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1. Introduction

Given a statistical model M ∈ RI and a vector of counts u ∈ NI for some
finite index set I, the problem of maximum likelihood estimation is to find
the element P ∈M maximizing the likelihood of observing the data u, that
is, maximizing the function

L(P ) =
∏
i∈I

pui
i

over the model M . We consider, in particular, problems relating to maxi-
mum likelihood estimation on the determinantal varieties of m×n matrices
of rank at most r.

2. Maximum Likelihood Degree

We consider the problem of the maximum likelihood degree of the al-
gebraic statistical models given by determinantal varieties. Before doing
so, we define the maximum likelihood degree. We define the likelihood lo-
cus Zu of a data vector u to be the set of all regular points of V (P ) \
V
((∏

i∈I pi
)
·
∑

i∈I pi
)

such that the gradient of L(p) lies in the tangent
space of V (P ) at p. There is a Zariski dense open subset V ⊂ Rk such that
for each u ∈ V, the likelihood locus is a finite set, and the number of points
in this set is independent of the choice of u ∈ V. We define the maximum
likelihood degree (ML degree) as #Zu for any u ∈ V.

The maximum likelihood degree can be computed using Algorithm 2.2.9
of [1], but this algorithm will not run to completion for more complicated
models on typical computers. The saturation step of this algorithm is par-
ticularly resource-intensive. However, by omitting this saturation step, we
are able to compute the following upper bounds on the maximum likelihood
degree of the model of m× n probability matrices of rank at most r:

(r,m, n) upper bound on ML degree
(2, 3, 5) 59
(2, 3, 6) 123

We remark that the bounds are computable in these cases because the num-
ber of 2× 2 minors of 3× 5 and 3× 6 matrices is relatively small.
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3. Generalizing the 100 Swiss Francs Conjecture

In [2], the authors prove the following conjecture of Sturmfels.

100 Swiss Francs Conjecture. The maximum value of the likelihood func-
tion

L(P ) =
4∏
i=1

p4
ii ×

∏
i 6=j

p2
ij

over the set of all 4 × 4 probability matrices P = (pij) of rank at most 2 is
attained for

P =
1
40


3 3 2 2
3 3 2 2
2 2 3 3
2 2 3 3

 .

The also conjecture the following generalization of this result:

Conjecture 1. For given 0 < t < s where t, s are two integers, among the
set of all non-negative 4 × 4 matrices whose rank is at most 2 and whose
entries sum to 1, the matrix

P =
1

4s+ 12t


s+t
2

s+t
2 t t

s+t
2

s+t
2 t t

t t s+t
2

s+t
2

t t s+t
2

s+t
2


is a global maximum for the likelihood function

Ls,t(P ) =
4∏
i=1

psii ×
∏
i 6=j

ptij .

We show that the method of [2] extends to the following case of this
generalization:

Theorem 1. Let M be the unique positive root of the polynomial

p(x) = 9x7 + 23x6 − 182x5 − 150x4 + 2525x3 + 1907x2 − 12640x− 16068.

(Note M ≈ 2.761157). The conclusion of Conjecture 1 holds provided that
1 < s/t < M .

The proof uses the same methods as [2], so we primarily provide details
where they diverge from that source.

As in [2], we can scale our probability matrices by 42 = 16, so that the sum
of the entries is 16. Evidently, this scaling will not affect the maximization
problem. The row and column sums of an optimal solution must all be 4,
so using the singular value decomposition theorem, can then write a rank 2
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matrix P as

P =


1 + a1b1 1 + a2b1 1 + a3b1 1 + a4b1
1 + a1b2 1 + a2b2 1 + a3b2 1 + a4b2
1 + a1b3 1 + a2b3 1 + a3b3 1 + a4b3
1 + a1b4 1 + a2b4 1 + a3b4 1 + a4b4

 .

For convenience of notation, we let α = s/t−1. We find the following analog
of Lemma 2 in [2].

Lemma 1. A global maximum of Ls,t for any s, t satisfies

(1)
4∑
j=1

bj
1 + aibj

+
αbi

1 + aibi
= 0, 1 ≤ i ≤ 4

and

(2)
4∑
i=1

ai
1 + aibj

+
αaj

1 + ajbj
= 0, 1 ≤ j ≤ 4.

The following is an analog of Corollary 3.

Corollary 1. A matrix P maximizing Ls,t satisfies

(3)
4∑
j=1

1
1 + aibj

+
α

1 + aibi
= 4 + α, 1 ≤ i ≤ 4

and

(4)
4∑
i=1

1
1 + aibj

+
α

1 + ajbj
= 4 + α, 1 ≤ j ≤ 4.

The next results, which are Lemmas 4 and 5 in [2] also holds more gen-
erally with the same proof.

Lemma 2. If P maximizes Ls,t, then the following are true for every i:
(1) ai = 0 if and only if bi = 0, and
(2) ai > 0 if and only if bi > 0.

Lemma 3. If P maximizes Ls,t, then the following are true for every i:
(1) ai = aj if and only if bi = bj, and
(2) ai > aj if and only if bi > bj.

As in [2], we may make certain simplifying assumptions.

Assumption 1. We can assume that some P maximizing Ls,t satisfies
(1) a1 ≥ a2 ≥ a3 ≥ a4 and b1 ≥ b2 ≥ b3 ≥ b4,
(2) a1 = b1 ≥ 0, and
(3) a1 ≥ a2 ≥ 0.

We are now able to introduce an analog to Lemma 7. It is only now that
we need to restrict our choice of s, t.



4 ADAM MERBERG

Lemma 4. If P maximizes Ls,t with s/t < M + 1, then a2 = b2.

While the method of proof is the same as [2], we present some details here
because the computations are somewhat more complicated.

Proof. If either of a2 or b2 is 0, then a2 = 0 = b2. We can thus assume that
a2 > 0 and since a1 ≥ a2, it follows that a1 > 0 also.

Applying the first equation of Corollary 1 with i = 1, we find

2
1 + a2

1

+
1

1 + a2a1
+

1
1 + a3a1

+
1

1 + a4a1
= 4 + α.

Since the rows and columns of P sum to 4, we also have

a2
1 + a2a1 + a3a1 + a4a1 = 0.

Defining

f1(x, y) =
2− x− y

4 + α− 1+α
1+x2 − 1

1+y

+ x+ y − 1,

it follows that
a3aa · a4 · a1 = f1(a2

1, a1a2).

We similarly find (using Corollary 1 with i = 2) that

a3b2 · a4b2 = f1(a2b2, a1b2).

Since a1 and b2 are nonzero, it follows that

f1(a2
1, a1a2)
a2

1

=
f1(a2b2, a1b2)

b22
.

Normalizing allows us to find a polynomial f2(x, y, z) such that

f2(a1, a2, b2) = 0.

Similarly applying the second equation in Corollary 1 with j = 1 and j = 2,
we find that f2(a1, b2, a2) = 0. Thus

f2(a1, a2, b2)− f2(a1, a2, b2) = 0.

The left hand side factors, yielding

(a2 − b2)f3(a1, a2, b2) = 0

where

f3(a1, a2, b2) = a2
2((2(α+ 3)(α+ 4))a4

1b
2
2 + (2(α+ 4)(α+ 2))a3

1b2

+(−α2 − α+ 8)a2
1b

2
2 + (−(α+ 3)(α− 2))a1b2 + (−2α− 6)b22)

+a2((α2 − α+ 8)a4
1b2 + (2α2 + 12α+ 16)a3

1b
2
2 + (−α2 − α+ 6)a3

1

+(2α2 + 6α+ 12)a2
1b2 + (−α2 − α+ 6)a1b

2
2 − 6αa1 + (−α2 + α)b2)

+(2α− 6)a4
1 + (−α2 − α+ 6)a3

1b2 + (−α2 − α)a2
1 − 6αa1b2 − 4α



MAXIMUM LIKELIHOOD ESTIMATION ON DETERMINANTAL VARIETIES 5

Using the bounds in Lemma 5, we find that

f3(a1, a2, b2) < 2(α+ 3)/(α+ 4)3α4 + 2/(α+ 4)2(α+ 2)α3

+(−α2 − α+ 8)α2/(α+ 4)2

−(α+ 3)(α− 2)(a2b2)α/(α+ 4) + (−2α− 6)(a2b2)2

+3(−α2 − α+ 8)α3/(α+ 3)/(α+ 4)2

+(2α2 + 12α+ 16)α3/(α+ 4)3 − 3(α− 2)α2/(α+ 4)
+(2α2 + 6α+ 12)α2/(α+ 4)2 + (−α2 − α+ 6)α/(α+ 4)(a2b2)
+(−α2 + α)(a2b2) + 3(−α2 − α+ 6)α2/(α+ 3)/(α+ 4)− 4α

This bound is quadratic in a2b2 and is negative so long as its discriminant
(after normalizing),

α ·p(α+1) = 9α7 +86α6 +145α5−400α4 +880α3 +7296α2−2560α−24576

is negative, which is the case so long as α + 1 < M , or equivalently s/t <
M . �

Finally, we give an analog of Lemma 8 of [2].

Lemma 5. Suppose that P maximizes Ls,t. Then

(1) a2
1 ≤ 2α

3+α

(2) If α < 3+
√

105
2 then a1a2 ≤ α

4+α , and

(3) If α < 3+
√

105
2 then a1b2 ≤ α

4+α .

Proof. The proof of the first statement is entirely parallel to the case α = 1
as given in [2], and is omitted.

The proof of the second statement is almost the same as for the case
α = 1, but we include the proof to explain the role of the upper bound
for α here. For i = 1, 2, 3, 4, define Ai = 1 + a1ai and suppose that A2 =
1 + a1a2 > 1 + α

4+α = 2α+4
4+α Define

g(x) =
1 + α

A1
+

1
x

+
4

4−A1 − x
.

Then

g′(x) = − 1
x2

+
4

(4−A1 −A2)2

Since a1 ≥ a2 > 0, we have A1 ≥ A2 ≥ 1, whence 4 − A1 − x ≤ 2 for all
x > 1, so g′(x) > 0 for x > 1. Thus g is increasing between 2α+4

4+α and A2,
whence

1 + α

A1
+

1
A2

+
4

4−A1 −A2
>

1 + α

A1
+

4 + α

4 + 2α
+

4
12+2α
4+α −A1

Since
1
A3

+
1
A4
≥ 4
A3 +A4

=
4

4−A1 −A2
,
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we see that

1 + α

A1
+

1
A2

+
4

4−A1 −A2
=

1 + α

A1
+

1
A2

+
4

A3 +A4
≤ 1 + α

A1
+

1
A2

+
1
A3

+
1
A4

= 4+α,

whence

4 + α >
1 + α

A1
+

4 + α

4 + 2α
+

4
12+2α
4+α −A1

.

Here, the condition that α < 3+
√

105
2 implies that the denominator on

the rightmost fraction is positive, whence we can find that the solution
set for A1 in the inequality is (−∞, 0) ∪

(
2(α2+7α+6)
2α2+11α+12

, 4+2α
4+α

)
∪
(

12+2α
4+α

)
.

Since A1 > 0 and A1 = 1 + a2
1 ≤ 3+3α

3+α , it follows that we must have

A1 ∈
(

2(α2+7α+6)
2α2+11α+12

, 4+2α
4+α

)
. But this contradicts A1 ≥ A2, so the stated

upper bound must hold.
The third inequality is proven by letting Ai = 1 + a1bi. The same proof

will work, as in [2]. �

The following two results are proven exactly as in the case s/t = 2 as
described in [2], so we omit the proofs.

Proposition 1. a3 = b3 and a4 = b4.

Proposition 2. aiaj > 0 if and only if ai = aj.

Thus, the problem is reduced to comparing likelihood functions for dif-
ferent sign patterns for the ai. From the order assumptions, we need only
consider four different sign patterns: (+,+,+,−), (+,+,−,−), (+,+, 0,−),
and (+, 0, 0,−). For the first of these patterns, we have a1 = a2 = a3 > 0,

which by the equations in Corollary 1 gives us a1 = a2 = a3 =
√

s−t
3s+9t ,

which gives rise to the matrix

P1 =
4

3s+ 9t


s+ 2t s+ 2t s+ 2t 3t
s+ 2t s+ 2t s+ 2t 3t
s+ 2t s+ 2t s+ 2t 3t

3t 3t 3t 3s.


For the second sign pattern, we find a1 = a2 =

√
s−t
s+3t and then

P2 =
1

s+ 3t


2s+ 2t 2s+ 2t 4t 4t
2s+ 2t 2s+ 2t 4t 4t

4t 4t 2s+ 2t 2s+ 2t
4t 4t 2s+ 2t 2s+ 2t


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We show that Ls,t(P2) > Ls,t(P1). Consider the ratio of likelihood functions
as a function of s and t:

R(s, t) :=
Ls,t(P2)
Ls,t(P1)

=
1

(s+3t)4s+12t · (4t)8t (2s+ 2t)4s+4t(
4

3s+9t

)4s+12t
· (s+ 2t)3s+6t (3t)6t · (3s)s

=
34s+12t · (4t)8t (2s+ 2t)4s+4t

44s+12t · (s+ 2t)3s+6t (3t)6t · (3s)s

=
33s+6t · t2t (2s+ 2t)4s+4t

44s+4t · (s+ 2t)3s+6t · ss

Evidently, R(t, t) = 1 for any t. We compute the partial derivative with
respect to s.

∂R

∂s
(s, t) = 33s+6t · 16−s−t · t2t(s+ t)4s+4ts−s(s+ 2t)−3s−6t

·(log(27/16)− log(s) + 4 log(s+ t)− 3 log(s+ 2t))
= 33s+6t · 16−s−t · t2t(s+ t)4s+4t(s−s(s+ 2t)−3s+−6t)

· log
(

27s(s+ 2t)3

16(s+ t)4

)
.

All but the last factor are positive for any s and t, and it is an exercise in
elementary calculus to show that the last factor in the last line is positive
for s > t. Thus for fixed t, R is increasing with respect to s, from which it
follows that R(s, t) > 1 for s > t. Thus Ls,t(P2) > Ls,t(P1).

For the other two sign patterns, we proceed similarly, and it follows that
P2 is a global maximum of Ls,t, which is what we needed.

Although we are only able to use this method to prove the conjecture with
1 < s/t < M , we expect that the result is true more generally. Computations
for integer values 3 ≤ s/t ≤ 5000 using the EM algorithm (c.f. [3]) did not
find any counterexamples.
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Birkhäuser Verlag, Basel, 2008.

[2] Shuhong Gao, Guangran Jiang, and Mingfu Zhu. Solving the 100 Swiss Francs Prob-
lem. 2008.

[3] Lior Pachter and Bernd Sturmfels. Algebraic statistics for computational biology. Cam-
bridge Univ. Press, New York, 2005.


