
NOTES ON HYPERBOLICITY CONES
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1. Hyperbolic programming

A hyperbolic program is an optimization problem of the form

minimize cTx
such that Ax = b and

x ∈ Λ+,

where c ∈ Rn, Ax = b is a system of linear equations and Λ+ is the closure of
a so called hyperbolicity cone. Hyperbolic programming generalizes semidefinite
programming, but it is not known to what extent since it is not known how general
the hyperbolicity cones are. The rich algebraic structure of hyperbolicity cones
makes hyperbolic programming an interesting context for optimization. For further
reading we refer to [2, 7] and the references therein.

2. Stable and hyperbolic polynomials

Stable and hyperbolic polynomials are both generalizations of univariate poly-
nomials with only real zeros.

Let H = {z ∈ C : Im(z) > 0}. A polynomial p(x) ∈ C[x1, . . . , xn] is stable if

z ∈ Hn =⇒ p(z) 6= 0.

Here are two elementary examples:
(1) Suppose that p(x) ∈ R[x]. Then p(x) is stable if and only if it has only real

zeros (since non-real zeros come in conjugate pairs).
(2) Let p(x, y) =

∑d
k=0 akx

kyd−k ∈ R[x, y], be a homogenous polynomial of
degree d with ad 6= 0. Then p is stable if and only if p(x, 1) has only real
and non-positive zeros. Indeed if p(x, 1) has only real and non-positive
zeros, then we may write p(x, y) = ad

∏d
j=1(x + αjy), where αj ≥ 0 for

all j. Since each term x+ αjy is stable, and since stability is closed under
multiplication it follows that p(x, y) is stable.

On the other hand if p(x, y) is stable, then so is p(x, 1) by (3) below.
Hence we may write p(x, y) = ad

∏d
j=1(x + αjy), where αj ∈ R for all j.

If αj < 0 for some j, then p(x, y) = 0 for (x, y) = (|αj |i, i) ∈ H2. Hence
αj ≥ 0 for all j and p(x, y) is of the desired form.

(3) Let H be the closed upper half plane of C. If p(x1, . . . , xn) is stable and
η ∈ H, then q(x1, . . . , xn−1) = p(x1, . . . , xn−1, η) is stable or identically
zero. Indeed if ε > 0 then p(x1, . . . , xn−1, η+ εi) is stable. Hence by letting
ε → 0, and invoking Hurwitz’ theorem on the continuity of zeros we see
that q(x1, . . . , xn−1) is stable or identically zero.

Stable polynomials appear in complex analysis, control theory, statistical mechan-
ics, probability theory and combinatorics. For a recent survey on new developments
on stable polynomials see [8].



2

A homogeneous polynomial h(x) ∈ R[x1, . . . , xn] is hyperbolic with respect to
a vector e ∈ Rn if h(e) 6= 0, and if for all x ∈ Rn the univariate polynomial
t 7→ h(x + et) has only real zeros. Hyperbolic polynomials have their origin in
PDE theory where they were studied by Petrovsky, G̊arding, Bott, Atiyah and
Hörmander. During recent years hyperbolic polynomials have been studied in di-
verse areas such as control theory, optimization, probability theory computer sci-
ence and combinatorics. Here are some examples of hyperbolic polynomials:

(1) Let h(x) = x1 · · ·xn. Then h(x) is hyperbolic with respect to any vector
e ∈ Rn that has no coordinate equal to zero:

h(x+ et) =
n∏

j=1

(xj + ejt).

(2) Let X = (xij)n
i,j=1 be a matrix of variables where we impose xij = xji.

Then det(X) is hyperbolic with respect to I = diag(1, . . . , 1). Indeed t 7→
det(X + tI) is the characteristic polynomial of the symmetric matrix X, so
it has only real zeros.

(3) Let h(x) = x2
1 − x2

2 − · · · − x2
n. Then h is hyperbolic with respect to

(1, 0, . . . , 0)T .

3. The hyperbolicity cone

Suppose that h is hyperbolic with respect to e, and of degree d. We may write

h(x+ et) = h(e)
d∏

j=1

(t+ λj(x)),

where λ1(x) ≤ · · · ≤ λd(x). The hyperbolicity cone is the set

Λ++ = Λ++(e) = {x ∈ Rn : λ1(x) > 0}.
Since h(e + te) = h(e)(1 + t)d we see that e ∈ Λ++. The hyperbolicity cones for
the examples given is Section 2 are:

(1) Λ++(e) = {x ∈ Rn : xiei > 0 for all i}.
(2) Λ++(I) is the cone of symmetric positive definite matrices.
(3) Λ++(1, 0, . . . , 0) is the Lorentz cone

{x ∈ Rn : x1 >
√
x2

2 + · · ·+ x2
n}.

Proposition 1. The hyperbolicity cone is the connected component of

{x ∈ Rn : h(x) 6= 0}
which contains e.

Proof. Let C be the connected component that contains e. Suppose that x(s),
0 ≤ s ≤ 1 is a continous path in C connecting e = x(0) and x = x(1). Then
λ1(x(s)) > 0 for all 0 ≤ s ≤ 1 for otherwise λ1(x(s)) = 0 for some 0 ≤ s ≤ 1 which
implies h(x(s)) = 0 contrary to the assumption that x(s) ∈ C.

One the other hand if x ∈ Λ++, then by homogeneity

h(tx+ (1− t)e) = h(e)
d∏

j=1

(tλj(x) + (1− t)).

Since λj(x) > 0 for all j we see that tx+ (1− t)e ∈ C for all 0 ≤ t ≤ 1. �
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Lemma 2. Let h(x) be a homogeneous polynomial of degree d, and suppose that
a, b ∈ Rn are such that h(a)h(b) 6= 0. The following are equivalent

(i) h is hyperbolic with respect to a, and b ∈ Λ++(a).
(ii) For all x ∈ Rn, the polynomial

(s, t) 7→ h(x+ sa+ tb) (1)

is stable.

Proof. Assume (ii). Let x ∈ Rn. By (3) in Section 2 we see that all zeros of
s 7→ h(x+sa) are real. Hence h is hyperbolic with respect to a. By setting x = 0 in
(1) we see that p(s, t) = h(sa+tb) is a homogeneous and stable polynomial of degree
d in each variable. By (2) in Section 2 it follows that all zeros of s 7→ h(b+ sa) are
negative. Hence b ∈ Λ++(a).

Assume (i). Fix s0 ∈ H and x ∈ Rn and consider the zero set, Z(x), of t 7→
h(x + s0a + tb). We need to prove that Z(x) ⊂ −H = {z ∈ C : Im(z) ≥ 0}
for all x ∈ Rn. Consider Z(0). Since b ∈ Λ++(a) all the zeros of h(b + sa) are
negative. Hence if h(s0a+ tb) = tdh(b+ s0t

−1a) = 0, then s0/t < 0. It follows that
Z(0) ⊂ −H. To arrive at a contradiction assume that there is a vector x ∈ Rn for
which Z(x) 6⊂ −H. By moving from 0 to x along the line segment {θx : 0 ≤ θ ≤ 1},
we see that for some 0 ≤ θ ≤ 1 we have Z(θx)∩R 6= 0 (by Hurwitz’ theorem on the
continuity of zeros). Hence there is a number α ∈ R for which h(θx+αb+s0a) = 0.
Since s0 6∈ R and θx+ αb ∈ Rn this contradicts the hyberbolicity of h. �

Theorem 3. Suppose that h is hyperbolic with respect to e.
(i) If a ∈ Λ++(e), then h is hyperbolic with respect to a, and Λ++(a) = Λ++(e).
(ii) Λ++(e) is a convex cone.

Proof. That h is hyperbolic with respect to a follows immediately from Lemma
2 since condition (ii) in Lemma 2 is symmetric in a and e. Since a ∈ Λ++(e),
Proposition 1 implies Λ++(a) = Λ++(e).

If a, b ∈ Λ++(e), then since Λ++(e) = Λ++(a) it follows as in the last few lines
of the proof of Proposition 1 that ta+ (1− t)b ∈ Λ++(e), for all 0 ≤ t ≤ 1. Clearly
Λ++(e) is closed under multiplication of positive scalars. �

In order to understand hyperbolic programming we need to understand the na-
ture of hyperbolicity cones. Suppose that h is hyperbolic with respect to e and of
degree d. Then we may write

h(x+ et) =
d∑

k=0

ek(x)td−k,

where ek(x) is a homogeneous polynomial of degree k. Now, x ∈ Λ+(e) if and only
if all zeros of t 7→ h(x+ et) are negative. Hence

Λ++(e) = {x ∈ Rn : e0(x) > 0, . . . , ed(x) > 0}.
Thus Λ++(e) is a semialgebraic set. Let Λ+ be the closure of the hyperbolicity
cone.

Proposition 4. All faces of Λ+ are exposed, that is, the faces are intersections
with supporting hyperplanes.

See [7] for a self-contained proof Proposition 4.
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4. Are all hyperbolicity cones slices of the cone of PSD matrices?

Suppose that A1, . . . , An are symmetric d × d matrices and e = (e1, . . . , en)T ∈
Rn. Suppose further that

∑n
i=1 eiAi = I, where I is the identity matrix. Then the

polynomial
h(x) = det(x1A1 + · · ·+ xnAn)

is hyperbolic with respect to e, and the hyperbolicity cone is

Λ++ = {x ∈ Rn :
n∑

i=1

xiAi is positive definite}.

Hence Λ++ is a slice of the cone of positive definite matrices with a hyperplane. Is
this always the case?

Conjecture 5 (Generalized Lax conjecture). Suppose that Λ++ ⊆ Rn is a hyper-
bolic polynomial. Are there symmetric d× d matrices A1, . . . , An such that

Λ++ = {x ∈ Rn :
n∑

i=1

xiAi is positive definite}.

The conjecture is true for n = 3 as demonstrated in [5], where it was shown to
follow from the work of Helton and Vinnikov [4]. In fact in three variables more is
true:

Theorem 6 ([4, 5]). Suppose that h(x, y, z) is of degree d and hyperbolic with respect
to e = (e1, e2, e3)T . Suppose further that h is normalized such that h(e) = 1. Then
there are symmetric d× d matrices A,B,C such that e1A+ e2B + e3C = I and

h(x, y, z) = det(xA+ yB + zC).

The next lemma is due to Nuij [6].

Lemma 7. The space of all degree d homogenous polynomials in n variables that
are hyperbolic with respect to e has nonempty interior.

A simple count of parameters shows that the exact analog of Theorem 6 does
not hold in more than three variables. However some relaxations of the generalized
Lax conjecture have been proposed. Two of these were disproved in [1].

5. Relaxations of hyperbolicity cones

Let p ∈ R[x1, . . . , xn] and e = (e1, . . . , en)T ∈ Rn, and let

D[e](h) =
n∑

i=1

ei
∂h

∂xi

denote the derivative in direction e.

Lemma 8. Suppose that h is hyperbolic with respect to e. Then D[e](h) is hyperbolic
with respect to e, and its hyperbolicity cone contains the hyperbolicity cone of h.

Proof. The proof just uses the following simple property of polynomials with only
real zeros, which follows from Rolle’s theorem: If p(t) is a polynomial with only
real zeros λ1 ≤ · · · ≤ λn, then the zeros λ′1 ≤ · · · ≤ λ′n−1 of p′(t) are all real and
satisfy

λ1 ≤ λ′1 ≤ · · · ≤ λ′n−1 ≤ λn. (2)
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Let x ∈ Rn. We want to prove that the polynomial q(t) = D[e](h)(x + et) has
only real zeros. Let p(t) = h(x + et). Clearly q(t) = p′(t) so that q(t) has only
real zeros by the observation above. Also, by (2), we have λ1(x) ≤ λ′1(x), where
q(t) = C

∏n−1
i=1 (t+ λ′i(x)). Hence

{x : λ1(x) > 0} ⊆ {x : λ′1(x) > 0},

as desired. �

Let h be a hyperbolic polynomial (with respect to e) of degree d. Define a
sequence of hyperbolic polynomial {hi}d−1

i=0 by setting h0 = h and hi+1 = D[e](hi)
for 0 ≤ i ≤ d− 2. Let Λi

++ be the hyperbolicity cone of hi. By Lemma 8

Λ++ = Λ0
++ ⊆ Λ1

++ ⊆ · · · ⊆ Λd−1
++ ,

and since hd−1 is homogeneous of degree 1, Λd−1
++ is just a half-space.

6. The rank function of a hyperbolic polynomial

Clearly, the rank function on matrices satisfies rank(A) = deg det(I + tA). It is
thus natural to define a rank function rankh : Rn → N associated to a hyperbolic
polynomial with respect to e as follows:

rankh(x) = deg h(e+ xt).

Here are some properties of hyperbolic rank functions.

Proposition 9. Let h be a hyperbolic polynomial with respect to e. Then

(a) The rank function does not depend on the choice of e ∈ Λ++. ([1, 3, 7])
(b) The rank is constant on open line segments in Λ+. ([7])
(c) The rank function is submodular on Λ+, that is,

rankp(u+ v + w) + rankp(w) ≤ rankp(u+ w) + rankp(v + w),

for all u, v, w ∈ Λ+. ([1, 3])

Proposition 9(c) enables us to define a class of polymatroids associated to a
hyperbolic polynomial. A polymatroid on a finite set E is a function r : 2E → N
such that

• r(∅) = 0;
• If S ⊆ T ⊆ E, then r(S) ≤ r(T );
• r is submodular, that is,

r(S ∪ T ) + r(S ∩ T ) ≤ r(S) + r(T ),

for all subsets S and T of E.

Corollary 10. Let h be a hyperbolic polynomial with respect to e and let e1, . . . , en ∈
Λ+. Define a function r : 2{1,...,n} → N by

r(S) = rankh

(∑
i∈S

ei

)
.

Then r is a polymatroid, called a hyperbolic matroid.
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Let V1, . . . , Vn be subspaces of a vectorspace V over a field K. Then the function
r : 2{1,...,n} → N defined by

r(S) = dim

∑
j∈S

Vj


is a polymatroid, where

∑
j∈S Vj is the smallest subspace containing ∪j∈SVj . These

are called K-linear polymatroids. It is not hard to see that the R-linear matroids
are exactly the hyperbolic matroids that come from the hyperbolic polynomial det.
Are all hyperbolic matroids R-linear? It turns out that the Vámos matroid V8 is a
hyperbolic matroid, but it is not K-linear for any K, see [1]. The reason for this is
that the Vámos matroid fails to satisfy the so called Ingleton inequalities: Suppose
that r : 2{1,...,n} → N is a K-linear polymatroid. Then

r(S1 ∪ S2) + r(S1 ∪ S3 ∪ S4) + r(S3) + r(S4) + r(S2 ∪ S3 ∪ S4) ≤
r(S1 ∪ S3) + r(S1 ∪ S4) + r(S2 ∪ S3) + r(S2 ∪ S4) + r(S3 ∪ S4)

for all S1, S2, S3, S4 ∈ 2{1,...,n}.
Apart from not satisfying the Ingleton inequalities, not much is known about the

generality of hyperbolic polymatroids. It is desirable to get a better understanding
of hyperbolic polymatroids, not only because of their role in the context of the
generalized Lax conjecture.
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