
November 20, 2006

SLENDER CLASSES.

ROD DOWNEY AND ANTONIO MONTALBÁN

Abstract. A Π0
1 class P is called thin if, given a subclass P ′ of P there is a clopen C

with P ′ = P ∩C. Cholak, Coles, Downey and Herrmann [7] proved that a Π0
1 class P is

thin if and only if its lattice of subclasses forms a Boolean algebra. Those authors also
proved that if this boolean algebra is the free Boolean algebra, then all such think classes
are automorphic in the lattice of Π0

1 classes under inclusion. From this it follows that
if the boolean algebra has a finite number n of atoms then the resulting classes are all
automorphic. We prove a conjecture of Cholak and Downey [8] by showing that this is
the only time the Boolean algebra determines the automorphism type of a thin class.

1. Introduction

A (computably bounded) Π0
1 class C can be defined as the set of infinite paths through

a computable tree T ⊆ 2<ω. The study of Π0
1 classes has a long and interesting history,

and many applications. These applications include those to effective model theory (e.g.
Jockusch and Soare [13]), combinatorics (e.g. Remmel [19]), proof theory (through the
use of the low basis theorem and the like), and more recently effective randomness (such
as in Nies, Stephan and Terwijn [17]). We refer the reader to the surveys Cenzer [2],
Cenzer-Remmel [6], Cenzer-Jockusch [4] and Simpson [20].

This paper continues the study of the lattice of Π0
1 classes along the lines of Cenzer,

Downey, Jockusch, and Shore [3]. We are interested in the class of Π0
1 classes introduced

in Downey [9, 10], but first constructed under duality in Martin and Pour-El [16]. These
are the thin classes, where an infinite class P is called thin if, for all Π0

1 subclasses P ′ ⊆ P
there is a clopen set C such that C ∩ P = P ′.

Thin classes have attracted considerable interest, and have particularly interesting
degree-theoretical properties, as well as significant connections with algorithmic random-
ness such as Simpson [20], and Binns [1].

Thin classes more or less correspond to hyperhypersimple sets in the lattice of com-
putably enumerable sets. This intuition was made clear in Cholak, Coles, Downey, and
Herrmann [7], where it is proven that an infinite class P is thin if and only if the lattice
of subclasses forms a Boolean algebra which is always ∆0

2, and every ∆0
2 Boolean algebra

is isomorphic to the lattice of subclasses of some thin class. This characterization can be
viewed as the analog of Lachlan’s result [14] that the collection of computably enumer-
able supersets of a hyperhypersimple set is a Σ0

3 Boolean algebra, and every such Boolean
algebra can be realized.

2000 Mathematics Subject Classification. 03D25, 03D28,03D45.
Key words and phrases. thin, slender, Π0

1-classes, automorphisms, Boolean algebras.
The first author’s research was partially supported by The Marsden Found of New Zealand. The

second author was partially supported by NSF Grant DMS-0600824 and by the the Marsden Found of
New Zealand.

1

2 ROD DOWNEY AND ANTONIO MONTALBÁN

The main result of [7] is that if S and T are perfect thin classes, then there is an
automorphism of the lattice of Π0

1 classes under inclusion taking S to T . Here the class
is perfect if and only if the lattice of subclasses is isomorphic to the free (also known as
atomless) Boolean algebra, or, equivalently the class has no isolated points. (Additionally,
it is also proven in [7] that the degrees of such classes are exactly the array non-computable
degrees of Downey, Jockusch and Stob [11]. Thus these classes and their degrees correspond
to a Π0

1 class analog of Soare’s result [21] that maximal sets form an orbit, and Martin’s
one [15] that the maximal sets all have high degrees.)

After seeing [7], it seemed reasonable to suggest that if the Boolean algebras of subclasses
of two thin classes were isomorphic, then the classes would be automorphic. For example,
the method of proof of [7] would show that if the Boolean algebra of subclasses of two thin
classes T1 and T2 have the same finite number of atoms, then T1 and T2 are automorphic.

This hope was shown to fail in general by Cholak and Downey [8] who showed it failed
for minimal classes. Here a thin class M is called minimal if M has a unique non-
isolated (rank one) point in it, and hence every Π0

1 subclass is either finite or cofinite
in M . These were first introduced in [3]. Cholak and Downey [8] formulated a new
(definable) property, cohesive minimality, and proved that there are minimal classes which
are cohesively minimal, and there are minimal classes which are not cohesively so. Thus,
whilst the classes have the same lattices of subclasses (the Boolean algebra of finite and
cofinite subsets), they cannot lie in the same orbit.

After proving this result, Cholak and Downey offered the following conjecture.

Conjecture 1.1 (Cholak and Downey [8]). The only Boolean algebras B, which have the
property that any two thin classes with B as their lattices of subclasses are automorphic,
are ones with a finite number of atoms.

In this paper we will prove this conjecture.

Theorem 1.2. Suppose that B is a ∆0
2 Boolean algebra with infinitely many atoms. Then

there are thin classes T1 and T2 both having B as their lattices of subclasses, and such that
T1 and T2 are not automorphic.

The idea of the proof of this result is a generalization of that used by Cholak and
Downey. Let P ⊆ 2ω be a Π0

1 class. Then we will denote by int(P) ⊆ 2ω the interior of P
(i.e. the largest open subset of P), and by iso(P) ⊆ 2ω the set of isolated points of P .

Definition 1.3. A Π0
1 class S is slender if for every other Π0

1 class F , there exists a clopen
set C such that

int(F) ∩ iso(S) = C ∩ iso(S)

Our main result will follow once we have proven that there are T1, T2 as above, one
of which is slender and one of which is not. Actually this difference will be elementary
because of work of Cenzer and Nies [5]. As with Cholak and Downey [8], the method
of proof is a “full approximation” construction for the Π0

1 classes. However, the fact, for
example, that there are ∆0

2 Boolean algebras with no computable presentations, and for
whom the atoms are not ∆0

2, means that there are many further layers of complexity within
the proof. This necessitates a kind of non-uniformity to the strategies within the proof
according to whether we are in some dense bit or not, as the reader will see in Section 4.
Some of the technical difficulties are solved using algebra. That is, some these difficulties

SLENDER CLASSES. 3

are allayed by the use of a topological form of the Remmel-Vaught Theorem (from [18])
which states that if B1 and B2 are Boolean algebras with infinitely many atoms, and B1

results from B2 by taking B2’s atoms {bi : i ∈ ω} and splitting each bi into finitely many
atoms, then B1 and B2 are isomorphic.

1.1. Notation. We use 2ω to denote the set of infinite binary sequences, 2<ω for the finite
binary sequences and 2n for the binary sequences of length n. A tree S is a downward
closed subset of 2<ω. The set of paths through S is denoted by [S] ⊆ 2ω. If S is a tree,
Sτ = {σ ∈ S, σ ⊆ τ ∨ τ ⊆ σ}. Given s ∈ ω, let S[s] = S ∩ 2≤s and [S][s] = S ∩ 2s,
the stage-s approximation to S and [S]. A string τ ∈ S is dead at stage s if it has no
extensions in [S][s]. We abuse notation and use [τ] represent both {X ∈ 2ω : τ ⊂ X} ⊆ 2ω

and also (2<ω)τ ⊆ 2<ω; it should be clear from the context which ones is being used. The
empty string is denoted by ∅, concatenation of strings by σ_τ , and σ− is the string σ with
the last element removed. In general, when we use a variable, say x during a construction,
x[s] represents the value of x at stage s. If x[s] is not specifically given a value, then it
keeps the value of x[s− 1]. Other notation will be as in Soare [22].

2. Perfect and thin versus finite

Theorem 2.1. There is a uniform procedure which, given a computable tree T ⊆ 2<ω,
builds a computable tree S such that, if [T] is perfect [S] is perfect and thin, and if [T] is
not perfect [S] is finite.

This theorem will be used in both constructions, the one of a non-slender thin class,
and the one of a slender thin class. The proof starts developing ideas the will be used in
both of those constructions.

In the case when [T] is perfect, we will define two tree-embeddings f, r : 2<ω → S
satisfying that f(∅) = ∅ and for every σ ∈ 2<ω,

(fr1) f(σ) ⊆ r(σ), f(σ_0) = r(σ)_0, f(σ_1) = r(σ)_1, and
(fr2) [Sf(σ)] = [Sr(σ)]

One can then prove by induction on n that [S] =
⋃

σ∈2n [Sr(σ)] =
⋃

σ∈2n+1 [Sf(σ)]. It
follows that [S] = [image(f)] = [image(r)], and hence that [S] is perfect.

There are two types of requirements: the thinness requirements

Te : Fe ⊆ S ⇒ ∃C ⊆ 2ω clopen ([Fe] = [S] ∩ C),

where {F0, F1, F2...} is a sequence of computable subtrees of S enumerating all the Π0
1

subclasses of [S]; and the isolation requirements

Fe : [Tte] is isolated ⇒ [S] is finite.

where {t0, t1, ...} is an enumeration of T . These requirements are subdivided even further.
Each thinness requirement Te is divided into 22e sub-requirements Tσ, one for each σ ∈ 22e.

Tσ : either [Sf(σ)] = [(Fe)f(σ)], or [Fe] ∩ [Sf(σ)] = ∅.
Note that if all the requirements Tσ for σ ∈ 22e are satisfied, then so is Te by letting
C =

⋃
{[f(σ)] : σ ∈ 22e & [Sf(σ)] = [(Fe)f(σ)]}. The strategy of Tσ is roughly the

following. If Tσ sees the opportunity to define r(σ) 6∈ Fe, it will do it guaranteeing that
[Fe]∩ [Sr(σ)] = ∅. If such an opportunity never appears, it will be because (Fe)f(σ) = Sf(σ).

Each isolation requirement Fe is be divided into 22e+1 sub-requirements Fσ, one for
each σ ∈ 22e+1.

4 ROD DOWNEY AND ANTONIO MONTALBÁN

Fσ : if [Tte] is isolated ⇒ [Sf(σ)] is isolated.

Fσ works roughly as follows. Every time it believes [Tte] is isolated, it will kill all the paths
in [Sf(σ)][s], except for one. If this occurs infinitely often it is because [Tte] is isolated and
it will make [Sf(σ)] isolated too. It then follows that [S] has at most 22e+1 many paths.
Otherwise, after some stage Fσ will not act anymore and let the construction above f(σ)
continue.

2.1. Organization of the construction. We will define a computable tree S by stages;
at stage s we will define S[s] = S ∩ 2≤s. The functions f and r are also defined by stages
and their values might change along the construction. At the end of stage s, we will have
f [s] and r[s] defined on a finite tree Ds ⊂ 2<ω. We will always have that, if D̃s is the set
of end-nodes of Ds, then [S][s] = {r(d)[s] : d ∈ D̃s} ⊆ 2s.

Each σ ∈ 2<ω has a requirement Rσ (either Tσ or Fσ) assigned. If σ, τ ∈ 2<ω are
incomparable, then the requirements Rσ and Rτ do not interact at all with each other,
and none of the two requirements has stronger priority than the other one. If σ ⊂ τ , then
Rσ has stronger priority than Rτ and it is allowed to cancel it. Cancellation of Rτ by Rσ

is all the interaction there is between Rσ and Rτ . Requirement Rσ is given f(σ), and is
responsible for defining r(σ), extending f(σ), and satisfying condition (fr2).

Main module of the Construction. At each stage s, we will start by activating the strategy
for R∅. This strategy might later activate R〈0〉 and then R〈1〉. Then, R〈0〉 could activate
R〈0,0〉 and R〈0,1〉 and so on. Ds is the set to the requirements that are activated at stage s.
In general, when a requirement Rσ is activated, at at stage s + 1, it can do three things:

• The first time Rσ is active (either first time ever or first time since it was last
canceled), it has to be initialized. Rσ defines f(σ) using (fr1): If σ = τ_i, then
f(σ)[s + 1] = r(τ)[s + 1]_i. (If σ = ∅, let f(σ) = ∅.) It defines r(σ)[s + 1] =
f(σ)[s+1]. It also set its status to an initial status that depends on the requirement.
Rσ will not activate any other requirement at this stage, and hence we will have
σ ∈ D̃s+1. We will observe later that r(σ)[s+1] has length s+1, because r(τ)[s+1]
had to have length s.

• Rσ might act. In this case, Rσ will redefine r(σ), cancel all the requirements of
lower priority and stop going up the tree. So, again we will have σ ∈ D̃s+1. Rσ is
also responsible for defining [Sf(σ)][s + 1] ⊆ 2s+1.

• Otherwise, Rσ keeps the previous value of r(σ) and activates Rσ_0 and Rσ_1. In
this case we will have σ ∈ Ds but σ 6∈ D̃s+1. Since there is no interaction between
Rσ_0 and Rσ_1, it does not matter whether they run simultaneously or one after
the other one.

♦

In the case when [T] is perfect, the construction will be a finite injury one. Every
requirement will be activated infinitely often, but it will stop canceling weaker priority
ones after some stage and f [s] and r[s] will reach a limit. When [T] is not perfect, and te
is the first node such that [Tte] is isolated, every requirement Rσ with |σ| > 2e + 1 will be
canceled infinitely often. However, in this case, requirement Fe is the only one that needs
to be satisfied.

SLENDER CLASSES. 5

We observe that when Rσ is initialized, necessarily f(σ)[s+1] = r(σ)[s+1] have length
s + 1: Since Rσ became activated at this stage, it means that for every γ ⊂ σ, Rγ did
not act, and hence r(γ)[s] = r(γ)[s + 1]. Another observation is that since Rσ was not
active at stage s, it means that σ 6∈ Ds, but τ = σ− had been initialized before s, so
τ ∈ Ds. Hence r(τ)[s] = r(τ)[s + 1] has length s, and f(σ)[s + 1] = r(σ)[s + 1] has length
s+1. The value of f(σ) will not change again, unless Rσ is canceled by a stronger priority
requirement. The value of r(σ) might change a few times before stabilizing. Every time
r(σ) changes, Rσ initializes all the weaker priority requirements, that is, all the Rτ with
τ ⊃ σ.

We now describe the strategies of the requirements Tσ and Fσ.

2.2. Thinness requirement. Consider σ ∈ 2<ω, |σ| = 2e. Recall that Tσ is the require-
ment: either [(Fe)f(σ)] = [Sf(σ)], or [Fe] ∩ [Sf(σ)] = ∅.

Module for requirement Tσ. Suppose we are at stage s+1 and Tσ has just been activated.
Also assume that Tσ has been initialized in some previous stage. So f(σ) and r(σ) have
been previously defined, and Tσ is in status either wai (for “waiting”) or sat (for satisfied).
The initial status is wai.

First let us assume the current status of Tσ is wai. Check whether [(Fe)f(σ)][s] =
[Sf(σ)][s].

• If so, we keep the status wai and activate requirements Fσ_0 and Fσ_1.
• Otherwise we act. Consider γ ∈ [Sf(σ)]r [Fe][s]. We let r(σ) = γ_0 and [Sf(σ)][s+

1] = {r(σ)}, making sure that [Fe] ∩ [Sf(σ)] = [Fe] ∩ [Sr(σ)] = ∅. The status of Tσ

is set to sat. All the requirements Rτ for τ ⊃ σ are canceled.

If Tσ is in status sat when it is activated, it immediately passes control to Fσ_0 and Fσ_1.
♦

Suppose there is a stage s0 after which Tσ is activated infinitely often and never canceled
again. If at some stage s ≥ s0, Tσ acts, then it is satisfied for ever, it status will be sat

from there on, and after stage s, it will never act and cancel lower priority requirements
again. Otherwise, Tσ never acts after s0 and its status is always wai. In this case we have
to have that [(Fe)f(σ)] = [Sf(σ)], so Tσ is also satisfied.

2.3. Isolation requirements. Consider σ ∈ 2<ω, |σ| = 2e + 1. Recall that Fσ is the
requirement: if [Tte] is isolated, [Sf(σ)] is isolated, where te ∈ T . We say that n > |te| is
verified at s if exactly one string τ ∈ Tte ∩ 2n is not dead at stage s. So, we have that [Tte]
is isolated if and only if for every n > |te|, there exists a stage s at which n is verified.
The strategy for Fe is to try to verify every n > |te| one by one. At each stage there is a
number nσ that we are waiting to be verified; once it is verified, we add one to the value
of nσ.

Module for requirement Fσ. Suppose that we are at stage s+1. If Fσ has to be initialized,
it sets its initial status to niso for not isolated (this is not relevant in this proof), and sets
nσ[s + 1] = |te| + 1. At later stages, there will be some other value of nσ > |te|, which is
waiting to be verified. Suppose now that Fσ has been activated at stage s + 1 and that it
has already been initialized at some previous stage. Start by checking whether nσ[s] gets
verified as s.

6 ROD DOWNEY AND ANTONIO MONTALBÁN

• If so, we momentarily believe that [Tte] is isolated and we act. We define Sf(σ)[s+1]
so that only one string in [Sf(σ)][s] is extended to [Sf(σ)][s+1] and we let r(σ)[s+1]
be that one extension. We let nσ[s + 1] = nσ[s] + 1. We then cancel all the
requirement Rτ for τ ⊃ σ and we stop going up 2<ω for this stage. The status of
Fσ is set to iso for isolated.

• Otherwise, we pass control to Tσ_0 and Tσ_1. The status of Fσ is set to niso for
not isolated.

(We mentioned the status of Fσ only because we will use it in the Section 4) ♦

Suppose there is a stage s0 after which Tσ is activated infinitely often and never canceled
again. Note that if [T] is perfect, then for every te, there will be some ne which will never
be verified. After that ne is chosen by Fσ, Fσ will never act again and let the lower priority
requirement do their work. Also, if [Tte] is empty, there will also be some ne which will
never be verified. On the other hand, if [T] is neither perfect nor empty, for some te, [Tte]
is isolated. For each requirement Fσ, σ ∈ 22e+1, every n > |te| will be verified at some
stage, and hence there be infinitely many stages with [Sf(σ)][s] having only one element.
So, [Sf(σ)] will consist of an isolated path. Fσ will keep on injuring the requirements Rτ

for τ ⊃ σ. But, since we are assuming that Sf(σ) is isolated, we do not need to worry
about them.

2.4. Verifications.

Lemma 2.2. Suppose that for every i < e, [Tti] is not isolated. Consider σ ∈ 2≤2e+1.

(1) There is a stage s0, after which Rσ is always activated. In other words, σ ∈ Ds for
every s ≥ s0. Also, Rσ is never canceled after s0, and f(σ) = lims f(σ)[s] exists
and equals f(σ)[s0].

(2) Rσ is satisfied.
(3) For σ ∈ 2<2e+1, Rσ acts only finitely often, and r(σ) = lims r(σ)[s] exists.

Proof. The proof is by simultaneous induction on the length of σ. Part (1) follows from the
inductive hypothesis of (1) and (3). Parts (2) and (3) follow from (1) and the comments
after the description above of the modules for the requirements. �

Now, if [T] is perfect, then the lemma above holds for every e, and hence all the
requirements Te are satisfied. So [S] is a thin Π0

1-class. Also, the functions f and r are
defined everywhere and satisfy (fr1) and (fr2). So [S] is perfect. Otherwise, [T] has some
isolated path. Let e be the least such that [Tte] is isolated. From the lemma it follows
that, for each σ ∈ 22e+1, Fσ is satisfied, and hence Fe is satisfied. So [S] has at most 22e+1

paths.

2.5. A small modification. We now describe a stronger version of Theorem 2.1 that we
are going to need in the construction of a slender thin Π0

1 class. The idea of the proof will
also be used in that construction.

We still have a Π0
1 class [T] and we want to define S as in Theorem 2.1. But suppose

now that not allowed to define [S][s] at every stage s, but only at some infinite number
of stages, and there is some foreign agent defining S[s] at the other stages. However if we
defined [S][s] a certain way and the foreign agent is defining [S][t] for some t > s, there

SLENDER CLASSES. 7

has to be an extension in [S][t] of every element of [S][s]. This way, he is not really killing
our construction. Let us describe this in a more formal way.

Lemma 2.3. Let [T] be a Π0
1 class. There is a computable function ΓT which takes as

input a finite sequence of stages s0 < s1 < < sn and a subtree of 2<sn, and outputs
a subtree of 2≤sn extending it, and satisfies the following property. Consider any infinite
computable sequence {s0 < s1 <} and a computable tree S ⊆ 2<ω such that for every
n ∈ ω, S[sn] = ΓT (s0, ..., sn, S[sn − 1]) and every element of [S][sn] has an extension in
[S][sn+1 − 1]. Then, if T is perfect, [S] is perfect and thin, and [S] is finite otherwise.

Proof. Just let ΓT (s0, ..., sn, S[sn−1]) do what the construction of Theorem 2.1 does in one
stage. Before, for each σ ∈ D̃sn−1 define r(σ)[sn−1] to be some extension of r(σ)[sn−1] in
S[sn−1]. It is not hard to see that this does not affect the satisfaction of the requirements
Tσ and Fσ. �

3. A thin, non-slender class

Theorem 3.1. For every ∆0
2 Boolean algebra B with infinitely many atoms, there exists

a thin but not slender computable tree S whose lattice of Π0
1 subclasses is isomorphic to B.

Definition 3.2. Given a set X ⊆ 2ω, the algebra of clopen set of X, clo(X) is the Boolean
algebra whose elements are of the form C ∩X, where C is a clopen subset of 2ω.

If T is a computable tree, we write clo(T) for clo([T]).

Note that if [T] ⊆ 2ω is a thin Π0
1 class, then the lattice of Π0

1 subclasses of [T] coincides
with the algebra of clopen sets of [T].

Also observe that clo(T) is isomorphic to the Boolean algebra of clopen sets of 2ω

modulo the equivalence relation C ≡ D ⇐⇒ C ∩ [T] = D∩ [T], which is a ∆0
2-condition,

and that the elements of clo(2ω) can be represented by finite sets of binary strings. It
follows that for a computable tree T , clo(T) is ∆0

2 presentable.

Lemma 3.3. For every ∆0
2 Boolean algebra B, there is a computable tree T whose algebra

of clopen sets is B.

Proof. Feiner [12] proved that every ∆0
2 Boolean algebra is isomorphic to a c.e. quotient

Boolean algebra. Then, cited as folklore, it is proven in [3, Theorem 4.8] that every c.e.
quotient Boolean algebra is of the form clo(T) for some computable tree T . �

Fix such a computable tree T .

We build a computable tree S and two tree-embeddings f, r : T → S satisfying condition
(fr1) for σ ∈ T , but not (fr2). Unfortunately, we will not have [S] = [image(f)] =
[image(r)] as in the previous construction. Instead, we will construct S, f and r with the
following properties.

(Sfr1) If [Tσ] is empty, then so is [Sf(σ)];
(Sfr2) If [Tσ] is isolated, then [Sf(σ)] is finite;
(Sfr3) If [Tσ] has more than one element and is not perfect , then [Sf(σ)] = Xσ ∪ [Sr(σ)],

where Xσ ⊆ 2ω is a finite set disjoint form [r(σ)].
(Sfr4) If [Tσ] is perfect, then [Sf(σ)] = Xσ ∪ [Sr(σ)], where Xσ ⊆ 2ω is either perfect or

empty, and is disjoint form [r(σ)].

8 ROD DOWNEY AND ANTONIO MONTALBÁN

Using Remmel-Vaught’s theorem, we can prove that these conditions imply that clo(S) ∼=
clo(T) ∼= B. If we also manage to make S thin, we will have that the lattice of Π0

1 subclasses
of [S] is isomorphic to B.

Theorem 3.4 (Remmel-Vaught [18]). Let B0 and B1 be Boolean algebras with infinitely
many atoms. Suppose ϕ : B0 → B1 is a Boolean algebra embedding such that

(1) B1 is generated by the image of ϕ and the atoms of B1;
(2) every atom of B0 is mapped to a finite sum of atoms in B1; and
(3) every atom of B1 is below the image of an atom of B0.

Then, B0 and B1 are isomorphic.

Lemma 3.5. If S, f and r satisfy conditions (fr1), (Sfr1)-(Sfr4) above, then the clopen
Boolean algebra of S is isomorphic to the one of T , namely B.

Proof. We define a map ϕ : clo(T) → clo(S) which satisfies the conditions in Vaught-
Remmel’s theorem. If [Sf(σ)] = Xσ ∪ [Sr(σ)], where Xσ is a finite set, by (Sfr3) we know
that [Sr(σ)] contains at least one isolated path; choose one and call it Iσ. The idea is to
put [Sr(σ)] together with Iσ below the image, under ϕ, of some atom of clo(T). We first
define ϕ on T by recursion, and then extend it to clo(T) in the obvious way. We abuse
notation, and when we write ϕ(σ) for σ ∈ T , we actually mean ϕ([σ]∩ [T]). Let ϕ(∅) = ∅.
Now we want to define ϕ(τ). If [Tτ] is not perfect, define

ϕ(τ) = f(τ) ∪
⋃

σ⊆τ :Iσ∈[Tτ]

Xσ

If [Tτ] is perfect, then, by (Sfr4), so is [Sf(τ)]. Define ϕ mapping clo(Tτ) to clo(Sf(τ))
isomorphically.

It is not hard to see that ϕ can be extended to a Boolean algebra embedding. All one
needs to check is that for every τ ∈ T , ϕ(τ) = ϕ(τ_0) ∪ ϕ(τ_1) and that ϕ(τ_0) ∩
ϕ(τ_1) = 0. It is also not hard to see that every σ ∈ S with [Sσ] perfect is in the image of
ϕ. If [Sσ] is not perfect, then [Sσ] together with some finite set is in the image of ϕ. In the
case [Sσ] is isolated and contained in some Xπ which is finite, we have that [Sσ] is below
the image of Iπ ∈ [T]. So, the conditions in Remmel-Vaught’s theorem are satisfied. �

There are three types of requirements: the thinness requirements Tσ, one for every
σ ∈ T , σ of length 3e; the isolation requirements Fσ, one for every σ ∈ T , σ of length
3e + 1; and the non-slenderness requirements Nσ, one for every σ ∈ T , σ of length 3e + 2.
The construction of S, f , and r is again a finite injury one, and it goes exactly as the
Main module of the construction in Section 2.1. There is one slight difference. Only the
nodes σ ∈ T have requirements assigned. Some nodes σ ∈ T have no extensions in [T].
These are the ones that we call dead nodes. But it might take us a while to find this out,
and requirement Rσ will start its job as usual. After the stage s when we find out that σ
is a dead node (i.e. σ has no extensions in T [s]), we do not need to work for Rσ anymore.
We could do a bit more work, if we actually want f and r to be defined at every node of
T . The next time Rσ becomes activated, we do nothing, and we stop building S above
f(σ). This way we satisfy (Sfr1)

The thinness and the isolation requirements work exactly as the modules described for
the previous construction. Let us now describe how the non-slenderness requirements
work. These requirements do not injure lower priority requirements.

SLENDER CLASSES. 9

3.1. Non-slenderness requirements. The non-slenderness requirement N will con-
struct a computable tree F ⊇ S such that for no clopen set C we have int([F])∩ iso([S]) =
C ∩ iso([S]). N has infinitely many sub-requirements Nσ, one for each σ ∈ T , |σ| of the
form 3e + 2.

Nσ : [Tσ] has an isolated path ⇒ ∃ finite sets Zσ, Yσ ⊂ 2ω such that
[Sf(σ)] = Zσ ∪ Yσ ∪ [Sr(σ)] & Zσ ⊂ int([F]) & Yσ ∩ int([F]) = ∅,

We claim that if all the requirements Nσ are satisfied, then S is not slender. We know
that [T] has infinitely many isolated paths. Let {σ0, σ1, ...} ⊆ T an enumeration of the
roots of all this isolated paths (that is, for each σi, [Tσi

] is an isolated path, but [Tσ−i
] is

not). For each i, let τi ⊆ σi be the longest string whose length is of the form 3e+2. Since
we are assuming Nτi

is satisfied, we have two finite sets Zτi
, Yτi

⊂ iso[S]∩ [f(τi)], such that
Zσ ⊂ int([F]) and Yσ ∩ int([F]) = ∅. Suppose toward a contradiction there is a clopen set
C such that int([F])∩ iso([S]) = C ∩ iso([S]), and suppose that C is a finite union of basic
open sets [πj], with |πj| < k. Let i be such that |τi| > k and hence |f(τi)| > k. Then,
either [f(τi)] ⊆ C or [f(τi)] ∩ C = ∅, contradicting Zτi

⊆ C and Yτi
∩ C = ∅.

Module for Nσ at stage s + 1. Suppose first that Nσ has been initialized at the previous
stage, namely stage s. So, no requirement of lower priority has been initialized yet. Defines
r(σ) = f(σ)_0; this value will not change unless Nσ is canceled. (Note that since Nσ

was initialized at stage s, |f(σ)| = s.) Nσ also enumerates f(σ)_0 and f(σ)_1 into S
and hence into F too. This is all it does at this stage, and it does not activate any other
requirement.

In the next stages it will build Zσ and Yσ extending f(σ)_10 and f(σ)_11 respectively,
and will let the rest of the construction continue in top of f(σ)_0. Here is how it builds
Zσ and Yσ. Let Qσ be the tree obtained when Theorem 2.1 is applied to Tσ. So, [Qσ] is
perfect and thin if Tσ is perfect, and [Qσ] is finite otherwise. Requirement Nσ places two
copies of Qσ in S and F , one in top of f(σ)_10 and one in top of f(σ)_11. Since it might
be cancel later, Nσ builds these extensions step by step. Recall that at a stage s + 1 we
can only define S up to length s + 1. Nσ will include the whole cone [f(σ)_10] inside
Ff(σ)_10, but it will let Ff(σ)_11 = Sf(σ)_11 = f(σ)_11_Qσ.

So, the actions taken at stage s + 1, assuming Nσ was initialized at a previous stage
t = |f(σ)| < s, are the following. Keep r(σ) = f(σ)_0; Define [Sf(σ)_10][s + 1] =
f(σ)_10_[Qτ][s − t − 1], Ff(σ)_10[s + 1] = [f(σ)_10][s + 1] and [Ff(σ)_11][s + 1] =
[Sf(σ)_11][s + 1] = f(σ)_11_[Qτ][s− t− 1]; Activate requirements Tσ_0 and Tσ_1. ♦

Suppose there is a stage s0 after which Nσ is always activated and never canceled again.
It is clear that Nσ will manage to build Yσ and Zσ as desired, and satisfy (Sfr3) and (Sfr4).
All the requirements of lower priority thanNσ are initialized after s0+1 and never canceled
by Nσ.

3.2. Thinness requirements. For each σ ∈ T , σ of length 3e we have a thinness re-
quirement: either [(Fe)f(σ)] = [Sf(σ)], or [Fe]∩ [Sf(σ)] = ∅. It does exactly the same as the
module described in Section 2.2. However, when we showed that the satisfaction of all the
Tσ for σ ∈ 22e+1 implies the satisfaction of Te in the previous construction, we used the
fact that [S] =

⋃
σ∈22e+1 [Sf(σ)], which is not true in this case. Now, by (Sfr3) and (Sfr4),

10 ROD DOWNEY AND ANTONIO MONTALBÁN

we have that

[S] =
⋃

σ∈T∩23e+1

[Sf(σ)] ∪
⋃

τ∈T∩2<3e+1

Xτ .

This is not a problem, because for each τ ∈ T ∩ 2<3e+1, Xτ is thin.

3.3. Isolation requirements. For each σ ∈ T , σ of length 3e + 1 we have a isolation
requirement: if [Tσ] is isolated, [Sf(σ)] is isolated . It does exactly the same as the module
described in the previous construction, except that now we are looking at whether [Tσ] is
isolated instead of [Tte]. The objective of these requirements is to satisfy (Sfr2): Suppose
[Tτ] is isolated and σ ⊇ τ is the initial segment of [Tτ] of length 3e + 1. Then, by (Sfr1)
and (Sfr3), if Nσ is satisfied, [Sf(τ)] is finite, and hence (Sfr2) is satisfied.

3.4. Verifications.

Lemma 3.6. Suppose that for every σ ⊂ τ ∈ T , [Tσ] is neither empty nor isolated.
Consider σ ⊆ τ .

(1) There is a stage s0, after which Rσ is always activated. In other words, σ ∈ Ds for
every s ≥ s0. Also, Rσ is never canceled after s0, and f(σ) = lims f(σ)[s] exists
and equals f(σ)[s0].

(2) Rσ is satisfied.
(3) For σ ⊂ τ , Rσ acts only finitely often, and r(σ) = lims r(σ)[s] exists.

Proof. The proof is by simultaneous induction on the length of σ. �

It follows that S, f and r are as desired.

4. A thin, slender class

Theorem 4.1. For every ∆0
2 Boolean algebra B there exists a thin and slender computable

tree S whose lattice of Π0
1 subclasses is B.

Fix a computable T as the one given by Lemma 3.3.
This construction has three types of requirements: thinness requirements, isolation

requirements and slenderness requirements. Each node σ ∈ T will have a requirement
assigned Rσ that can be of any of these three kinds as in the previous constructions,
and the thinness and isolation requirements will work exactly as before. One difference
with the previous constructions is that this is an infinite injury construction, because the
slenderness requirements will have Π0

2 and Σ0
2 outcomes. The construction is organized on

a tree of strategies; actually a tree of trees of strategies. So each Rσ will have a belief on
the outputs of stronger priority requirements, namely {Rτ : τ ⊂ σ}. We will have different
versions of Rσ for the different possible believes, as one usually has in tree-of-strategies
arguments, and one of this versions will act infinitely often and get injured only finitely
often.

We will construct a computable tree S by stages and functions f and r satisfying (fr1),
(Sfr1)-(Sfr4). We start by describing how the Slenderness requirements work, and then
we will explain how the construction is organized on the tree of strategies.

SLENDER CLASSES. 11

4.1. Slenderness requirement. For every computable tree Fe we have a Slenderness
requirement:

Se : ∃ clopen C ⊆ 2ω (int[Fe] ∩ iso[S] = C ∩ iso[S]).

We partition this requirements into at most 2e+2 many requirements, one for each string
σ ∈ T of length 3e + 2:

Sσ : either int([Fe]) ∩ [Sf(σ)] = ∅, or [Sr(σ)] ⊆ int(Fe).

Note that if Sσ is satisfied for every string σ ∈ T of length 3e+2, then Se is satisfied: Let
C0 =

⋃
{[r(σ)] : σ ∈ T ∩ 23e+2, [Sr(σ)] ⊆ int[Fe]}. Then int[Fe]∩ iso[S] = (C0 ∩ iso[S])∪X,

where X = int[Fe]∩
⋃

τ∈T∩2<3e+2 Xτ . Note that (Sfr1)-(Sfr4) imply that X contains a finite
number of isolated paths. Let C be the union of C0 and those isolated paths.

We say that τ ∈ S is e-verified at stage s if ∃γ ∈ 2≤s(γ ⊇ τ & γ 6∈ Fe). So, we have
that int([Fe]) ∩ [Sf(σ)] = ∅ if and only if for every τ ∈ Sf(σ), there is a stage s at which
either τ is e-verified or τ has no extension in [S][s]. Nσ will try to make sure that every
τ ∈ Sf(σ) is either e-verified, and if so, we say it has outcome ∞. If instead we find a string
τ ∈ Sf(σ) that is never e-verified, and hence [τ] ⊆ int([Fe]), we will move the construction
of Sr(σ) to the cone above τ . In this case we say that Sσ has outcome fin. Sσ’s initial
status is ∞.

Suppose we are at stage s + 1 and requirement Sσ gets activated.

• Suppose first that the last time we visited Sσ it had status ∞.
If every τ ∈ Sf(σ)[s] is e-verified, then keep the status ∞ and move on to the

next requirements Tσ_0 and Tσ_1.
Otherwise, let τ0 be the first τ ∈ Sf(σ)[s] that has not been e-verified (first in

some ordering of 2<ω). Let τ1 be an extension of τ0 in [S][s]. The plan now is to wait
until τ1 (actually τ1

_0) is e-verified, which will imply that τ0 is e-verified. While
we wait, we move the construction of [Sf(σ)] above τ1. Define r(σ)[s + 1] = τ1

_0
(so it has length s+1) and set the status of Sσ at this stage to fin. If τ1

_0 is never
e-verified, then we will have [Sr(σ)] ⊆ [r(σ)] ⊆ int(Fe) as wanted. If at some later
stage it is e-verified, we will redefine r(σ) = f(σ) and we forget we ever moved r(σ)
to τ1

_0. The requirements of lower priority than σ will then continue the work
they were doing when they were assuming Sσ had outcome ∞ and r(σ) = f(σ).
Therefore, for now, while Sσ has outcome fin, we cannot kill what we were doing
above f(σ) while we were believing that the the output of Sσ is ∞. So, at every
stage t > s, while the outcome of Sσ is still fin, we have to make sure that every
node in [S][s] has at least one extension in [S][t]. We have to be careful doing this,
because if we never come back to outcome ∞, we will had built some new paths
extending f(σ) but not r(σ). Let Xσ = [Sf(σ)] r [Sr(σ)]. So, we have to make Xσ

satisfy conditions (Sfr1)-(Sfr4). We do it as in the previous construction: On top
of each τ ∈ [Sf(σ)][s], τ 6= τ1, we use Lemma 2.3 to build a tree Qτ such that if [Tσ]
is perfect, then [Qτ] is perfect and thin, and [Qτ] is finite otherwise. Of course,
the construction of Qτ is done step by step every time Sσ is active and while it
has outcome fin.

• Suppose now that the last time Sσ was active, it had status fin. That means that
we are waiting for r(σ) to get e-verified.

12 ROD DOWNEY AND ANTONIO MONTALBÁN

– If r(σ) is still not e-verified, we keep the status fin and we activate the next
requirements Tσ_0 and Tσ_1. We also do one more step in the construction
each of the Qτ that we started the last time we changed Sσ’s status from ∞
to fin. One thing to notice here is that even if Sσ stays in status fin for
ever, it might not be active at every stage. The reason is that there might
be some stronger requirement Sπ, π ⊂ σ, that has outcome ∞. Even though
we are assuming Sσ knows this is Sπ’s final outcome, Sπ is going to change
its status infinitely often to fin. Every time it does it, Sσ gets paralyzed,
and when Sπ’s status comes back to ∞ and Sσ becomes active again, it will
find that some of the paths it was constructing had been extended to longer
paths, though Sπ made sure no path had been killed. This does not affect Sσ

at all. So long as Sσ gets to do a new step in the construction of the trees Qτ

infinitely often, it will manage to construct them satisfying (Sfr1)-(Sfr4).
– Suppose now that r(σ) has been e-verified since the last time Sσ was active.

Change Sσ’s status to ∞. Define r(σ)[s + 1] = f(σ). Let s0 be the last stage
when Sσ’s status was ∞. Each string in [Sf(σ)][s0] has at least one extension
in [Sf(σ)][s]; choose one. Kill all the other stings in [Sf(σ)][s] by not extending
them in [Sf(σ)][s + 1]. The rest of [Sf(σ)][s + 1] will be defined at the end of
stage s + 1 by other requirements. If a sting in [Sf(σ)][s0] was of the form
r(π)[s0] for some π ⊃ σ, redefine r(π) to be the chosen extension of it in
[Sf(σ)][s]. Activate requirements Tσ_0 and Tσ_1.

4.2. Organization of the construction. Since this construction is an infinite injury
one, we will do it on a tree of strategies. The way we do this is very standard, except
for the fact that the requirements are not linearly ordered by priority. We could order
the requirements linearly and define the tree of strategies the usual way, but instead we
continue the style of the previous constructions.

Let TS, the tree of strategies, be the set of pairs 〈σ, α〉 where σ ∈ T , and α con-
tains beliefs of possible outcomes of the requirements stronger than Rσ, that is, α ∈
{wai, sat, iso, niso,∞, fin}<ω satisfies that α(3e) ∈ {sat, wai}, α(3e+1) ∈ {iso, niso},
α(3e+2) ∈ {∞, fin}, and |α| = |σ|. So, for i < |σ|, we think of α(i) as the outcome of the
requirement at σ � i, and there is no belief about the outcome of σ. Each 〈σ, α〉 ∈ TS has a
requirement R〈σ,α〉 assigned, where R can be either T , F or S depending on whether |σ| is
of the form 3e, 3+1 or 3e+2. The outcomes are ordered by sat <L wai, iso <L niso and
∞ <L fin. This induces an ordering on TS as follows: we define 〈σ0, α0〉 <L 〈σ1, α1〉, and
say that 〈σ0, α0〉 is to the left of 〈σ1, α1〉, if there exists a i such that σ0 � i + 1 = σ1 � i + 1,
α0 � i = α1 � i and α0(i) <L α1(i). We give R〈σ0,α0〉 a stronger priority than R〈σ1,α1〉 if
either 〈σ0, α0〉 <L 〈σ1, α1〉 or 〈σ0, α0〉 ⊂ 〈σ1, α1〉.

At every stage s there will be a finite tree Ds ⊂ T of nodes that get visited and a
function os : Ds → {wai, sat, iso, niso,∞, fin} of outcomes. For every σ ∈ Ds, the
requirement R〈σ,os � σ〉 is activated at stage s, and has outcome, or status, os(σ), where
os �σ = 〈os(σ � 0), os(σ � 1), ..., os(σ � |σ| − 1)〉.

At each stage s instead of having a partial function f [s] : Ds → S, we have a partial
function f [s] : TS → S. The domain of r[s] will be TS+ instead of TS, where TS+ is
the set of pairs 〈σ, α〉 where σ ∈ T , and α contains beliefs of possible outcomes of the
requirements Rσ � i for every i ≤ |σ|, so |α| = |σ| + 1. f [s] and r[s] still satisfy that

SLENDER CLASSES. 13

f(〈σ_0, α〉) = r(〈σ, α〉)_0, f(〈σ_1, α〉) = r(〈σ, α〉)_1, and f(〈σ, α−〉) ⊆ r(〈σ, α〉). Each
requirement R〈σ,α〉 is essentially given a string f(〈σ, α〉) for it to start working. At each
stage s, R〈σ,α〉 has an output os(σ) and defines r(〈σ, α_os(σ)〉)[s] extending f(〈σ, α〉).

Main module for the construction at stage s. We start by activating the strategy forR〈∅,∅〉.
In general, when a requirementR〈σ,os � σ〉 is activated, at at stage s, it will end up with some
status; we let os(σ) be that status, and we enumerate σ into Ds. All the requirements to
the right of 〈σ, os �σ+〉 are canceled, where os �σ+ = 〈os(σ � i) : i = 0, ..., |σ|〉. Depending
on what type of action R〈σ,os � σ〉 takes, it might activate requirements R〈σ_0,os � σ+〉 and
R〈σ_1,os � σ+〉. If it does not, R〈σ,os � σ〉 has to define [Sf(〈σ,os � σ〉)][s]. ♦

The true path TP : T → {wai, sat, iso, niso,∞, fin} is defined as usual:

TP(σ) = lim inf
s:(TP � σ)=(os � σ)

os(σ).

At the end of the construction we define, for σ ∈ T ,

f(σ) = lim
s:(TP � σ)=(os � σ)

f(〈σ, TP �σ〉)[s]

and
r(σ) = lim

s:(TP � σ+)=(os � σ+)
r(〈σ, TP �σ+〉)[s].

4.3. Modulo for the slenderness requirements.

Modulo for requirement S〈σ,α〉 at stage s + 1. • Suppose first that the last time we
visited S〈σ, α〉 it had status ∞.

– If every τ ∈ Sf(〈σ,α〉)[s] is e-verified, then let os+1(σ) = ∞ and move on to the
next requirements T〈σ_0,α_∞〉 and T〈σ_1,α_∞〉.

– Otherwise, let τ0 be the first τ ∈ Sf(〈σ,α〉)[s] that has not been e-verified (first
in some ordering of 2<ω). Let τ1 be an extension of τ0 in [S][s]. Define
r(〈σ, α_fin〉)[s + 1] = τ1

_0 and set os+1(σ) = fin. Let [Sf(〈σ,α〉)][s + 1] =
{τ_0 : τ ∈ [Sf(〈σ,α〉)][s]}. Do not activate any other requirements.

• Suppose now that the last time S〈σ,α〉 was active, it had status fin.
– If r(〈σ, α_fin〉) is still not e-verified, we keep the status fin. Let s0 <

s1 < ... < sn = s + 1 be the set of stages at which S〈σ,α〉 has been acti-
vated after the last time u when S〈σ,α〉 had outcome ∞. Let ti = si − u
and let {τ0, ..., τk−1} = [Sf(〈σ,α〉)][u] \ {r(〈σ, α_fin〉)}. For each j < k, define
[Sτj

][s + 1] = ΓTσ(t0, ..., tn, [Sτj
][s]), where Γ is as in Lemma 2.3. Activate the

requirements T〈σ_0,α_fin〉 and T〈σ_1,α_fin〉.
– Suppose now that r(〈σ, α〉) has been e-verified since the last time S〈σ,α〉 was

active. Let os+1(σ) = ∞. Define r(〈σ, α_∞〉)[s+1] = f(〈σ, α〉). Let u be the
last stage when S〈σ,α〉’s status was ∞ and {τ0, ..., τk} = [Sf(〈σ,α〉)][u]. If τi is of
the form r(〈π, δ〉)[u], then let r(〈π, δ〉)[s] be an extension of it in [Sf(〈σ,α〉)][s].
Activate requirements T〈σ_0,α_∞〉 and T〈σ_1,α_∞〉.

♦

Suppose 〈σ, α〉 ∈ TP and S〈σ,α〉 gets activated infinitely often and after some stage s0 it
is never canceled. If after some stage s1, whenever S〈σ,α〉 is activated, its outcome is fin,
then we will have that r(σ) = r(〈σ, os1 �σ+〉) and [r(σ)] ⊆ Fe. So [Sr(σ)] ⊆

∫
([Fe]), and

14 ROD DOWNEY AND ANTONIO MONTALBÁN

[Sf(σ)] = Xσ ∩ [Sr(σ)], where Xσ is a finite union of set isomorphic to Qσ, and hence Xσ is
perfect and thin if [Tσ] is perfect and Xσ is finite otherwise.

Otherwise, if S〈σ,α〉 has ∞ outcome infinitely many times, then there requirements
extending 〈σ, α_∞〉 will have the chance to act infinitely often and will never be canceled
by S〈σ,α〉. In this case we have that every sting of Sf(σ) gets e-verified and hence [Sf(σ)] ∩
int([Fe]) = ∅.

4.4. Thinness requirements. For each 〈σ, α〉 ∈ TS, of length 3e we have a thinness
requirement: either [(Fe)f(σ)] = [Sf(σ)], or [Fe] ∩ [Sf(σ)] = ∅. It does exactly the same as
the module described in Section 2.2. As in the previous constructions, it will not build
any set Xσ and we will have [Sf(σ)] = [Sr(σ)]. When it is initialized is stars on status wai,
and r(〈σ, α_wai〉) = f(〈σ, α〉). If it ever acts, it changes its status to sat and defines
r(〈σ, α_sat〉) to be some string not in Fe and it is then satisfied for ever. Note that if
T〈σ,α〉 is in status sat and some other requirement changes the value of r(〈σ, α_sat〉) for
a longer string, then T〈σ,α〉 reminds satisfied. So, as in the comments at the end of Section
2.2, so long as T〈σ,α〉 gets to act infinitely often after the last time it was initialized, it will
be satisfied. The reason why all the requirements Tσ for σ of length 3e imply Te is the
same as in Section 3.2.

4.5. Isolation requirements. For each σ ∈ T , σ of length 3e + 1 we have a isolation
requirement: if [Tσ] is isolated, [Sf(σ)] is isolated . It does exactly the same as the module
described in the previous construction, and so long as it gets to act infinitely often without
being canceled, it will make sure that (Sfr2) is satisfied as in the previous construction.

4.6. Verifications. Let D be the set of σ ∈ T such that [Tσ] is non-empty and [Tσ−] is
not isolated.

Lemma 4.2. Consider σ ∈ D.

(1) There is a stage s0, after which R〈σ,TP � σ〉 is activated infinitely often and never
canceled again. We also have that f(σ) exists and equals f(〈σ, TP �σ〉[s0].

(2) Rσ is satisfied.
(3) For σ not an end-node of D, R〈σ,TP � σ〉 acts only finitely often, and r(σ) exists.
(4) TP (σ) exists.

Proof. The proof is by simultaneous induction on the length of σ. �

References

[1] Binns, S., Small Π0
1 classes, to appear.

[2] Cenzer, D., Π0
1 classes in computability theory, in Handbook of Computability, Elsevier, Amsterdam,

1999, 37-85.
[3] Cenzer, D., Downey, R., Jockusch C., and Shore, R. A., Countable thin Π0

1 classes, Annals of Pure
and Applied Logic, 59 (1993) 79-139,

[4] Cenzer, D., and Jockusch, C., Π0
1-Classes-Structure and applications, in Computability Theory and

its Applications, (ed. P. Cholak, S. Lempp, M. Lerman, and R. Shore) Contemporary Mathematics,
Vol. 257, AMS Publications, Rhode Island, 2000, 39-60.

[5] Cenzer, D., and A. Nies, Global properties of the lattice of Π0
1 classes, Proceedings American Math-

ematical Society 132 (2004), 239-249.
[6] Cenzer, D., and Remmel, J., Π0

1 classes in mathematics, in Handbook of Recursive Mathematics, Vol
II (ed. Y. Ershov, S. Goncharov, A. Nerode, and J. Remmel), Elsevier, Amsterdam, (1998), 623-822.

SLENDER CLASSES. 15

[7] Cholak, P., R. Coles, R. Downey, and E. Herrmann, Automorphisms of the lattice of Π0
1 classes:

perfect thin classes and ANC degrees, Trans. Amer. Math. Soc., Vol. 353 (2001), 4899-4924.
[8] Cholak, P, and R. Downey, Invariance and noninvariance in the lattice of Π0

1 classes, Journal of the
London Mathematical Society (2) Vol. 70 (2004), 735-749.

[9] Downey, R., Abstract Dependence, Recursion Theory and the Lattice of Recursively Enumerable
Filters Thesis, Monash University, Clayton, Victoria, Australia, (1982).

[10] Downey, R., Maximal theories, Annals of Pure and Applied Logic, 33 (1987) 245-282.
[11] Downey, R., C. Jockusch, and M. Stob, Array nonrecursive sets and multiple permitting arguments,

in Recursion Theory Week (Ambos-Spies, Muller, Sacks, eds.) Lecture Notes in Mathematics 1432,
Springer-Verlag, Heidelberg, 1990, 141–174.

[12] Feiner, L., Hierarchies of Boolean algebras, Journal of Symbolic Logic, 35 (1970), 365-374.
[13] Jockusch, C. and Soare, R. I., Π0

1 classes and degrees of theories, Trans. Amer. Math. Soc. 142 (1969)
229-237.

[14] Lachlan, A. H., Theorem XV 2.2 in Soare [22].
[15] Martin, D., Classes of recursively enumerable sets and degrees of unsolvability, Z. Math. Logik Grund-

lag. Math. 12 (1966) 295-310.
[16] Martin, D. and Pour-El, M., Axiomatizable theories with few axiomatizable extensions, J. Symbolic

Logic 35 (1970) 205-209.
[17] Nies, A., F. Stephan and S. A. Terwijn, Randomness, relativization, and Turing degrees, Journal of

Symbolic Logic, Vol. 70(2), (2005), 515-535.
[18] Remmel, J. B., Recursively enumerable boolean algebras, Ann. Math. Logic, vol. 14 (1978), 75–107.
[19] Remmel, J. B., Graph coloring and recursively bounded Π0

1 classes, Ann. Pure and Appl. Logic, vol.
32 (1986), 185–194.

[20] Simpson, S., Mass problems and randomness, Bulletin of Symbolic Logic, Vol. 11 (2005), 1-27.
[21] Soare, R. I., Automorphisms of the lattice of recursively enumerable sets I: maximal sets, Annals of

Math. (2), 100 (1974) 80-120.
[22] Soare, R. I., Recursively enumerable sets and degrees, Springer-Verlag New York (1987).

E-mail address: Rod.Downey@mcs.vuw.ac.nz
URL: http://www.mcs.vuw.ac.nz/∼downey

E-mail address: antonio@mcs.vuw.ac.nz
URL: www.math.uchicago.edu/∼antonio

School of Mathematics, Statistics and Computer Science, Victoria University, P.O.
Box 600, Wellington, New Zealand

http://www.mcs.vuw.ac.nz/~downey/index.html
http://www.math.uchicago.edu/~antonio/index.html

	1. Introduction
	1.1. Notation

	2. Perfect and thin versus finite
	2.1. Organization of the construction
	2.2. Thinness requirement
	2.3. Isolation requirements
	2.4. Verifications
	2.5. A small modification

	3. A thin, non-slender class
	3.1. Non-slenderness requirements
	3.2. Thinness requirements
	3.3. Isolation requirements
	3.4. Verifications

	4. A thin, slender class
	4.1. Slenderness requirement
	4.2. Organization of the construction
	4.3. Modulo for the slenderness requirements
	4.4. Thinness requirements
	4.5. Isolation requirements
	4.6. Verifications

	References

