Math 55, **First Midterm Exam** Thursday, February 23, 8:10am–9:30am

This exam is closed book. You may not use any books, notes or electronic devices. Please write your answers in a blue note book. Begin by writing your name, the name of your TA and your section time on the cover. There are five problems, each worth 20 points, for a total of 100 points. Answers without justification will not receive credit. You may look at your graded exam in your discussion section on Wednesday, February 29.

- (1) Express the negations of each of these statements so that all negation symbols immediately precede predicates:
 - (a) $\forall x \exists y \forall z T(x, y, z)$
 - (b) $\forall x \exists y P(x, y) \lor \forall x \exists y Q(x, y)$
 - (c) $\forall x \exists y (P(x,y) \land \exists z R(x,y,z))$
 - (d) $\forall x \exists y (P(x,y) \rightarrow Q(x,y))$
- (2) Determine an integer n such that

 $n \equiv 1 \pmod{7}, n \equiv 3 \pmod{8}$ and $n \equiv 2 \pmod{9}$.

- (3) Which amounts of postage can be formed using only 5-cent and 6-cent stamps? Formulate a conjecture and prove it.
- (4) Compute the following remainders:
 - (a) $19^{145} \mod 13$ (b) $(-12)^{36} \cdot 50^{19} \mod 7$
- (5) Give an example of two uncountable sets A and B such that the intersection $A \cap B$ is
 - (a) finite,
 - (b) countably infinite,
 - (c) uncountable.