Math 275: Geometry of Convex Optimization

Bernd Sturmfels, UC Berkeley, Fall 2010

Homework \# 4, due Tuesday, October 19

1. Consider the problem of maximizing a linear function $u_{1} x_{1}+u_{2} x_{2}+$ $u_{3} x_{3}+u_{4} x_{4}$ subject to the following Hankel matrix PSD constraint:

$$
\left(\begin{array}{lll}
1 & x_{1} & x_{2} \\
x_{1} & x_{2} & x_{3} \\
x_{2} & x_{3} & x_{4}
\end{array}\right) \succeq 0 .
$$

- Formulate the dual SDP problem.
- Write the KKT equations and solve them.
- Determine the algebraic degree and the optimal value function.
- Discuss the role of Hankel matrices in polynomial optimization.

2. Find an explicit homogeneous polynomial of degree four in four variables that is non-negative on \mathbb{R}^{4} but is not a sum of squares.
3. The cubic polynomial

$$
f(x, y)=12 x^{2} y-5 x^{2}-9 y^{2}+1
$$

defines a smooth curve (check this) that bounds a spectrahedron. Construct real symmetric 3×3-matrices A and B such that

$$
f(x, y)=\operatorname{det}\left(\operatorname{Id}_{3}+A x+B y\right),
$$

where Id_{3} is the identity matrix. How unique is your solution?
4. The elliptope \mathcal{E}_{4} is the set of correlation matrices of size 4×4, that is, positive semidefinite symmetric 4×4-matrices whose diagonal entries are all 1 . Describe all faces of the six-dimensional spectrahedron \mathcal{E}_{4}.

