class of convex algebraic bodies

- appealing convex, algebraic, and combinatorial properties
- appear throughout mathematics; practical relevance?
- lots of open questions

Take home messages

Orbitopes are a rich class of convex algebraic bodies

- appealing convex, algebraic, and combinatorial properties
- appear throughout mathematics; practical relevance?
- lots of open questions

Theta bodies are an attractive tool for the study convex hulls of varieties

- allow for local study of boundary (if finite TH-rank)
- computational tractable (if small TH-rank)
- characterization of TH_{k}-exact ideals wide open - even 0 -dim'l!

Take home messages

Orbitopes are a rich class of convex algebraic bodies

- appealing convex, algebraic, and combinatorial properties
- appear throughout mathematics; practical relevance?
- lots of open questions

Theta bodies are an attractive tool for the study convex hulls of varieties

- allow for local study of boundary (if finite TH-rank)
- computational tractable (if small TH-rank)
- characterization of TH_{k}-exact ideals wide open - even 0-dim'l!

Theta bodies of Orbitopes

- $O(n)$ is TH_{1}-exact, $\mathrm{SO}(n)$ is $\mathrm{TH}_{\left\lceil\frac{n}{2}\right\rceil}$-exact
- $\mathcal{G}(2, n)$ and $\mathcal{G}(n-2, n)$ are TH_{1}-exact
- strong computational evidence that $\mathcal{G}(3,6)$ is TH_{1}-exact, but no proof yet...
- we conjecture that all Grassmann orbitopes are TH_{1}-exact
- Do orbitopes have finite Theta rank? 'small' Theta rank?

