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Convex Hull of a Trigonometric Curve

{

(cos(θ), sin(2θ), cos(3θ) ) ∈ R
3 : θ ∈ [0, 2π]

}

= { (x , y , z) ∈ R
3 : x2 − y2 − xz = z − 4x3 + 3x = 0 }
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Boundary Surface Patches

The yellow surface has degree 3 and it equals z − 4x3 + 3x = 0.



Boundary Surface Patches

The yellow surface has degree 3 and it equals z − 4x3 + 3x = 0.

The green surface has degree 16 and its defining polynomial is

1024x16
− 12032x14y2 + 52240x12y4

− 96960x10y6 + 56160x8y8 + 19008x6y10 + 1296x4y12 + 6144x15z

−14080x13y2z − 72000x11y4z + 149440x9y6z + 79680x7y8z + 7488x5y10z + 15360x14z2 + 36352x12y2z2

+151392x10y4z2 + 131264x8y6z2 + 18016x6y8z2 + 20480x13 z3 + 73216x11y2z3 + 105664x9y4z3 + 23104x7y6z3

+15360x12 z4 + 41216x10y2z4 + 16656x8y4z4 + 6144x11z5 + 6400x9y2z5 + 1024x10z6
− 26048x14

− 135688x12y2

+178752x10y4 + 124736x8y6
− 210368x6y8 + 792x4y10 + 5184x2y12 + 432y14

− 77888x13z + 292400x11y2z

+10688x9y4z − 492608x7y6z − 67680x5y8z + 21456x3y10z + 2592xy12 z − 81600x12 z2
− 65912x10y2z2

−464256x8y4z2
− 192832x6y6z2 + 31488x4y8z2 + 6552x2y10z2

− 40768x11z3
− 194400x9y2z3

− 196224x7y4z3

+14912x5y6z3 + 8992x3y8z3
− 20800x10z4

− 84088x8y2z4
− 7360x6y4z4 + 7168x4y6z4

− 12480x9 z5
− 9680x7y2z5

+3264x5y4z5
− 2624x8z6 + 760x6y2z6 + 64x7z7 + 189649x12 + 104700x10y2

− 568266x8y4 + 268820x6y6

+118497x4y8
− 42984x2y10

− 432y12 + 62344x11z − 592996x9y2z + 421980x7y4z + 377780x5y6z − 79748x3y8z

−18288xy10 z + 104620x10 z2 + 56876x8y2z2 + 480890x6y4z2
− 12440x4y6z2

− 51354x2y8z2
− 936y10 z2

+35096x9 z3 + 181132x7y2z3 + 73800x5y4z3
− 52792x3y6z3

− 3780xy8 z3
− 6730x8z4 + 52596x6y2z4

−19062x4y4z4
− 5884x2y6z4 + y8z4 + 6008x7z5 + 2516x5y2z5

− 4324x3y4z5 + 4xy6z5 + 2380x6z6

−1436x4y2z6 + 6x2y4z6
− 152x5z7 + 4x3y2z7 + x4z8

− 305250x10 + 313020x8y2 + 174078x6y4

−291720x4y6 + 74880x2y8 + 84400x9z + 278676x7y2z − 420468x5y4z + 20576x3y6z + 40704xy8 z

−25880x8 z2
− 76516x6y2z2

− 148254x4y4z2 + 77840x2y6z2 + 5248y8 z2
− 29808x7z3

− 49388x5y2z3

+23080x3y4z3 + 14560xy6 z3 + 14420x6 z4
− 7852x4y2z4 + 9954x2y4z4 + 568y6z4 + 848x5z5 + 92x3y2z5

+1164xy4 z5
− 984x4z6 + 724x2y2z6

− 2y4z6 + 112x3z7
− 4xy2z7

− 2x2z8 + 140625x8
− 270000x6y2

+172800x4y4
− 36864x2y6

− 75000x7 z + 36000x5y2z + 46080x3y4z − 24576xy6 z − 12500x6 z2

+49200x4y2z2
− 19968x2y4z2

− 4096y6 z2 + 15000x5 z3
− 10560x3y2z3

− 3072xy4 z3

−2250x4z4
− 1872x2y2z4 + 768y4z4

− 520x3z5 + 672xy2z5 + 204x2z6
− 48y2z6

− 24xz7 + z8
.



Basic Definitions

Let C be a compact real algebraic curve in R
3 and C̄ its Zariski

closure of C in CP
3. We define the degree and genus of C

by way of the complex projective curve C̄ ⊂ CP3:

d = degree(C ) := degree(C̄ ) and g = genus(C ) := genus(C̄ ).

We say that C is smooth only if C̄ is smooth.



Basic Definitions

Let C be a compact real algebraic curve in R
3 and C̄ its Zariski

closure of C in CP
3. We define the degree and genus of C

by way of the complex projective curve C̄ ⊂ CP3:

d = degree(C ) := degree(C̄ ) and g = genus(C ) := genus(C̄ ).

We say that C is smooth only if C̄ is smooth.

The convex hull conv(C ) of the real algebraic curve C is a
compact, convex, semi-algebraic subset of R

3, and its boundary
∂conv(C ) is a pure 2-dimensional semi-algebraic subset of R

3.

Let K be the subfield of R over which the curve C is defined.
The algebraic boundary of conv(C ) is the K -Zariski closure of
∂conv(C ) in C

3. The algebraic boundary is denoted ∂aconv(C ).
This complex surface is usually reducible and reduced. Its
defining polynomial in K [x , y , z ] is unique up to scaling.



Degree Formula for Smooth Curves

Theorem. Let C be a general smooth compact curve of degree
d and genus g in R

3. The algebraic boundary ∂aconv(C ) of its
convex hull is the union of the edge surface of degree
2(d − 3)(d + g − 1) and the tritangent planes of which
there are 8

(

d+g−1
3

)

− 8(d+g−4)(d+2g−2) + 8g − 8.



Degree Formula for Smooth Curves

Theorem. Let C be a general smooth compact curve of degree
d and genus g in R

3. The algebraic boundary ∂aconv(C ) of its
convex hull is the union of the edge surface of degree
2(d − 3)(d + g − 1) and the tritangent planes of which
there are 8

(

d+g−1
3

)

− 8(d+g−4)(d+2g−2) + 8g − 8.

A plane H in CP
3 is a tritangent plane of C̄ if H is tangent to C̄

at three points. We count these using De Jonquières’ formula.

Given points p1, p2 ∈ C , their secant line L = span(p1, p2) is a
stationary bisecant if the tangent lines of C at p1 and p2 lie in a
common plane. The edge surface of C is the union of all stationary
bisecant lines. Its degree was determined by Arrondo et al. (2001).

Example. If d = 4 and g = 0 then the two numbers are 6 and 0.



Smooth Rational Quartic Curve

The edge surface of the curve
(

cos(θ), sin(θ) + cos(2θ), sin(2θ)
)

is irreducible of degree six. d = 4, g = 0



Edge Surface of an Elliptic Curve

The intersection C = Q1 ∩ Q2 of two general quadratic surfaces is
an elliptic curve: it has genus g = 1 and degree d = 4. The edge
surface of C has degree 8. It is the union of four quadratic cones.

Proof: The pencil of quadrics Q1 + tQ2 contains four singular
quadrics, corresponding to the four real roots t1, t2, t3, t4 of
f (t) = det(Q1 + tQ2). The stationary bisecants to C are the
rulings of these cones. The defining polynomial of ∂aconv(C ) is

4
∏

i=1

(Q1 + tiQ2)(x , y , z) = resultantt
(

f (t), (Q1 + tQ2)(x , y , z)
)

.



Edge Surface of an Elliptic Curve

The intersection C = Q1 ∩ Q2 of two general quadratic surfaces is
an elliptic curve: it has genus g = 1 and degree d = 4. The edge
surface of C has degree 8. It is the union of four quadratic cones.

Proof: The pencil of quadrics Q1 + tQ2 contains four singular
quadrics, corresponding to the four real roots t1, t2, t3, t4 of
f (t) = det(Q1 + tQ2). The stationary bisecants to C are the
rulings of these cones. The defining polynomial of ∂aconv(C ) is

4
∏

i=1

(Q1 + tiQ2)(x , y , z) = resultantt
(

f (t), (Q1 + tQ2)(x , y , z)
)

.

Conclusion: The edge surface of a curve C ⊂ R
3 can have

multiple components even if C̄ ⊂ CP
3 is smooth and irreducible.

Conjecture: At most one of these components is not a cone.



Trigonometric Curves
A trigonometric polynomial of degree d is an expression of the form

f (θ) =

d/2
∑

j=1

αj cos(jθ) +

d/2
∑

j=1

βj sin(jθ) + γ.

Here d is even. A trigonometric space curve of degree d is a
curve parametrized by three such trigonometric polynomials:

C =
{ (

f1(θ), f2(θ), f3(θ)
)

∈ R
3 : θ ∈ [0, 2π]

}

.

For general αj , βj , γ ∈ R, the curve C̄ ⊂ CP
3 is smooth and g = 0.



Trigonometric Curves
A trigonometric polynomial of degree d is an expression of the form

f (θ) =

d/2
∑

j=1

αj cos(jθ) +

d/2
∑

j=1

βj sin(jθ) + γ.

Here d is even. A trigonometric space curve of degree d is a
curve parametrized by three such trigonometric polynomials:

C =
{ (

f1(θ), f2(θ), f3(θ)
)

∈ R
3 : θ ∈ [0, 2π]

}

.

For general αj , βj , γ ∈ R, the curve C̄ ⊂ CP
3 is smooth and g = 0.

We get a rational parametrization by the change of coordinates

cos(θ) =
1 − t2

1 + t2
and sin(θ) =

2t

1 + t2
.

Substituting into the right hand side of the equation
(

cos(jθ) sin(jθ)
−sin(jθ) cos(jθ)

)

=

(

cos(θ) sin(θ)
−sin(θ) cos(θ)

)j

,

this expresses cos(jθ) and sin(jθ) as rational functions in t.



Rational Sextic Curves
Fix d = 6, g = 0. The algebraic boundary of the convex hull of a
general trigonometric curve of degree 6 consists of 8 tritangent
planes and an irreducible edge surface of degree 30. For special
curves, these degrees drop and the edge surface degenerates...

conv
{

(cos(θ), cos(2θ), sin(3θ)) : 0 ≤ θ ≤ 2π
}



Morton’s Curve

C : θ 7→
1

2 − sin(2θ)

(

cos(3θ), sin(3θ), cos(2θ)
)

Freedman (1980) whether every knotted curve in R
3 must have a

tritangent plane. Morton (1991) showed that the answer is NO.



Curves with Singularities

Theorem. The edge surface of a general irreducible space curve
of degree d , geometric genus g , with n ordinary nodes and
k ordinary cusps, has degree 2(d−3)(d+g−1) − 2n − 2k.
The cone of bisecants through each cusp has degree d−2
and is a component of the edge surface.

Here the singularity is called ordinary if no plane in CP
3

intersects the curve with multiplicity more than 4.



Curves with Singularities

Theorem. The edge surface of a general irreducible space curve
of degree d , geometric genus g , with n ordinary nodes and
k ordinary cusps, has degree 2(d−3)(d+g−1) − 2n − 2k.
The cone of bisecants through each cusp has degree d−2
and is a component of the edge surface.

Here the singularity is called ordinary if no plane in CP
3

intersects the curve with multiplicity more than 4.

Example. (d = 4, g = 0, n + k = 1)
Consider a rational quartic curve with one ordinary singular point.
The edge surface has degree 4. It is the union of two quadric cones
whose intersection equals the curve. If the singularity is an ordinary
cusp then one of the two quadrics has its vertex at the cusp.



Rational Quartic with an Ordinary Node



Rational Quartic with an Ordinary Cusp



Extension to Arbitrary Varieties
Let X be a compact real algebraic variety in R

n, whose
complexification X̄ ⊂ CP

n is smooth. For k ∈ Z+ let X [k] be
the Zariski closure in (CP

n)∨ of the set of all hyperplanes that
are tangent to X̄ at k regular points that span a (k−1)-flat.
Thus X [1] = X ∗ is the dual variety. Consider the inclusions

X [n] ⊆ · · · ⊆ X [2] ⊆ X [1] ⊆ (CP
n)∨.



Extension to Arbitrary Varieties
Let X be a compact real algebraic variety in R

n, whose
complexification X̄ ⊂ CP

n is smooth. For k ∈ Z+ let X [k] be
the Zariski closure in (CP

n)∨ of the set of all hyperplanes that
are tangent to X̄ at k regular points that span a (k−1)-flat.
Thus X [1] = X ∗ is the dual variety. Consider the inclusions

X [n] ⊆ · · · ⊆ X [2] ⊆ X [1] ⊆ (CP
n)∨.

For small k, the dual variety (X [k])∗ is the k-th secant variety of X .
Let r(X ) be the minimal integer k such that the k-th secant variety
of X has codimension ≤ 1. The condition k ≥ r(X ) ≥ ⌈ n

dim(X )+1⌉

is necessary for (X [k])∗ to be a hypersurface.

Theorem
The algebraic boundary of the convex body P = conv(X )
can be computed by projective biduality using the formula

∂a(P) ⊆

n
⋃

k=r(X )

(X [k])∗.



Curves Revisited
Plane Curves: If X is a non-convex curve in R

2 of degree d then

∂a(P) = (X [1])∗ ∪ (X [2])∗ = X ∪ (X [2])∗.

For smooth X , the classical Plücker formulas determine the number
of (complex) bitangent lines. Hence, ∂a(P) is a curve of degree

d + deg(X [2]) = d +
(d − 3)(d − 2) d (d + 3)

2
.

Space Curves: If n = 3, dim(X ) = 1, and r(X ) = 2 then

∂a(P) = (X [2])∗ ∪ (X [3])∗.



Surfaces in 3-Space

Let X be a general smooth compact surface in R
3. Then

∂a(P) = (X [1])∗ ∪ (X [2])∗ ∪ (X [3])∗ = X ∪ (X [2])∗ ∪ (X [3])∗,

Suppose deg(X ) = d . Following classical work by Salmon, Piene
and Vainsencher (1970s) give the following formulas for the degree
of the curve X [2], its dual surface (X [2])∗, and the finite set X [3]:

deg(X [2]) =
d(d − 1)(d − 2)(d3 − d2 + d − 12)

2
,

deg
(

(X [2])∗
)

= d(d − 2)(d − 3)(d2 + 2d − 4),

deg(X [3]) = deg
(

(X [3])∗
)

=

= d9
−6d8+15d7

−59d6+204d5
−339d4+770d3

−2056d2+1920d
6

Of course, the degree of ∂a(X ) is much smaller for singular X ...



A Sextic Surface From Herwig Hauser’s Gallery

Figure: The Zitrus surface x2 + y2 + (z2 − 1)3 = 0



THE END: Four Pairwise Touching Circles

Figure: Schlegel diagram of the convex hull of 4 pairwise touching circles


