Orbitopes and Theta bodies

Raman Sanyal (UC Berkeley)

based on joint work with Bernd Sturmfels and Frank Sottile and ongoing work with Philipp Rostalski **Or**•**bi**•**tope** ['br bi toop]. an orbitope is the convex hull of the orbit of an element v in a real representation V of a compact group G,

 $\operatorname{conv}(G \cdot v) = \operatorname{conv}\{g \cdot A : g \in G\} \subset V.$

Or•**bi**•**tope** ['br bi toop]. an orbitope is the convex hull of the orbit of an element v in a real representation V of a compact group G,

 $\operatorname{conv}(G \cdot v) = \operatorname{conv}\{g \cdot A : g \in G\} \subset V.$

here: G linear algebraic group, V rational representation

• $G \cdot v$ real algebraic variety and $conv(G \cdot v)$ convex semi-algebraic set

Or•**bi**•**tope** ['br bi toup]. an orbitope is the convex hull of the orbit of an element v in a real representation V of a compact group G,

$$\operatorname{conv}(G \cdot v) = \operatorname{conv}\{g \cdot A : g \in G\} \subset V.$$

here: G linear algebraic group, V rational representation

• $G \cdot v$ real algebraic variety and $conv(G \cdot v)$ convex semi-algebraic set

Perspectives of Convex Algebraic Geometry

Convex geometry: faces, face lattices, dual bodies Algebraic geometry: algebraic boundary, its equation, Whitney stratification Optimization: How to optimize over an orbitope?

Why do we care?

finite groups

classic geometry

platonic solids, Permutahedra, Birkhoff polytopes, ...

 combinatorial optimization (see [Onn'93]) matching polytope, traveling salesman polytope, graph isomorphism, ...

compact groups

- ▶ protein structure prediction [Longinetti-Sgheri-Sottile'08] magnetic susceptibility of folding proteins → SO(3)-orbitopes
- Calibrated geometries à la [Harvey-Lawson'82]
 'local geometry' of area-minimizing smooth manifolds faces of Grassmann orbitopes: convex hull of Grassmann manifold
- norm balls with transitive G-action balls, ellipses, operator norms, nuclear norms,...
- non-negative trigonometric polyn. are dual to Carathéodory orbitopes
- non-negative k-forms are dual to Veronese orbitopes

fascinating objects - plenty in supply!

How to compute with orbitopes? How to represent them? Basic question: What is the dimension of a face of O_v in a given direction?

How to compute with orbitopes? How to represent them?

Basic question: What is the dimension of a face of \mathcal{O}_{v} in a given direction?

Easy, if orbitope can be represented as spectrahedron, i.e. feasible region of semidefinite program:

 $S = \{ y : A_0 + y_1 A_1 + \dots + y_d A_d \succeq 0 \} \text{ (positive semidefinite)}$

 A_0, \ldots, A_d symmetric $n \times n$ -matrices.

S is a polyhedron if the A_i are commuting. **Example:** Set of symmetric matrices *A* with eigenvalues at most λ

$$\lambda \operatorname{id} - A \succeq 0$$

How to compute with orbitopes? How to represent them?

Basic question: What is the dimension of a face of \mathcal{O}_{v} in a given direction?

Easy, if orbitope can be represented as spectrahedron, i.e. feasible region of semidefinite program:

 $S = \{ y : A_0 + y_1 A_1 + \dots + y_d A_d \succeq 0 \} \text{ (positive semidefinite)}$

 A_0, \ldots, A_d symmetric $n \times n$ -matrices.

S is a polyhedron if the A_i are commuting. **Example:** Set of symmetric matrices *A* with eigenvalues at most λ

 $\lambda \operatorname{id} - A \succeq 0$

Further Benefits

- ▶ information about facial structure; e.g. all faces exposed!
- ▶ readily available presentation for algebraic boundary

Caveat: Class of spectrahedra not closed under projection!

Alternatives: spectrahedral shadows such as Theta bodies

60 second commercial: Project proposals (with Philipp)

When is a spectrahedron a polytope?

$$S = \{ y : A_0 + y_1 A_1 + \dots + y_d A_d \succeq 0 \}$$

If the A_i do not commute, it might still be a polytope. How do you check that algorithmically? How do you prove that theoretically?

Is there such a 3-dim'l spectrahedron?

I.e. smooth boundary except for a single edge? If No then this has intersting consequences for hyperbolic polynomials...

Degtyarev and Itenberg construct interesting/extremal 3-spectrahedra with 10 singular points in the boundary. Maybe degenerations thereof?

Kind of a sub-project to Anand Kulkarni projects regarding the combinatorial types of 3-spectrahedra.

In this talk

Tautological orbitopes for O(n) and SO(n)

 $\mathcal{O} = \operatorname{conv}\{ \text{ (special) orthogonal matrices } \} \subset \mathbb{R}^{n \times n}$

(Tautological orbitope is convex hull over the representation $G \subset \operatorname{End}(V)$) \mathcal{O} is the norm ball in the operator norm for $\mathbb{R}^{n \times n}$

Grassmann orbitopes

 $\mathcal{G}(k,n) = \operatorname{conv}\{ \text{ oriented } k \text{-dim subspaces of } \mathbb{R}^n \} \subset \wedge_k \mathbb{R}^n$

Known as the mass ball in differential geometry

Tautological orbitope for the orthogonal group

$$\mathcal{O}_n = \operatorname{conv}(\mathcal{O}(n)) = \operatorname{conv}\{ g \in \mathbb{R}^{n \times n} : g \cdot g^T = \operatorname{Id} \}$$

- \mathcal{O}_n convex body of dimension n^2
- ▶ all faces are exposed and isomorphic to \mathcal{O}_k for $k \leq n$
- equation algebraic boundary is $f(A) = \det(A \cdot A^T \mathrm{Id})$
- \triangleright \mathcal{O}_n is the spectrahedron

$$A: egin{pmatrix} \mathrm{Id} & A \ A^T & \mathrm{Id} \end{pmatrix} \succeq 0$$

Tautological orbitope for the orthogonal group

$$\mathcal{O}_n = \operatorname{conv}(\mathcal{O}(n)) = \operatorname{conv}\{ g \in \mathbb{R}^{n \times n} : g \cdot g^T = \operatorname{Id} \}$$

- \mathcal{O}_n convex body of dimension n^2
- ▶ all faces are exposed and isomorphic to \mathcal{O}_k for $k \leq n$
- equation algebraic boundary is $f(A) = \det(A \cdot A^T \operatorname{Id})$
- \triangleright \mathcal{O}_n is the spectrahedron

$$A: egin{pmatrix} \mathrm{Id} & A \ A^{\mathcal{T}} & \mathrm{Id} \end{pmatrix} \succeq 0$$

Key observation

 T^n diagonal matrices, $\Pr_{T^n} : \mathbb{R}^{n \times n} \to T^n$ orthogonal projection

$$\mathcal{O}_n \cap \mathcal{T}^n = \operatorname{Pr}_{\mathcal{T}^n}(\mathcal{O}_n) = [-1, +1]^n (n-\mathsf{cube})$$

Tautological orbitope for the orthogonal group

$$\mathcal{O}_n = \operatorname{conv}(\mathcal{O}(n)) = \operatorname{conv}\{ g \in \mathbb{R}^{n \times n} : g \cdot g^T = \operatorname{Id} \}$$

- \mathcal{O}_n convex body of dimension n^2
- ▶ all faces are exposed and isomorphic to \mathcal{O}_k for $k \leq n$
- equation algebraic boundary is $f(A) = \det(A \cdot A^T \operatorname{Id})$
- \triangleright \mathcal{O}_n is the spectrahedron

$$A: egin{pmatrix} \mathrm{Id} & A \ A^T & \mathrm{Id} \end{pmatrix} \succeq 0$$

Key observation

 T^n diagonal matrices, $\Pr_{T^n} : \mathbb{R}^{n \times n} \to T^n$ orthogonal projection

$$\mathcal{O}_n \cap T^n = \operatorname{Pr}_{T^n}(\mathcal{O}_n) = [-1, +1]^n (n-\mathsf{cube})$$

- *O_n* is the unit ball for the operator norm (=max singular value ≤ 1)

 → projects to unit ball for ℓ_∞-norm
- dual body O^o_n is the unit ball for the nuclear norm (=sum of sing. vals ≤ 1)
 → projects to unit ball for ℓ₁-norm

Tautological orbitope for the special orthogonal group

 $\mathcal{SO}_n = \operatorname{conv}(\mathcal{SO}(n)) = \operatorname{conv}\{ g \in \mathbb{R}^{n \times n} : g \cdot g^T = \operatorname{Id}, \operatorname{det}(g) = 1 \}$

▶ SO_n convex body of dimension n^2 , for $n \ge 3$

▶ faces are linearly isomorphic to SO_k for $k \leq n$ or free spectrahedra

 $\mathcal{F}_k = \operatorname{conv}\{uu^{\mathcal{T}} : \|u\| = 1\} = \operatorname{PSD}_k \cap \{ \operatorname{trace} = 1 \} \subset \mathbb{R}^{k \times k}$

- equation of the algebraic boundary is not known
- ▶ is SO_n a spectrahedron???

Tautological orbitope for the special orthogonal group

 $\mathcal{SO}_n = \operatorname{conv}(\mathcal{SO}(n)) = \operatorname{conv}\{ g \in \mathbb{R}^{n \times n} : g \cdot g^T = \operatorname{Id}, \operatorname{det}(g) = 1 \}$

▶ SO_n convex body of dimension n^2 , for $n \ge 3$

▶ faces are linearly isomorphic to SO_k for $k \leq n$ or free spectrahedra

 $\mathcal{F}_k = \operatorname{conv}\{uu^{\mathcal{T}} : \|u\| = 1\} = \operatorname{PSD}_k \cap \{ \operatorname{trace} = 1 \} \subset \mathbb{R}^{k \times k}$

- equation of the algebraic boundary is not known
- ▶ is SO_n a spectrahedron???

 T^n diagonal matrices, $Pr_{T^n} : \mathbb{R}^{n \times n} \to T^n$ orthogonal projection

$$SO_n \cap T^n = Pr_{T^n}(SO_n) = H_n$$
 (*n*-halfcube)

Tautological orbitope for the special orthogonal group

 $\mathcal{SO}_n = \operatorname{conv}(\mathcal{SO}(n)) = \operatorname{conv}\{ g \in \mathbb{R}^{n \times n} : g \cdot g^T = \operatorname{Id}, \det(g) = 1 \}$

▶ SO_n convex body of dimension n^2 , for $n \ge 3$

▶ faces are linearly isomorphic to SO_k for $k \leq n$ or free spectrahedra

$$\mathcal{F}_k = \mathsf{conv}\{uu^T : \|u\| = 1\} = \mathrm{PSD}_k \cap \{ \mathrm{trace} = 1 \} \subset \mathbb{R}^{k \times k}$$

equation of the algebraic boundary is not known
 is SO_n a spectrahedron???

 T^n diagonal matrices, $Pr_{T^n} : \mathbb{R}^{n \times n} \to T^n$ orthogonal projection

$$SO_n \cap T^n = Pr_{T^n}(SO_n) = H_n$$
 (*n*-halfcube)

n-Halfcube

$$H_n = \operatorname{conv} \left\{ x \in \{-1, +1\}^n : \text{ even number of } x_i = -1 \right\}$$

for n = 1, 2, 3, 4 the halfcubes are: point, segment, tetrahedron, octahedron

Exterior algebra $\wedge_k \mathbb{R}^n = \mathbb{R}\{e_J : J \subseteq [n], |J| = k\} \cong \mathbb{R}^{\binom{n}{k}}$

$$\mathbb{R}^{k \times n} \ni (v_1, \ldots, v_k) \mapsto v_1 \wedge \cdots \wedge v_k = \sum_J p_J e_J$$

SO(n) acts on $\wedge_k \mathbb{R}^n$ by $g \cdot v_1 \wedge \cdots \wedge v_k = gv_1 \wedge \cdots \wedge gv_k$

Exterior algebra $\wedge_k \mathbb{R}^n = \mathbb{R}\{e_J : J \subseteq [n], |J| = k\} \cong \mathbb{R}^{\binom{n}{k}}$

$$\mathbb{R}^{k \times n} \ni (v_1, \ldots, v_k) \mapsto v_1 \wedge \cdots \wedge v_k = \sum_J p_J e_J$$

SO(n) acts on $\wedge_k \mathbb{R}^n$ by $g \cdot v_1 \wedge \cdots \wedge v_k = gv_1 \wedge \cdots \wedge gv_k$ Grassmannian of oriented k-planes

$$G(k, n) := SO(n) \cdot e_1 \wedge e_2 \wedge \cdots \wedge e_k$$

Grassmann orbitope $\mathcal{G}(k, n) = \operatorname{conv} \mathcal{G}(k, n)$

Exterior algebra $\wedge_k \mathbb{R}^n = \mathbb{R}\{e_J : J \subseteq [n], |J| = k\} \cong \mathbb{R}^{\binom{n}{k}}$

$$\mathbb{R}^{k \times n} \ni (v_1, \ldots, v_k) \mapsto v_1 \wedge \cdots \wedge v_k = \sum_J p_J e_J$$

SO(n) acts on $\wedge_k \mathbb{R}^n$ by $g \cdot v_1 \wedge \cdots \wedge v_k = gv_1 \wedge \cdots \wedge gv_k$ Grassmannian of oriented k-planes

$$G(k,n) := SO(n) \cdot e_1 \wedge e_2 \wedge \cdots \wedge e_k$$

Grassmann orbitope $\mathcal{G}(k, n) = \operatorname{conv} \mathcal{G}(k, n)$

 $v_1 \wedge \cdots \wedge v_k$ decomposable and $p = (p_J)_J$ decomposable iff p satisfies the Plücker relations $I_{k,n} \subset \mathbb{R}[x_J : |J| = k]$

$$\left\{\begin{array}{c} L \subset \mathbb{R}^n \\ \text{oriented} \\ k-\text{plane} \end{array}\right\} \xleftarrow{1:1} \left\{\begin{array}{c} v_1 \wedge \dots \wedge v_k \\ \text{decomposable} \\ \text{unit length} \end{array}\right\} \xleftarrow{1:1} \left\{\begin{array}{c} p = (p_J)_J \in \mathbb{R}^{\binom{n}{k}} \\ \text{Plücker relations} \\ \sum_J p_J^2 = 1 \end{array}\right\}$$

Exterior algebra $\wedge_k \mathbb{R}^n = \mathbb{R}\{e_J : J \subseteq [n], |J| = k\} \cong \mathbb{R}^{\binom{n}{k}}$

$$\mathbb{R}^{k \times n} \ni (v_1, \ldots, v_k) \mapsto v_1 \wedge \cdots \wedge v_k = \sum_J p_J e_J$$

SO(n) acts on $\wedge_k \mathbb{R}^n$ by $g \cdot v_1 \wedge \cdots \wedge v_k = gv_1 \wedge \cdots \wedge gv_k$ Grassmannian of oriented k-planes

$$G(k,n) := SO(n) \cdot e_1 \wedge e_2 \wedge \cdots \wedge e_k$$

Grassmann orbitope $\mathcal{G}(k, n) = \operatorname{conv} \mathcal{G}(k, n)$

 $v_1 \wedge \cdots \wedge v_k$ decomposable and $p = (p_J)_J$ decomposable iff p satisfies the Plücker relations $I_{k,n} \subset \mathbb{R}[x_J : |J| = k]$

$$\left\{\begin{array}{c} L \subset \mathbb{R}^n \\ \text{oriented} \\ k-\text{plane} \end{array}\right\} \xleftarrow{1:1} \left\{\begin{array}{c} v_1 \wedge \dots \wedge v_k \\ \text{decomposable} \\ \text{unit length} \end{array}\right\} \xleftarrow{1:1} \left\{\begin{array}{c} p = (p_J)_J \in \mathbb{R}^{\binom{n}{k}} \\ \text{Plücker relations} \\ \sum_J p_J^2 = 1 \end{array}\right\}$$

Grassmannian $G(k, n) = V(I_{k,n}) \cap \{\text{unit sphere}\}$ is a compact real variety

 $\wedge_2 \mathbb{R}^4 = \mathbb{R}\{e_i \wedge e_j : 1 \le i < j \le 4\} = \mathbb{R}\{p_{12}, p_{13}, p_{14}, p_{23}, p_{24}, p_{34}\} \text{ 6-dim'l vector space}$

 $\wedge_2 \mathbb{R}^4 = \mathbb{R}\{e_i \wedge e_j : 1 \le i < j \le 4\} = \mathbb{R}\{p_{12}, p_{13}, p_{14}, p_{23}, p_{24}, p_{34}\} \text{ 6-dim'l vector space for } u, v \in \mathbb{R}^4$

$$u \wedge v = p_{12} e_{12} + \cdots + p_{34} e_{34}$$
 with $p_{ij} = \det \begin{pmatrix} u_i & v_i \\ u_j & v_j \end{pmatrix}$

 $\wedge_2 \mathbb{R}^4 = \mathbb{R}\{e_i \wedge e_j : 1 \le i < j \le 4\} = \mathbb{R}\{p_{12}, p_{13}, p_{14}, p_{23}, p_{24}, p_{34}\} \text{ 6-dim'l vector space for } u, v \in \mathbb{R}^4$

$$u \wedge v = p_{12} e_{12} + \cdots + p_{34} e_{34}$$
 with $p_{ij} = \det \begin{pmatrix} u_i & v_i \\ u_j & v_j \end{pmatrix}$

Plücker relations + unit sphere determine unit decomposable vectors

$$\langle p_{12}p_{34} - p_{13}p_{24} + p_{14}p_{23}, p_{12}^2 + p_{13}^2 + p_{14}^2 + p_{23}^2 + p_{24}^2 + p_{34}^2 - 1 \rangle$$

 $\wedge_2 \mathbb{R}^4 = \mathbb{R}\{e_i \wedge e_j : 1 \le i < j \le 4\} = \mathbb{R}\{p_{12}, p_{13}, p_{14}, p_{23}, p_{24}, p_{34}\} \text{ 6-dim'l vector space for } u, v \in \mathbb{R}^4$

$$u \wedge v = p_{12} e_{12} + \cdots + p_{34} e_{34}$$
 with $p_{ij} = \det \begin{pmatrix} u_i & v_i \\ u_j & v_j \end{pmatrix}$

Plücker relations + unit sphere determine unit decomposable vectors

$$\langle p_{12}p_{34} - p_{13}p_{24} + p_{14}p_{23}, \ p_{12}^2 + p_{13}^2 + p_{14}^2 + p_{23}^2 + p_{24}^2 + p_{34}^2 - 1 \rangle$$

A linear change of coordinates

$$u = \frac{1}{\sqrt{2}}(p_{12} + p_{34}), \quad v = \frac{1}{\sqrt{2}}(p_{13} - p_{24}), \quad w = \frac{1}{\sqrt{2}}(p_{14} + p_{23}),$$

$$x = \frac{1}{\sqrt{2}}(p_{12} - p_{34}), \quad y = \frac{1}{\sqrt{2}}(p_{13} + p_{24}), \quad z = \frac{1}{\sqrt{2}}(p_{14} - p_{23}).$$

yields

$$\left\langle u^2 + v^2 + w^2 - \frac{1}{2}, x^2 + y^2 + z^2 - \frac{1}{2} \right\rangle \subset \mathbb{R}[x, y, z, u, v, w]$$

So, $G(2,4) = S^2 \times S^2$ is the Cartesian product of two 2-spheres.

 $\mathcal{G}(2,4) = \text{conv}\mathcal{G}(2,4)$ is the Cartesian product of two 3-balls.

Audience participation: Which 1-manifold is area-minimizing?

a smooth k-dim'l manifold M is area-minimizing if it has the least volume among all manifolds with the same boundary.

Audience participation: Which 1-manifold is area-minimizing?

a smooth k-dim'l manifold M is area-minimizing if it has the least volume among all manifolds with the same boundary.

Theorem [Harvey-Lawson'82]. If all tangent k-planes of $M \subset \mathbb{R}^n$ lie in a common proper face F of $\mathcal{G}(k, n)$, then M is area-minimizing.

Audience participation: Which 1-manifold is area-minimizing?

a smooth k-dim'l manifold M is area-minimizing if it has the least volume among all manifolds with the same boundary.

Theorem [Harvey-Lawson'82]. If all tangent k-planes of $M \subset \mathbb{R}^n$ lie in a common proper face F of $\mathcal{G}(k, n)$, then M is area-minimizing.

Audience participation: Which 1-manifold is area-minimizing?

a smooth k-dim'l manifold M is area-minimizing if it has the least volume among all manifolds with the same boundary.

Theorem [Harvey-Lawson'82]. If all tangent k-planes of $M \subset \mathbb{R}^n$ lie in a common proper face F of $\mathcal{G}(k, n)$, then M is area-minimizing.

The collection of extreme points $F \cap G(k, n)$ is called a calibrated geometry. Elements of the dual face F^{\diamond} are calibrations.

 $\mathcal{G}(n,k)$ is a convex body of dimension dim $\mathcal{G}(k,n) = \binom{n}{k}$

► G(1, n) and G(n - 1, n) are balls line segments are area-minimizing

- → G(1, n) and G(n − 1, n) are balls line segments are area-minimizing
- ► G(2,4) linearly isomorphic to product of two 3-balls positive dimensional faces are 3-balls

- → G(1, n) and G(n − 1, n) are balls line segments are area-minimizing
- ► G(2, 4) linearly isomorphic to product of two 3-balls positive dimensional faces are 3-balls
- G(2, n) and G(n − 2, n) are rank 2 skew Schur-Horn orbitopes up to symmetry only one face of a given dimension calibrated geometries correspond to complex structures

- → G(1, n) and G(n − 1, n) are balls line segments are area-minimizing
- ► G(2,4) linearly isomorphic to product of two 3-balls positive dimensional faces are 3-balls
- G(2, n) and G(n − 2, n) are rank 2 skew Schur-Horn orbitopes up to symmetry only one face of a given dimension calibrated geometries correspond to complex structures
- G(3,6) described in [Dadok-Harvey'83] face-dimensions 0, 1 (doubletons), 3 (CP¹), and 12 (special Lagrangian) inclusion maximal faces: doubletons, special Lagrangians up to symmetry only finitely many Lagrangians but a moduli of edges non-exposed faces → not a spectrahedron!

- → G(1, n) and G(n − 1, n) are balls line segments are area-minimizing
- ► G(2, 4) linearly isomorphic to product of two 3-balls positive dimensional faces are 3-balls
- G(2, n) and G(n − 2, n) are rank 2 skew Schur-Horn orbitopes up to symmetry only one face of a given dimension calibrated geometries correspond to complex structures
- G(3,6) described in [Dadok-Harvey'83] face-dimensions 0, 1 (doubletons), 3 (CP¹), and 12 (special Lagrangian) inclusion maximal faces: doubletons, special Lagrangians up to symmetry only finitely many Lagrangians but a moduli of edges non-exposed faces → not a spectrahedron!
- ▶ G(3,7) is understood but difficult [Harvey-Morgan'86]

- → G(1, n) and G(n − 1, n) are balls line segments are area-minimizing
- ► G(2, 4) linearly isomorphic to product of two 3-balls positive dimensional faces are 3-balls
- G(2, n) and G(n − 2, n) are rank 2 skew Schur-Horn orbitopes up to symmetry only one face of a given dimension calibrated geometries correspond to complex structures
- G(3,6) described in [Dadok-Harvey'83] face-dimensions 0, 1 (doubletons), 3 (CP¹), and 12 (special Lagrangian) inclusion maximal faces: doubletons, special Lagrangians up to symmetry only finitely many Lagrangians but a moduli of edges non-exposed faces → not a spectrahedron!
- ▶ G(3,7) is understood but difficult [Harvey-Morgan'86]
- ► G(4,8) partial knowledge, very difficult [Dadok-Harvey-Morgan'88]

- → G(1, n) and G(n − 1, n) are balls line segments are area-minimizing
- ► G(2, 4) linearly isomorphic to product of two 3-balls positive dimensional faces are 3-balls
- G(2, n) and G(n − 2, n) are rank 2 skew Schur-Horn orbitopes up to symmetry only one face of a given dimension calibrated geometries correspond to complex structures
- G(3,6) described in [Dadok-Harvey'83] face-dimensions 0, 1 (doubletons), 3 (CP¹), and 12 (special Lagrangian) inclusion maximal faces: doubletons, special Lagrangians up to symmetry only finitely many Lagrangians but a moduli of edges non-exposed faces → not a spectrahedron!
- ▶ G(3,7) is understood but difficult [Harvey-Morgan'86]
- ► G(4,8) partial knowledge, very difficult [Dadok-Harvey-Morgan'88]
- $\mathcal{G}(n, k)$ complete understanding probably hopeless!?

 $\mathcal{G}(n,k)$ is a convex body of dimension dim $\mathcal{G}(k,n) = \binom{n}{k}$

- → G(1, n) and G(n − 1, n) are balls line segments are area-minimizing
- ► G(2,4) linearly isomorphic to product of two 3-balls positive dimensional faces are 3-balls
- G(2, n) and G(n − 2, n) are rank 2 skew Schur-Horn orbitopes up to symmetry only one face of a given dimension calibrated geometries correspond to complex structures
- G(3,6) described in [Dadok-Harvey'83] face-dimensions 0, 1 (doubletons), 3 (CP¹), and 12 (special Lagrangian) inclusion maximal faces: doubletons, special Lagrangians up to symmetry only finitely many Lagrangians but a moduli of edges non-exposed faces → not a spectrahedron!
- ▶ G(3,7) is understood but difficult [Harvey-Morgan'86]
- ► G(4,8) partial knowledge, very difficult [Dadok-Harvey-Morgan'88]
- $\mathcal{G}(n, k)$ complete understanding probably hopeless!?

What about computer experimentation?

Back to the Basic Question

Basic question: What is the dimension of a face of \mathcal{O}_{v} in direction $\ell(\mathbf{x})$?

The orbit is a real variety $G \cdot v = V_{\mathbb{R}}(I)$ for $I \subseteq \mathbb{R}[\mathbf{x}]$

Back to the Basic Question

Basic question: What is the dimension of a face of \mathcal{O}_{v} in direction $\ell(\mathbf{x})$?

The orbit is a real variety $G \cdot v = V_{\mathbb{R}}(I)$ for $I \subseteq \mathbb{R}[\mathbf{x}]$

Rephrased: What is the affine dimension of set of solutions to the optimization problem max $\ell(x)$ subject to $x \in V_{\mathbb{R}}(I)$?

Back to the Basic Question

Basic question: What is the dimension of a face of \mathcal{O}_{v} in direction $\ell(\mathbf{x})$?

The orbit is a real variety $G \cdot v = V_{\mathbb{R}}(I)$ for $I \subseteq \mathbb{R}[\mathbf{x}]$

Rephrased: What is the affine dimension of set of solutions to the optimization problem max $\ell(x)$ subject to $x \in V_{\mathbb{R}}(I)$?

- Polynomial optimization is hard **but** powerful relaxations (SOS, moment) are available [Parrilo, Lasserre, Laurent...]!
- The geometry behind (particular) relaxations are called Theta bodies [Gouveia, Parrilo, Thomas'08].
- ► In particular, Theta bodies are projected spectrahedra.

If the relaxation is exact, then local information about \mathcal{O}_v are computable!

SOS relaxations and Theta bodies

Sum-of-Squares relaxation of degree k for $\ell(\mathbf{x})$ and $I \subset \mathbb{R}[\mathbf{x}]$

 $\min \, \delta$

$$s.t. \ \delta - \ell(\mathbf{x}) = \sum_{i=1}^m h_i(\mathbf{x})^2 \mod \mathbf{I}$$

for $h_1, \ldots, h_m \in \mathbb{R}[\mathbf{x}]$ polynomials of degree $\leq k$. $\delta - \ell(\mathbf{x})$ is called k-SOS mod I

SOS relaxations and Theta bodies

Sum-of-Squares relaxation of degree k for $\ell(\mathbf{x})$ and $I \subset \mathbb{R}[\mathbf{x}]$

min δ s.t. $\delta - \ell(\mathbf{x}) = \sum_{i=1}^{m} h_i(\mathbf{x})^2 \mod \mathbf{I}$

for $h_1, \ldots, h_m \in \mathbb{R}[\mathbf{x}]$ polynomials of degree $\leq k$. $\delta - \ell(\mathbf{x})$ is called *k*-SOS mod I. The *k*-th Theta body $\mathsf{TH}_k(I) \subset \mathbb{R}^n$ is the convex body bounded by *k*-SOS supporting planes

 $\mathsf{TH}_k(\mathrm{I}) = \{ p \in \mathbb{R}^n : \delta - \ell(p) \ge 0 \text{ for all } \delta - \ell(\mathbf{x}) \text{ } k\text{-}\mathsf{SOS mod I} \}$

SOS relaxations and Theta bodies

Sum-of-Squares relaxation of degree k for $\ell(\mathbf{x})$ and $I \subset \mathbb{R}[\mathbf{x}]$

min
$$\delta$$

s.t. $\delta - \ell(\mathbf{x}) = \sum_{i=1}^{m} h_i(\mathbf{x})^2 \mod \mathbf{I}$

for $h_1, \ldots, h_m \in \mathbb{R}[\mathbf{x}]$ polynomials of degree $\leq k$. $\delta - \ell(\mathbf{x})$ is called *k*-SOS mod I. The *k*-th Theta body $\mathsf{TH}_k(I) \subset \mathbb{R}^n$ is the convex body bounded by *k*-SOS supporting planes

$$\mathsf{TH}_k(\mathrm{I}) = \{ p \in \mathbb{R}^n : \delta - \ell(p) \ge 0 \text{ for all } \delta - \ell(\mathbf{x}) \text{ k-SOS mod I } \}$$

Chain of convex bodies

$$\mathsf{TH}_1(\mathrm{I}) \ \supseteq \ \mathsf{TH}_2(\mathrm{I}) \ \supseteq \ \cdots \ \supseteq \ \overline{\mathsf{conv} \ V_{\mathbb{R}}(\mathrm{I})}$$

I is TH_k -exact if $\mathsf{TH}_k(I) = \overline{\mathsf{conv} V_{\mathbb{R}}(I)}$ The Theta rank TH -rank(I) is the least k for which I is TH_k -exact

Let $V \subset \mathbb{R}^n$ be a finite set and $I = I(V) \subset \mathbb{R}[x]$ its ideal.

A linear function $\ell(\mathbf{x})$ has *m*-levels with respect to *V* if $\ell(\mathbf{x})$ takes *m* distinct values on *V*. *V* is *m*-level if every facet direction is.

Let $V \subset \mathbb{R}^n$ be a finite set and $I = I(V) \subset \mathbb{R}[x]$ its ideal.

A linear function $\ell(\mathbf{x})$ has *m*-levels with respect to *V* if $\ell(\mathbf{x})$ takes *m* distinct values on *V*. *V* is *m*-level if every facet direction is.

Proposition. If every facet direction of conv(V) has $\leq m$ levels, then I has Theta rank $\leq m - 1$. In particular, if V is 2-level, then V is TH₁-exact.

- actual Theta rank might be much smaller!
- SOS relaxations for polytopes might be bad!
- 2-level polytopes are special

Let $V \subset \mathbb{R}^n$ be a finite set and $I = I(V) \subset \mathbb{R}[x]$ its ideal.

A linear function $\ell(\mathbf{x})$ has *m*-levels with respect to *V* if $\ell(\mathbf{x})$ takes *m* distinct values on *V*. *V* is *m*-level if every facet direction is.

Proposition. If every facet direction of conv(V) has $\leq m$ levels, then I has Theta rank $\leq m - 1$. In particular, if V is 2-level, then V is TH₁-exact.

- actual Theta rank might be much smaller!
- SOS relaxations for polytopes might be bad!
- 2-level polytopes are special

Example. TH-rank of the regular heptagon. For what k is $\delta \pm \ell(x)$ k-SOS?

 $V \subset \mathbb{R}^n$ arbitrary real variety with I = I(V), TH₁-exact is particularly desirable: geometry determined by convex quadrics, projection of spectrahedron of tractable size.

Theorem. [Gouveia, Parrilo, Thomas'08] If I is TH_1 -exact, then

 $\operatorname{conv}(V) = \{x \in \mathbb{R}^n : q(x) \le 0 \text{ for all } q \in I \text{ convex quadric}\}$

A useful tool for bounding Theta rank is **Lemma.** If $L \subset \mathbb{R}^n$ is a linear space such that

 $\operatorname{conv}(V \cap L) = \operatorname{conv}(V) \cap L$

then TH -rank $(I) \ge \mathsf{TH}$ -rank(I + I(L)).

- ▶ Theta-rank monotone with respect to (empty) faces (*L* supporting plane)
- ► Theta-rank can be bounded from above by special cross-sections

 $V \subset \mathbb{R}^n$ arbitrary real variety with I = I(V), TH₁-exact is particularly desirable: geometry determined by convex quadrics, projection of spectrahedron of tractable size.

Theorem. [Gouveia, Parrilo, Thomas'08] If I is TH_1 -exact, then

 $\operatorname{conv}(V) = \{x \in \mathbb{R}^n : q(x) \le 0 \text{ for all } q \in I \text{ convex quadric}\}$

A useful tool for bounding Theta rank is **Lemma.** If $L \subset \mathbb{R}^n$ is a linear space such that

 $\operatorname{conv}(V \cap L) = \operatorname{conv}(V) \cap L$

then TH-rank(I) \geq TH-rank(I + I(L)).

- ▶ Theta-rank monotone with respect to (empty) faces (*L* supporting plane)
- ► Theta-rank can be bounded from above by special cross-sections
- Both O(n) and SO(n) have such special cross-sections
- G(3,6) has such a special cross section, the Segre orbitope

Theta ranks for some Orbitopes

Theta rank for O(n)

▶ cross-section with diagonal matrices $L = T^n$

 $\operatorname{conv}(O(n)) \cap L = [-1,+1]^n = \operatorname{conv}\{-1,+1\}^n = \operatorname{conv}(O(n) \cap L)$

the *n*-cube is 2-level \rightarrow TH-rank(O(n)) \geq 2 (ok, trivial)

• up to symmetry only one facet direction: $\ell(X) = X_{11}$

$$1 - X_{11} \equiv \frac{1}{2}(X_{11} - 1)^2 + \frac{1}{2}X_{21}^2 + \cdots + \frac{1}{2}X_{n1}^2 \text{ on } O(n)$$

Theta ranks for some Orbitopes

Theta rank for O(n)

▶ cross-section with diagonal matrices $L = T^n$

 $\operatorname{conv}(O(n)) \cap L = [-1,+1]^n = \operatorname{conv}\{-1,+1\}^n = \operatorname{conv}(O(n) \cap L)$

the *n*-cube is 2-level \rightarrow TH-rank(O(n)) \geq 2 (ok, trivial)

• up to symmetry only one facet direction: $\ell(X) = X_{11}$

$$1 - X_{11} \equiv \frac{1}{2}(X_{11} - 1)^2 + \frac{1}{2}X_{21}^2 + \cdots + \frac{1}{2}X_{n1}^2 \text{ on } O(n)$$

Theta rank for SO(n)

- ▶ up to symmetry two facet directions: X_{11} is 2-SOS, trace(X) is $\lceil \frac{n}{2} \rceil$ -SOS
- ▶ cross-section with diagonal matrices $L = T^n$ is the halfcube H_n

Theta ranks for some Orbitopes

Theta rank for O(n)

▶ cross-section with diagonal matrices $L = T^n$

 $\operatorname{conv}(O(n)) \cap L = [-1,+1]^n = \operatorname{conv}\{-1,+1\}^n = \operatorname{conv}(O(n) \cap L)$

the *n*-cube is 2-level \rightarrow TH-rank(O(n)) \geq 2 (ok, trivial)

• up to symmetry only one facet direction: $\ell(X) = X_{11}$

$$1 - X_{11} \equiv \frac{1}{2}(X_{11} - 1)^2 + \frac{1}{2}X_{21}^2 + \cdots + \frac{1}{2}X_{n1}^2 \text{ on } O(n)$$

Theta rank for SO(n)

- ▶ up to symmetry two facet directions: X_{11} is 2-SOS, trace(X) is $\lfloor \frac{n}{2} \rfloor$ -SOS
- ▶ cross-section with diagonal matrices $L = T^n$ is the halfcube H_n

Proposition. The *n*-dim'l halfcube H_n is has Theta rank $\lceil \frac{n}{2} \rceil$. In particular, H_n and SO(n) have the same Theta rank.

Slightly simpler yoga as in the case for the heptagon...

Theta rank of Grassmann orbitopes

Theorem. The Grassmann orbitopes $\mathcal{G}(2, n)$ and $\mathcal{G}(n-2, n)$ are TH₁-exact.

• there is only one inclusion maximal face up to symmetry \rightarrow show that facet direction is 1-SOS for G(k, n)

Theta rank of Grassmann orbitopes

Theorem. The Grassmann orbitopes $\mathcal{G}(2, n)$ and $\mathcal{G}(n-2, n)$ are TH₁-exact.

there is only one inclusion maximal face up to symmetry

 \rightarrow show that facet direction is 1-SOS for G(k, n)

based on computer experiments we

Conjecture. All Grassmann orbitopes $\mathcal{G}(k, n)$ are TH₁-exact.

For $\mathcal{G}(3,6)$ there are up to symmetry only finitely many special Lagrangian faces but infinitely many doubletons (edges).

 \rightarrow show that the family doubleton directions is 1-SOS.

For $\mathcal{G}(3,7)$ and $\mathcal{G}(4,8)$ we recover 'all' known faces.

Experimentation is fast: For $\mathcal{G}(3,9)$ the ideal has 1050 + 1 generators on 84 variables. Computations in < 10min on laptop

Conjecture of Harvey-Lawson

In their 1982 paper we found that Harvey and Lawson conjecture that if

$$\lambda - \ell(x) \geq 0 \text{ on } \mathcal{G}(k, n)$$

then there are linear polynomials $h_1(\mathbf{x}), \ldots, h_m(\mathbf{x})$ such that

$$\lambda \|\mathbf{x}\|^2 - \ell(\mathbf{x}) = \sum_i h_i(\mathbf{x})^2 \mod \mathbf{I}_{k,n}$$

 $I_{k,n}$ is the homogeneous Plücker ideal

Conjecture of Harvey-Lawson

In their 1982 paper we found that Harvey and Lawson conjecture that if

$$\lambda - \ell(x) \geq 0 \text{ on } \mathcal{G}(k, n)$$

then there are linear polynomials $h_1(\mathbf{x}), \ldots, h_m(\mathbf{x})$ such that

$$\lambda \|\mathbf{x}\|^2 - \ell(\mathbf{x}) = \sum_i h_i(\mathbf{x})^2 \mod \mathbf{I}_{k,n}$$

 $I_{k,n}$ is the homogeneous Plücker ideal

Theorem. H-L conjecture is equivalent to G(n, k) being TH₁-exact.

Take home messages

Orbitopes are a rich class of convex algebraic bodies

- appealing convex, algebraic, and combinatorial properties
- appear throughout mathematics; practical relevance?
- lots of open questions

Take home messages

Orbitopes are a rich class of convex algebraic bodies

- appealing convex, algebraic, and combinatorial properties
- appear throughout mathematics; practical relevance?
- lots of open questions

Theta bodies are an attractive tool for the study convex hulls of varieties

- allow for local study of boundary (if finite TH-rank)
- computational tractable (if small TH-rank)
- characterization of TH_k-exact ideals wide open even 0-dim'l!

Take home messages

Orbitopes are a rich class of convex algebraic bodies

- appealing convex, algebraic, and combinatorial properties
- appear throughout mathematics; practical relevance?
- lots of open questions

Theta bodies are an attractive tool for the study convex hulls of varieties

- allow for local study of boundary (if finite TH-rank)
- computational tractable (if small TH-rank)
- characterization of TH_k-exact ideals wide open even 0-dim'l!

Theta bodies of Orbitopes

- ▶ O(n) is TH₁-exact, SO(n) is TH_[$\frac{n}{2}$]-exact
- $\mathcal{G}(2, n)$ and $\mathcal{G}(n-2, n)$ are TH_1 -exact
- **strong** computational evidence that $\mathcal{G}(3,6)$ is TH₁-exact, but no proof yet...
- ▶ we conjecture that all Grassmann orbitopes are TH₁-exact
- Do orbitopes have finite Theta rank? 'small' Theta rank?