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Abstract. We study the computability-theoretic complexity and proof-theo-
retic strength of the following statements: (1) “If X is a well-ordering, then so
is εX ”, and (2) “If X is a well-ordering, then so is ϕ(α,X )”, where α is a fixed
computable ordinal and ϕ represents the two-placed Veblen function. For the
former statement, we show that ω iterations of the Turing jump are necessary
in the proof and that the statement is equivalent to ACA+

0 over RCA0. To prove
the latter statement we need to use ωα iterations of the Turing jump, and we
show that the statement is equivalent to Π0

ωα -CA0. Our proofs are purely
computability-theoretic. We also give a new proof of a result of Friedman: the
statement “if X is a well-ordering, then so is ϕ(X , 0)” is equivalent to ATR0

over RCA0.

1. Introduction

The Veblen functions on ordinals are well-known and commonly used in proof
theory. Proof theorists know that these functions have an interesting and complex
behavior that allows them to build ordinals that are large enough to calibrate the
consistency strength of different logical systems beyond Peano Arithmetic. The
goal of this paper is to investigate this behavior from a computability viewpoint.

The well-known ordinal ε0 is defined to be the first fixed point of the function
α !→ ωα, or equivalently ε0 = sup{ω, ωω, ωωω

, . . . }. In 1936 Gentzen [Gen36],
used transfinite induction on primitive recursive predicates along ε0, together with
finitary methods, to give a proof of the consistency of Peano Arithmetic. This,
combined with Gödel’s Second Incompleteness Theorem, implies that Peano Arith-
metic does not prove that ε0 is a well-ordering. On the other hand, transfinite
induction up to any smaller ordinal can be proved within Peano Arithmetic. This
makes ε0 the proof-theoretic ordinal of Peano Arithmetic.

This result kicked off a whole area of proof theory, called ordinal analysis, where
the complexity of logical systems is measured in terms of (among other things)
how much transfinite induction is needed to prove their consistency. (We refer the
reader to [Rat06] for an exposition of the general ideas behind ordinal analysis.) The
proof-theoretic ordinal of many logical systems have been calculated. An example
that is relevant to this paper is the system ACA+

0 (see Section 2.4 below), whose
proof-theoretic ordinal is ϕ2(0) = sup{ε0, εε0 , εεε0 , . . . }; the first fixed point of the
epsilon function [Rat91, Thm. 3.5]. The epsilon function is the one that given γ,
returns εγ , the γth fixed point of the function α !→ ωα starting with γ = 0.

The Veblen functions, introduced in 1908 [Veb08], are functions on ordinals
that are commonly used in proof theory to obtain the proof-theoretic ordinals of
predicative theories beyond Peano Arithmetic.

• ϕ0(α) = ωα.
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• ϕβ+1(α) is the αth fixed point of ϕβ starting with α = 0.
• when λ is a limit ordinal, ϕλ(α) is the αth simultaneous fixed point of all
the ϕβ for β < λ, also starting with α = 0.

Note that ϕ1 is the epsilon function.
The Feferman-Schütte ordinal Γ0 is defined to be the least ordinal closed under

the binary Veblen function ϕ(β, α) = ϕβ(α), or equivalently

Γ0 = sup{ϕ0(0), ϕϕ0(0)(0), ϕϕϕ0(0)(0)(0), . . . }.

Γ0 is the proof-theoretic ordinal of Feferman’s Predicative Analysis [Fef64, Sch77],
and of ATR0 [FMS82]1. Again, this means that the consistency of ATR0 can be
proved by finitary methods together with transfinite induction up to Γ0, and that
ATR0 proves the well-foundedness of any ordinal below Γ0.

Sentences stating that a certain linear ordering is well-ordered are Π1
1. So, even

if they are strong enough to prove the consistency of some theory, they have no
set-existence implications. However, a sentence stating that an operator on linear
orderings preserves well-orderedness is Π1

2, and hence gives rise to a natural reverse
mathematics question. The following theorems answer two questions of this kind.

Theorem 1.1 (Girard, [Gir87, p. 299]). Over RCA0, the statement “if X is a
well-ordering then ωX is also a well-ordering” is equivalent to ACA0.

Theorem 1.2 (H. Friedman, unpublished). Over RCA0, the statement “if X is a
well-ordering then ϕ(X , 0) is a well-ordering” is equivalent to ATR0.

Let F be an operator on linear orderings. We consider the statement

WOP(F) : ∀X (X is a well-ordering =⇒ F(X ) is a well-ordering).

We study the behavior of F by analyzing the computational complexity of the
proof of WOP(F) as follows. The statement WOP(F) can be restated as “if F(X )
has a descending sequence, then X has a descending sequence to begin with”. Given
F, the question we ask is:

Given a linear ordering X and a descending sequence in F(X ), how
difficult is to build a descending sequence in X ?

From Hirst’s proof of Girard’s result [Hir94], we can extract the following answer
for F(X ) = ωX .

Theorem 1.3. If X is a computable linear ordering, and ωX has a computable
descending sequence, then 0′ computes a descending sequence in X . Furthermore,
there exists a computable linear ordering X with a computable descending sequence
in ωX such that every descending sequence in X computes 0′.

The first statement of the theorem follows from the results of Section 3, which
includes the upper bounds of the computability-theoretic results and the “forward
directions” of the reverse mathematics results. We include a proof of the second
statement in Section 4, where we modify Hirst’s idea to be able to apply it on our
other results later. In doing so, we give a new definition of the Turing jump which,
although computationally equivalent to the usual jump, is combinatorially easier to
manage. This allows us to define computable approximations to the Turing jump,
and we can also define a computable operation on trees that produces trees whose
paths are the Turing jumps of the input tree. Furthermore, our definition of the
Turing jump behaves nicely when we take iterations.

In Section 5 we use these features of our proof of Theorem 1.3. First, in Section
5.1 we consider finite iterations of the Turing jump and of ordinal exponentiation.

1for the definition of ATR0 and of other subsystems of second order arithmetic mentioned in
this introduction see Section 2.4 below.
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(We write ω〈n,X〉 for the nth iterate of the operation ωX ; see Definition 2.2.) In
Theorem 5.3, we prove:

Theorem 1.4. Fix n ∈ N. If X is a computable linear ordering, and ω〈n,X〉

has a computable descending sequence, then 0(n) computes a descending sequence
in X . Conversely, there exists a computable linear ordering X with a computable
descending sequence in ω〈n,X〉 such that the jump of every descending sequence in
X computes 0(n).

From this, in Section 5.4, we obtain the following reverse mathematics result.

Theorem 1.5. Over RCA0, ∀nWOP(X !→ ω〈n,X〉) is equivalent to ACA′
0.

The first main new result of this paper is obtained in Section 5.2 and analyzes
the complexity behind the epsilon function.

Theorem 1.6. If X is a computable linear ordering, and εX has a computable de-
scending sequence, then 0(ω) can compute a descending sequence in X . Conversely,
there is a computable linear ordering X with a computable descending sequence in
εX such that the jump of every descending sequence in X computes 0(ω).

We prove this result in Theorems 3.4 and 5.21. Then, as a corollary of the proof,
we obtain the following result in Section 5.4.

Theorem 1.7. Over RCA0, WOP(X !→ εX ) is equivalent to ACA+
0 .

Our proof is purely computability-theoretic and plays with the combinatorics
of the ω-jump and the epsilon function. By generalizing the previous ideas, we
obtain a new definition of the ω-Turing jump, which we can also approximate by a
computable function on finite strings and by a computable operator on trees. An
important property of our ω-Turing jump operator is that it is essentially a fixed
point of the jump operator: for every real Z, the ω-Turing jump of Z is equal to
the ω-Turing jump of the jump of Z, except for the first bit (we mean equal as
sequences of numbers, not only Turing equivalent). Notice the analogy with the ε
and ω operators.

After a draft of the proof of Theorem 1.7 was circulated, Afshari and Rathjen
[AR09] gave a completely different proof using only proof-theoretic methods like
cut-elimination, coded ω-models and Schütte deduction chains. They prove that
WOP(X !→ εX ) implies the existence of countable coded ω-models of ACA0 con-
taining any given set, and that this in turn is equivalent to ACA+

0 . To this end they
prove a completeness-type result: given a set Z, they can either build an ω-model
of ACA0 containing Z as wanted, or obtain a proof tree of ‘0=1’ in a suitable logical
system with formulas of rank at most ω. The latter case leads to a contradiction
as follows. The logical system where we get the proof tree has cut elimination,
increasing the rank of the proof tree by an application of the ε operator. Using
WOP(X !→ εX ), X being the Kleene-Brouwer ordering on the proof tree of ‘0=1’,
they obtain a well-founded cut-free proof tree of ‘0=1’.

In Section 6, we move towards studying the computable complexity of the Veblen
functions. Given a computable ordinal α, we calibrate the complexity of WOP(X !→
ϕ(α,X )) with the following result, obtained by extending our definitions to ωα-
Turing jumps.

Theorem 1.8. Let α be a computable ordinal. If X is a computable linear or-
dering, and ϕ(α,X ) has a computable descending sequence, then 0(ω

α) computes a
descending sequence in X . Conversely, there is a computable linear ordering X such
that ϕ(α,X ) has a computable descending sequence but every descending sequence
in X computes 0(ω

α).
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This result will follow from Theorem 3.6 and Theorem 6.15. In Section 6.3, as a
corollary, we get the following result.

Theorem 1.9. Let α be a computable ordinal. Over RCA0, WOP(X !→ ϕ(α,X ))
is equivalent to Π0

ωα-CA0.

Exploiting the uniformity in the proof of Theorem 1.8, we also obtain a new
purely computability-theoretic proof of Friedman’s result (Theorem 1.2). Before
our proof, Rathjen and Weiermann [RW] found a new, fully proof-theoretic proof of
Friedman’s result. They use a technique similar to the proof of Afshari and Rathjen
mentioned above. Friedman’s original proof has two parts, one computability-
theoretic and one proof-theoretic.

The table below shows the systems studied in this paper (with the exception of
ACA′

0). The second column gives the proof-theoretic ordinal of the system, which
were calculated by Gentzen, Rathjen, Feferman, and Schütte. The third column
gives the operator F on linear orderings such that WOP(F) is equivalent to the
given system. The last column gives references for the different proofs of these
equivalences in historical order ([MM] refers to this paper).

System p.t.o. F(X ) references

ACA0 ε0 ωX Girard [Gir87]; Hirst [Hir94]

ACA+
0 ϕ2(0) εX [MM]; Afshari-Rathjen [AR09]

Π0
ωα -CA0 ϕα+1(0) ϕ(α,X ) [MM]

ATR0 Γ0 ϕ(X , 0) Friedman [FMW]; Rathjen-Weiermann [RW]; [MM]

Notice that in every case, the proof-theoretic ordinal equals

sup{F(0),F(F(0)),F(F(F(0))), . . . }.

2. Background and definitions

2.1. Veblen operators and ordinal notation. We already know what the ω, ε
and ϕ functions do on ordinals. In this section we define operators ω, ε and ϕ, that
work on all linear orderings. These operators are computable, and when they are
applied to a well-ordering, they coincide with the ω, ε and ϕ functions on ordinals.

To motivate the definition of ωX we use the following observation due to Cantor
[Can97]. Every ordinal below ωα can be written in a unique way as a sum

ωβ0 + ωβ1 + · · ·+ ωβk−1 ,

where α > β0 ≥ β1 ≥ · · · ≥ βk−1.

Definition 2.1. Given a linear ordering X , ωX is defined as the set of finite strings
〈x0, x1, . . . , xk−1〉 ∈ X<ω (including the empty string) where x0 ≥X x1 ≥X · · · ≥X
xk−1. We think of 〈x0, x1, . . . , xk−1〉 ∈ ωX as ωx0 +ωx1 + · · ·+ωxk−1 . The ordering
on ωX is the lexicographic one: 〈x0, x1, . . . , xk−1〉 ≤ωX 〈y0, y1, . . . , yl−1〉 if either
k ≤ l and xi = yi for every i < k, or for the least i such that xi *= yi we have
xi <X yi.

We use the following notation for the iteration of the ω operator.

Definition 2.2. Given a linear ordering X , let ω〈0,X〉 = X and ω〈n+1,X〉 = ωω〈n,X〉
.

To motivate the definition of the ε operator we start with the following obser-
vations. On the ordinals, the closure of the set {0} under the operations + and
t !→ ωt, is the set of the ordinals strictly below ε0. The closure of {0, ε0} under the
same operations, is the set of the ordinals strictly below ε1. In general, if we take
the closure of {0} ∪ { εβ : β < α } we obtain all ordinals strictly below εα.

Definition 2.3. Let X be a linear ordering. We define εX to be the set of formal
terms defined as follows:



THE VEBLEN FUNCTIONS FOR COMPUTABILITY THEORISTS 5

• 0 and εx, for x ∈ X , belong to εX , and are called “constants”,
• if t1, t2 ∈ εX , then t1 + t2 ∈ εX ,
• if t ∈ εX , then ωt ∈ εX .

Many of the terms we defined represent the same element, so we need to find
normal forms for the elements of εX . The definition of the ordering on εX is what
one should expect when X is an ordinal. We define the normal form of a term and
the relation ≤εX simultaneously by induction on terms.

We say that a term t = t0 + · · ·+ tk is in normal form if either t = 0 (i.e. k = 0
and t0 = 0), or the following holds: (a) t0 ≥εX t1 ≥εX · · · ≥εX tk > 0, and (b) each
ti is either a constant or of the form ωsi , where si is in normal form and si *= εx
for any x.

Every t ∈ εX can be written in normal form by applying the following rules:

• + is associative,
• s+ 0 = 0 + s = s,
• if s <εX r, then ωs + ωr = ωr,
• ωεx = εx.

Given t = t0 + · · · + tk and s = s0 + · · · + sl in normal form, we let t ≤εX s if
one of the following conditions apply

• t = 0,
• t = εx and, for some y ≥X x, εy occurs in s,

• t = ωt′ , s0 = εy and t′ ≤εX εy,

• t = ωt′ , s0 = ωs′ and t′ ≤εX s′,
• k > 0 and t0 <εX s0,
• k > 0, t0 = s0, l > 0 and t1 + · · ·+ tk ≤εX s1 + · · ·+ sl.

The observation we made before the definition shows how the ε operator coin-
cides with the ε-function when X is an ordinal (this includes the case X = ∅, when
0 is the only constant and we obtain ε0 as expected).

Definition 2.4. In analogy with Definition 2.2, for t ∈ εX we use ω〈n,t〉 to denote
the term in εX obtained by applying the ω function symbol n times to t.

Definition 2.5. If X is a linear ordering and x ∈ X , let X !x be the linear ordering
with domain { y ∈ X : y <X x }.

The following lemma expresses the compatibility of the ω and ε operators.

Lemma 2.6. If X is a linear ordering, then for every t ∈ εX and n ∈ N
ω〈n,εX!t〉 ∼= εX !ω〈n,t〉

via a computable isomorphism. In particular, ωεX!t ∼= εX !ωt.

Proof. The proof is by induction on n. When n = 0 the identity is the required
isomorphism. If ψ : ω〈n,εX!t〉 → εX ! ω〈n,t〉 is an isomorphism, then the function
mapping the empty string to 0 and 〈t0, . . . , tk〉 to ωψ(t0) + · · · + ωψ(tk) witnesses
ω〈n+1,εX!t〉 ∼= εX !ω〈n+1,t〉. "

To define the ϕ operator we start with the following observations. If we take
the closure of the set {0} under the operations +, t !→ ωt and t !→ εt, we get
all the ordinals up to ϕ2(0). If we take the closure of {0} ∪ {ϕ2(β) : β < α } we
get all the ordinals below ϕ2(α). In general, we obtain ϕγ(α) as the closure of
{0} ∪ {ϕγ(β) : β < α } under the operations +, and t !→ ϕδ(t), for all δ < γ.

Definition 2.7. Let X and Y be linear orderings. We define ϕ(Y,X ) to be the set
of formal terms defined as follows:

• 0 and ϕY,x, for x ∈ X , belong to ϕ(Y,X ), and are called “constants”,
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• if t1, t2 ∈ ϕ(Y,X ), then t1 + t2 ∈ ϕ(Y,X ),
• if t ∈ ϕ(Y,X ) and δ ∈ Y, then ϕδ(t) ∈ ϕ(Y,X ).

We define the normal form of a term and the relation ≤ϕ(Y,X ) simultaneously by
induction on terms. We write ≤ϕ instead of ≤ϕ(Y,X ) to simplify the notation.

We say that a term t = t0 + · · · + tk is in normal form if either t = 0, or the
following holds: (a) t0 ≥ϕ t1 ≥ϕ · · · ≥ϕ tk > 0, and (b) each ti is either a constant
or of the form ϕδ(si), where si is in normal form and si *= ϕδ′(s′i) for δ

′ > δ.
Every t ∈ ϕ(Y,X ) can be written in normal form by applying the following rules:

• + is associative,
• s+ 0 = 0 + s = s,
• if ϕδ′(s) <ϕ ϕδ(r), then ϕδ′(s) + ϕδ(r) = ϕδ(r).
• if δ′ > δ, then ϕδ(ϕδ′(r)) = ϕδ′(r).
• if δ ∈ Y then ϕδ(ϕY,r) = ϕY,r.

The motivation for the last two items is that if δ′ > δ, anything in the image of ϕδ′

is a fixed point of ϕδ.
Given t = t0 + · · ·+ tk and s = s0 + · · ·+ sl in normal form, we let t ≤ϕ s if one

of the following conditions apply

• t = 0,
• t = ϕY,x and, for some y ≥X x, ϕY,y occurs in s,

• t = ϕδ(t′), s0 = ϕδ′(s′) and






δ < δ′ and t′ ≤ϕ ϕδ′(s′), or

δ = δ′ and t′ ≤ϕ s′, or

δ > δ′ and ϕδ(t′) ≤ϕ s′,
• k > 0 and t0 <ϕ s0,
• k > 0, t0 = s0, l > 0 and t1 + · · ·+ tk ≤ϕ s1 + · · ·+ sl.

2.2. Notation for strings and trees. Here we fix our notation for sequences (or
strings) of natural numbers. The Baire space NN is the set of all infinite sequences
of natural numbers. As usual, an element of NN is also called a real. If X ∈ NN and
n ∈ N, X(n) is the (n + 1)-st element of X. N<N is the set of all finite strings of
natural numbers. When σ ∈ N<N we use |σ| to denote its length and, for i < |σ|,
σ(i) to denote its (i + 1)-st element. We write ∅ for the empty string (i.e. the
only string of length 0), and 〈n〉 for the string of length 1 whose only element is
n. When σ, τ ∈ N<N, σ ⊆ τ means that σ is an initial segment of τ , i.e. |σ| ≤ |τ |
and σ(i) = τ(i) for each i < |σ|. We use σ ⊂ τ to mean σ ⊆ τ and σ *= τ . If
X ∈ NN we write σ ⊂ X if σ(i) = X(i) for each i < |σ|. We use σ"τ to denote the
concatenation of σ and τ , that is the string ρ such that |ρ| = |σ|+ |τ |, ρ(i) = σ(i)
when i < |σ|, and ρ(|σ| + i) = τ(i) when i < |τ |. If X ∈ NN, σ ∈ N<N and t ∈ N,
X ! t is the initial segment of X of length t, while σ ! t is the initial segment of σ of
length t if t ≤ |σ|, and σ otherwise.

We fix an enumeration of N<N, so that each finite string is also a natural number,
and hence can be an element of another string. This enumeration is such that all
the operations and relations discussed in the previous paragraph are computable.
Moreover we can assume that σ ⊂ τ (as strings) implies σ < τ (as natural numbers).
For an enumeration with these properties see e.g. [Sim99, §II.2].

The following operation on strings will be useful.

Definition 2.8. If σ ∈ N<N is nonempty let -(σ) = 〈σ(|σ|−1)〉, the string of length
one whose only entry is the last entry of σ.

Definition 2.9. A tree is a set T ⊆ N<N such that σ ! t ∈ T whenever σ ∈ T and
t < |σ|. If T is a tree, X ∈ NN is a path through T if X ! t ∈ T for all t. We let [T ]
be the set of all paths through T .
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Definition 2.10. If T is a tree and σ ∈ N<N we let Tσ = { ρ ∈ T : ρ ⊆ σ ∨ σ ⊆ ρ }.

Definition 2.11. ≤KB is the usual Kleene-Brouwer ordering of N<N: if σ, τ ∈ N<N,
we let σ ≤KB τ if either σ ⊇ τ or there is some i such that σ ! i = τ ! i and
σ(i) < τ(i).

The following is well-known (see e.g. [Sim99, Lemma V.1.3]).

Lemma 2.12. Let T ⊆ N<N be a tree: T is well-founded (i.e. [T ] = ∅) if and
only if the linear ordering (T,≤KB) is well-ordered. Moreover, if f : N → T is a
descending sequence with respect to ≤KB, there exists Y ∈ [T ] such that Y ≤T f ′.

We will need some terminology to describe functions between partial orderings.

Definition 2.13. Let f : P → Q be a function, ≤P and ≤Q be partial orderings
of P and Q respectively, with <P and <Q the corresponding strict orderings. We
say that f is (<P , <Q)-monotone if for every x, y ∈ P such that x <P y we have
f(x) <Q f(y).

2.3. Computability theory notation. We use standard notation from com-
putability theory. In particular, for a string σ ∈ N≤N, {e}σ(n) denotes the output
of the eth Turing machine on input n, run with oracle σ, for at most |σ| steps
(where |σ| = ∞ when σ ∈ NN). If this computation does not halt in less than |σ|
steps we write {e}σ(n)↑, otherwise we write {e}σ(n)↓. We write {e}σt (n)↓ if the
computation halts in less than min(|σ|, t) steps.

Given X,Y ⊆ N, the predicate X = Y ′ is defined as usual:

X = Y ′ ⇐⇒ ∀e(e ∈ X ↔ {e}Y (e)↓).

Definition 2.14. Given an ordinal β (or actually any presentation of a linear
ordering with first element 0), we say that X = Y (β) if

X [0] = Y , ∀γ < β (X [γ] = X [<γ]′) and X = X [<β].

where X [γ] = { y : 〈γ, y〉 ∈ X } and X [<γ] = { 〈δ, y〉 : δ < γ & 〈δ, y〉 ∈ X }.

2.4. Subsystems of second order arithmetic. We refer the reader to [Sim99] for
background information on subsystems of second order arithmetic. All subsystems
we consider extend RCA0 which consists of the axioms of ordered semi-ring, plus ∆0

1-
comprehension and Σ0

1-induction. Adding set-existence axioms to RCA0 we obtain
WKL0, ACA0, ATR0, and Π1

1-CA0, completing the so-called “big five” of reverse
mathematics.

In this paper we are interested in ACA0, ATR0, and some theories which lie
between these two. All these theories can be presented in terms of “jump-existence
axioms”, as follows:

ACA0: RCA0+ ∀Y ∃X (X = Y ′)
ACA′

0: RCA0+ ∀Y ∀n∃X (X = Y (n))
ACA+

0 : RCA0+ ∀Y ∃X (X = Y (ω))
Π0

β-CA0: RCA0+ β well-ordered ∧ ∀Y ∃X (X = Y (β)),

where β is a presentation of a computable ordinal2

ATR0: RCA0+ ∀α(α well-ordered =⇒ ∀Y ∃X (X = Y (α)))

Notice that Π0
1-CA0 is ACA0 and Π0

ω-CA0 is ACA+
0 . Π0

β-CA0 is strictly stronger

than Π0
γ-CA0 if and only if β ≥ γ ·ω. In fact the ω-model

⋃
α<γ·ω{X : X ≤T 0(α) }

satisfies Π0
α-CA0 for all α < γ · ω, but not Π0

γ·ω-CA0. Each theory in the above list
is strictly stronger than the preceding ones if we assume β ≥ ω2.

2The system Π0
β-CA0 is sometimes denoted by (Π0

1-CA0)β in the literature.
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ACA0 and ATR0 are well-known and widely studied: [Sim99] includes a chapter
devoted to each of them and their equivalents. (The axiomatization of ATR0 given
above is equivalent to the usual one by [Sim99, Theorem VIII.3.15].) ACA+

0 was
introduced in [BHS87], where it was shown that it proves Hindman’s Theorem in
combinatorics (to this day it is unknown whether ACA+

0 and Hindman’s Theorem
are equivalent). ACA+

0 has also been used in [Sho06] (where it is proved that ACA+
0

is equivalent to statements asserting the existence of invariants for Boolean alge-
bras) and in [MM09] (where ACA+

0 is used to prove a restricted version of Fräıssé’s
conjecture on linear orders). ACA′

0 is also featured in [MM09]. The computation of
its proof-theoretic ordinal, which turns out to be εω, is due to Jäger (unpublished
notes, a proof appears in [McA85], and a different proof is included in [Afs08]). The
theories Π0

β-CA0 are natural generalizations of ACA+
0 .

3. Forward direction

In this section we prove the “forward direction”of Theorems 1.1, 1.5, 1.7, 1.9,
and 1.2. The results in this section are already known (though often written in
different settings) but we include them as our proofs illustrate how the iterates of
the Turing jump relate with the epsilon and Veblen functions.

The following theorem is essentially contained in Hirst’s proof [Hir94] of the
closure of well-orderings under exponentiation in ACA0.

Theorem 3.1. If X is a Z-computable linear ordering, and ωX has a Z-computable
descending sequence, then Z ′ can compute a descending sequence in X .

Proof. Let (ak : k ∈ N) be a Z-computable descending sequence in ωX . We can
write ak in the form ωxk,0 · mk,0 + ωxk,1 · mk,1 + · · · + ωxk,lk · mk,lk where each
mk,0 ∈ N is positive and xk,i >X xk,i+1 for all i < lk.

Using Z ′, we recursively define a function f : N → X×ω which is decreasing with
respect to the lexicographic ordering<X×ω. (We use x·m to denote 〈x,m〉 ∈ X×ω.)
Each f(n) is of the form xk,i · mk,i for some k and i ≤ lk. At the following step,
when we define f(n + 1), either we increase k and leave i unchanged, or, if this is
not possible, we keep k unchanged and increase i by one. We will have that if f(n)
is of the form xk,i ·mk,i, then xh,j ·mh,j = xk,j ·mk,j for all h > k and j < i.

Let f(0) = x0,0 ·m0,0. Assuming we already defined f(n) = xk,i ·mk,i, we need
to define f(n+ 1). If there exist h > k such that xh,i ·mh,i <X×ω xk,i ·mk,i, then
let f(n+ 1) = xh,i ·mh,i for the least such h. If xh,i ·mh,i ≥X×ω xk,i ·mk,i for all
h > k then we must have i < lk (otherwise ak >ωX ak+1 cannot hold) and we can
let f(n+ 1) = xk,i+1 ·mk,i+1.

It is then straightforward to obtain a f -computable, and hence Z ′-computable,
descending sequence in X . "

The proof above produces an index for a Z ′-computable descending subsequence
in X , uniformly in X and the Z-computable descending sequence in ωX .

Corollary 3.2. ACA0; WOP(X !→ ωX ).

Proof. The previous proof can be formalized within ACA0. "
Corollary 3.3. ACA′

0; ∀nWOP(X !→ ω〈n,X〉).

Proof. Theorem 3.1 implies that, given n, if X is a Z-computable linear ordering,
and ω〈n,X〉 has a Z-computable descending sequence, then Z(n) can compute a
descending sequence in X . This can be formalized within ACA′

0. "
The following two theorems are new in the form they are stated. However, they

can easily be obtained from the standard proof that ACA0 proves that every ordinal
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below ϕ2(0) can be proved well-founded in ACA+
0 , and that every ordinal below Γ0

can be proved well-ordered in Predicative Analysis [Fef64, Sch77].

Theorem 3.4. If X is a Z-computable linear ordering, and εX has a Z-computable
descending sequence, then Z(ω) can compute a descending sequence in X .

Proof. Let (ak : k ∈ N) be a Z-computable descending sequence in εX . If no
constant term εx appears in a0, then a0 < ω〈n0,0〉 for some n0 so that we essentially
have a descending sequence in ω〈n0,0〉. Then, applying n0 times Theorem 3.1, we
have that Z(n0) computes a descending sequence in 0, a contradiction.

Thus we can let x0 be the largest x ∈ X such that εx appears in a0. It is not
hard to prove by induction on terms that εx0 ≤ a0 < ω〈n0,εx0+1〉 for some n0 ∈ N.
By Lemma 2.6, εX ! ω〈n0,εx0+1〉 is computably isomorphic to ω〈n0,εX!(εx0+1)〉 and
we can view the ak’s as elements of the latter. Using Theorem 3.1 n0 times, we
obtain a Z(n0)-computable descending sequence in εX !(εx0 +1). Noticing that the
proof of Theorem 3.1 is uniform, we can apply this process again to the sequence
we have obtained, and get an x1 <X x0 and a descending sequence in εX !(εx1 +1)
computable in Z(n0+n1) for some n1 ∈ N. Iterating this procedure we obtain a
Z(ω)-computable descending sequence x0 >X x1 >X . . . in X . "
Corollary 3.5. ACA+

0 ; WOP(X !→ εX ).

Proof. The previous proof can be formalized within ACA+
0 . "

Theorem 3.6. Let α be a Z-computable well-ordering. If X is a Z-computable
linear ordering, and ϕ(α,X ) has a Z-computable descending sequence, then Z(ωα)

can compute a descending sequence in X .

Proof. By Z-computable transfinite recursion on α, we define a computable proce-
dure that given a Z-computable index for a linear ordering X and for a descending
sequence in ϕ(α,X ), it returns a Z(ωα)-computable index for a descending se-
quence in X . Let (ak : k ∈ N) be a computable descending sequence in ϕ(α,X ).
Let x0 be the largest x ∈ X such that the constant term ϕα,x appears in a0 (if
no ϕα,x appears in a0, just use 0 in place of ϕα,x0 in the argument below). It is
not hard to prove by induction on terms that ϕα,x0 ≤ a0 < ϕn0

β0
(ϕα,x0 + 1) for

some β0 < α and n0 ∈ N, (where ϕn0
β (z) is obtained by applying the ϕβ function

symbol n0 times to z). It also not hard to show that ϕ(α,X ) ! ϕn0
β0
(ϕα,x0 + 1) is

computably isomorphic to ϕn0(β0,ϕ(α,X !x0)+1) (where ϕn0(β,Z) is obtained by
applying the ϕ(β, ·)-operator on linear orderings n0 times to Z). Using the induc-

tion hypothesis n0 times, we obtain a Z(ωβ0 ·n0)-computable descending sequence in
ϕ(α,X !x0) + 1. Then, we apply this process again to the sequence we have ob-
tained, and get x1 <X x0 and a descending sequence in ϕ(α,X !x1)+1 computable

in Z(ωβ0 ·n0+ωβ1 ·n1) for some β1 < α and n1 ∈ N. Iterating this procedure we obtain
a Z(ωα) descending sequence x0 >X x1 >X . . . in X . "
Corollary 3.7. Let α be a computable ordinal. Then Π0

ωα-CA0; WOP(X !→
ϕ(α,X )).

Proof. The previous proof can be formalized within Π0
ωα -CA0 for a fixed computable

α. "
Corollary 3.8. ATR0; WOP(X !→ ϕ(X , 0)).

Proof. Let α be a well-ordering and assume, towards a contradiction, that there
exists a descending sequence in ϕ(α, 0). Let Z be a real such that both α and the
descending sequence are Z-computable. By Theorem 3.6 Z(ωα) (which exists in
ATR0) computes a descending sequence in 0, which is absurd. "
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4. Ordinal exponentiation and the Turing Jump

In this section we give a proof of the second part of Theorem 1.3. Our proof is a
slight modification of Hirst’s proof, and prepares the ground for the generalizations
in the following sections.

We start by defining a modification of the Turing jump operator with nicer
combinatorial properties. We will then define two computable approximations to
this jump operator, one from strings to strings, and the other one from trees to
trees.

Definition 4.1. Given Z ∈ NN, we define the sequence of Z-true stages as follows:

tn = max{tn−1 + 1, µt({n}Zt (n)↓)},

starting with t−1 = 1 (so that tn ≥ n+2). If there is no t such that {n}Zt (n)↓, then
the above definition gives tn = tn−1 + 1. So, tn is a stage where Z can correctly
guess Z ′ !n + 1 because ∀m ≤ n(m ∈ Z ′ ⇐⇒ {m}Z!tn(m)↓). With this in mind,
we define the Jump operator to be the function J : NN → NN such that for every
Z ∈ NN and n ∈ N,

J (Z)(n) = Z ! tn,
or equivalently

J (Z) = 〈Z ! t0, Z ! t1, Z ! t2, Z ! t3, . . .〉
Here is a sample of this definition:

t0 t1 t2 t3

Z = 〈Z(0), Z(1)
︸ ︷︷ ︸
J (Z)(0)

, Z(2), Z(3), Z(4), Z(5)

︸ ︷︷ ︸
J (Z)(1)

, Z(6)

︸ ︷︷ ︸
J (Z)(2)

, Z(7), Z(8), Z(9), Z(10), Z(11)

︸ ︷︷ ︸
J (Z)(3)

, Z(12), · · ·〉

Of course, J (Z) ≡T Z ′ for every Z as n ∈ Z ′ ⇐⇒ {n}J (Z)(n)(n)↓. So, from
a computability viewpoint, there is no essential difference between J (Z) and the
usual Z ′.

Definition 4.2. The Jump function is the mapping J : N<N → N<N defined as
follows. For σ ∈ N<N, define tn = max{tn−1 + 1, µt({n}σ!t(n)↓)}, starting with
t−1 = 1 (so that tn ≥ n+ 2). Again, if there is no t such that {n}σ!t(n)↓, then the
above definition gives tn = tn−1 + 1. Let J(σ) = 〈σ ! t0, σ ! t1, . . . , σ ! tk−1〉 where k
is least such that tk > |σ|.

Given τ ∈ J(N<N), we let K(τ) be the last entry of τ when τ *= ∅, and K(∅) = ∅.

Remark 4.3. Since we can computably decide whether {n}σ!t(n)↓, the Jump func-
tion is computable. The computability of K is obvious.

The following Lemma lists the key properties of J and K. We will refer to these
properties as (P1), . . . , (P6).

Lemma 4.4. For every σ, τ ′ ∈ N<N and τ ∈ J(N<N),

(P1) J(σ) = ∅ if and only if |σ| ≤ 1.
(P2) K(J(σ)) = σ when |σ| ≥ 2.
(P3) J(K(τ)) = τ .
(P4) If σ *= σ′ and at least one has length ≥ 2, then J(σ) *= J(σ′).
(P5) |J(σ)| < |σ| and |K(τ)| > |τ | except when τ = ∅.
(P6) If τ ′ ⊂ τ then τ ′ ∈ J(N<N) and K(τ ′) ⊂ K(τ).
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Proof. (P1) is obvious from the definition.
(P2) follows from the fact that, when |σ| ≥ 2, tk−1 = |σ| (using the notation of

Definition 4.2). In fact tk−1 ≤ |σ| by definition of k, and if tk−1 < |σ| then we have
either {k}σ!tk(k)↓ (and hence tk ≤ |σ|) or tk = tk−1+1 ≤ |σ|, against the definition
of k.

(P3) follows from (P2) and K(∅) = ∅.
(P4) follows immediately from (P1) and (P2).
The first part of (P5) follows from tn ≥ n+2. The second part is a consequence

of the first, (P1) and (P2).
(P6) is obvious when τ ′ = ∅, using the second part of (P5). Otherwise we have

τ ′ = 〈σ ! t0, σ ! t1, . . . , σ ! tj〉 for some j < k − 1, so that K(τ ′) = σ ! tj ⊂ σ ! tk−1 =
K(τ). It is easy to check that τ ′ = J(σ ! tj). "

The following Lemma explains how the Jump function approximates the Jump
operator.

Lemma 4.5. Given Y, Z ∈ NN, the following are equivalent:

(1) Y = J (Z);
(2) for every n there exists σn ⊂ Z with |σn| > n such that Y !n = J(σn).

Proof. Suppose first that Y = J (Z). When n = 0 let σn = Z ! 1, which works by
(P1). When n > 0 let σn = K(Y !n) = K(Y !n) = J (Z)(n− 1) ⊂ Z. If {0}Z(0)↓
then Y (0) ⊂ Z is such that {0}Y (0)(0)↓ and Y (0) ⊆ σn so that also {0}σn(0)↓ and
J(σn)(0) = Y (0). If {0}Z(0)↑ then Y (0) = Z ! 2 = σn ! 2 = J(σn)(0). This is
the base step of an induction that, using the same argument, shows that Y (i) =
J(σn)(i) for every i < n. Thus Y !n ⊆ J(σn). By (P6), we have Y !n ∈ J(N<N)
and we can apply (P3) and (P5) to obtain Y !n = J(σn) and |σn| > n.

Now assume that (2) holds, and suppose towards a contradiction that Y *= J (Z).
Let n be least such that Y (n − 1) *= J (Z)(n − 1). If σn ⊂ Z is such that Y !n =
J(σn) we have J(σn)(n−1) *= J (Z)(n−1). This can occur only if {n−1}σn(n−1)↑
and {n − 1}Z(n − 1)↓, which implies n′ > |σn|, where n′ = |J (Z)(n − 1)|. Notice
that for any m > n′ we have J(Z ! m)(n − 1) = J (Z)(n − 1) and hence J(Z !
m)(n − 1) *= Y (n − 1). This contradicts the existence of σn′ ⊂ Z with |σn′ | > n′

such that Y !n′ = J(σn′). "

The following corollary is obtained by iterating the Lemma.

Corollary 4.6. For every m > 0, given Y, Z ∈ NN, the following are equivalent:

(1) Y = Jm(Z);
(2) for every n there exists σn ⊂ Z with |σn| ≥ n+m such that Y !n = Jm(σn).

The Jump function leads to the definition of the Jump Tree.

Definition 4.7. Given a tree T ⊆ N<N we define the Jump Tree of T to be

J T (T ) = { J(σ) : σ ∈ T }.

The following lemmas summarize the main properties of the Jump Tree.

Lemma 4.8. For every tree T , J T (T ) is a tree computable in T .

Proof. J T (T ) is a tree because if τ ⊂ J(σ) for σ ∈ T , then τ = J(K(τ)) (by (P6)
and (P3)) and K(τ) ∈ T (since by (P6), (P2) and (P1), K(τ) ⊂ K(J(σ)) ⊆ σ).

J T (T ) is computable in T because τ ∈ J T (T ) if and only if τ = J(K(τ))
(which is equivalent to τ ∈ J(N<N) by (P3)) and K(τ) ∈ T . "

Lemma 4.9. For every tree T , [J T (T )] = {J (Z) : Z ∈ [T ] }.
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Proof. First let Z ∈ [T ]. Since by Lemma 4.5 for every n ∈ N, J (Z)!n = J(σ) for
some σ ⊂ Z, so J (Z)!n ∈ J T (T ). This implies {J (Z) : Z ∈ [T ] } ⊆ [J T (T )].

To prove the other inclusion, fix Y ∈ [J T (T )], notice that Y (n) ⊂ Y (n + 1) ∈
N<N for every n, and let Z =

⋃
n∈N Y (n) ∈ NN. Observe that, again by Lemma

4.5, Y = J (Z) and Z ∈ [T ]. "

We can now define the Z-computable linear ordering of theorem 1.3: let XZ =
〈J T (TZ),≤KB〉 where TZ = {Z !n : n ∈ N }. Note that XZ is indeed a linear
ordering and, by Lemma 4.8, it is Z-computable. Since Z is the unique path
in TZ , by Lemma 4.9 J (Z) is the unique path in J T (TZ). Moreover, for every
τ = J(σ) ∈ J T (TZ) we have that either τ ⊂ J (Z) or there is some i such that
τ ! i = J (Z)! i and τ(i) *= J (Z)(i). This can only happen if {i}σ(i)↑ and {i}Z(i)↓,
so that τ(i) ⊂ J (Z)(i). By our assumption on the coding of strings, we have
τ(i) < J (Z)(i) and hence τ <KB J (Z)! |τ |.

Let 〈τn〉n∈N be an infinite <KB-descending sequence in J T (TZ). If τn *⊂ J (Z)
for some n then τm <KB τn <KB J (Z) ! |τm| for all m > n, which by Lemma 2.12
implies the existence of a path in J T (TZ) different from J (Z), a contradiction.
Therefore any infinite descending sequence in XZ consists only of initial segments
of J (Z) and hence computes J (Z) ≡T Z ′.

We still need to prove the existence of a Z-computable descending sequence in
ωXZ . To this end we use of the following function.

Definition 4.10. Let T be a tree and order J T (T ) by ≤KB. Define h : T →
ωJT (T ) by

h(σ) =




∑

i<|J(σ)|
{i}σ(i)↑

ωJ(σ)!i



+ ωJ(σ) · 2

for σ *= ∅ and h(∅) = ω∅ · 3.

The sum above is written in ≤KB-decreasing order, so that indeed h(σ) ∈
ωJT (T ).

Since J is computable, h is computable as well.
The proof below should help the reader understand the motivation for the defi-

nition above.

Lemma 4.11. h is (⊃, <ωJT (T ))-monotone.

Proof. Suppose ρ, σ ∈ T are such that ρ ⊃ σ; we want to show that h(ρ) <ωJT (T )

h(σ).
If σ = ∅ then ω∅ occurs with multiplicity 3 in J(σ) and with multiplicity at most

2 in J(ρ). Since ∅ is the ≤KB-maximum element in N<N(and hence also in J T (T )),
this implies h(ρ) <ωJT (T ) h(σ).

If σ *= ∅ then J(σ) *= J(ρ) by (P4). Since σ ⊂ ρ, if {i}ρ(i)↑ then {i}σ(i)↑ as well.
Thus there are two possibilities. If for all i < |J(σ)|, {i}σ(i)↑ whenever {i}ρ(i)↑
then J(σ) ⊂ J(ρ) and the first difference between h(σ) and h(ρ) is the coefficient
of ωJ(σ), which in h(σ) is 2 and in h(ρ) is either 1 or 0 (depending on whether
{|J(σ)|}ρ(|J(σ)|)↑ or not). In any case, h(ρ) <ωJT (T ) h(σ). If instead for some
i < |J(σ)|, {i}σ(i)↑ and {i}ρ(i)↓ let i0 be the least such i. Then the first difference
between h(σ) and h(ρ) occurs at ωJ(σ!i0), which appears in h(σ) but not in h(ρ).
Again, we have h(ρ) <ωJT (T ) h(σ). "

We can now finish off the proof of the second part of Theorem 1.3. The sequence
〈h(Z !n)〉n∈N is Z-computable and strictly decreasing in ωXZ by Lemma 4.11.
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Obviously our proof yields the following generalization of the second part of
Theorem 1.3.

Theorem 4.12. For every real Z there exists a Z-computable linear ordering X
with a Z-computable descending sequence in ωX such that every descending se-
quence in X computes Z ′.

5. The ε function and the ω-Jump

In this section we extend the construction of Section 4. To iterate the construc-
tion, even only a finite number of times, requires generalizing the definition of h.
Then we tackle the issue of extending the definition at limit ordinals by considering
the ω-Jump.

5.1. Finite iterations of exponentiation and Turing Jump. We start by
defining a version of the function h used in the previous section that we can it-
erate.

Definition 5.1. Let X be a linear ordering, T a tree and

g : J T (T ) → X
a function. Define

hg : T → ωX

by

hg(σ) =




∑

i<|J(σ)|
{i}σ(i)↑

ωg(J(σ)!i)



+ ωg(J(σ)) · 2

for σ *= ∅ and hg(∅) = ωg(∅) · 3.

Note that when g is the identity, then hg = h of the previous section. Also, hg

is g-computable.

Lemma 5.2. If g is (⊃, <X )-monotone, then hg is (⊃, <ωX )-monotone.

Proof. Notice that g (⊃, <X )-monotone implies that the sum in the definition of
hg(σ) is written in decreasing order. The proof is the same as the one for Lemma
4.11. "

We can now prove the analogue of Theorem 1.3 for iterations of the exponential
(recall the notation ω〈n,X〉 introduced in Definition 2.2).

Theorem 5.3. For every n ∈ N and Z ∈ NN, there is a Z-computable linear
ordering Xn

Z such that the jump of every descending sequence in Xn
Z computes Z(n),

but there is a Z-computable descending sequence in ω〈n,Xn
Z 〉.

Proof. Letting again TZ = {Z !n : n ∈ N }, we define a sequence 〈Ti〉i≤n of trees as
follows: let T0 = TZ and Ti+1 = J T (Ti) for every i < n. By induction on i, using
Lemmas 4.8 and 4.9, we have that each Ti is a Z-computable tree and that the only
path through Ti is J i(Z) (i.e. the result of applying i times J starting with Z).
We let Xn

Z = 〈Tn,≤KB〉, which is a Z-computable linear ordering. By Lemma 2.12
if f is a descending sequence in Xn

Z then J n(Z) ≤T f ′. Since Z(n) ≡T J n(Z), the
first property of Xn

Z is proved.
To show that there is a Z-computable descending sequence in ω〈n,Xn

Z 〉 we define
by recursion on m ≤ n functions gm : Tn−m → ω〈m,Xn

Z 〉. Let g0 : Tn → Xn
Z be the

identity function (Tn is indeed the domain of Xn
Z ). We define gm+1 : Tn−m−1 →

ω〈m+1,Xn
Z 〉 by gm+1 = hgm as in Definition 5.1. By induction on m ≤ n, using
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!

· · · ⊂ Kω(Y )

!

Figure 1. Assuming Y = J ω(Z).

Lemma 5.2, it is immediate that each gm is (⊃, <ω〈m,Tn〉)-monotone and com-
putable. Hence the sequence 〈gn(Z ! j)〉j∈N in ω〈n,Xn

Z 〉 is Z-computable and de-
scending. "
5.2. The ω-Jump. Now we define the iteration of the Jump operator at the first
limit ordinal ω. Again, our definition is slightly different than the usual one so that
it has nicer combinatorial properties. The difference being that instead of pasting
all the J i(Z) together as columns, we will take only the first value of each. Later we
will show that this is enough. We will also define two computable approximations
to this ω-jump operator, one from strings to strings, and the other one from trees
to trees, and a computable inverse function.

Definition 5.4. We define the ω-Jump operator to be the function J ω : NN → NN

such that for every Z ∈ NN

J ω(Z) = 〈J (Z)(0), J 2(Z)(0), J 3(Z)(0), . . .〉,
or, in other words, J ω(Z)(n) = J n+1(Z)(0).

Notice that J ω(J (Z)) equals J ω(Z) with the first element removed. Before
showing that J ω(Z) ≡T Z(ω) it is convenient to define the inverse of J ω.

Definition 5.5. Given Y ∈ J ω(NN) we define

Kω(Y ) =
⋃

n

Kn(Y (n)).

We need to show that the union above makes sense. Assume Y = J ω(Z). It
might help to look at Figure 1. Notice that for each n, Y (n) ⊂ J n(Z) because for
everyX, J (X)(0) ⊂ X and Y (n) = J (J n(Z))(0). We also know that if σ ⊂ J (X),
then K(σ) ⊂ X, so that Kn(Y (n)) ⊂ Z. It follows that

⋃
n K

n(Y (n)) ⊆ Z.
Applying (P5) n times we get that |Kn(Y (n))| > n, and therefore the union above
does actually produce Z. We have just proved the following lemma.

Lemma 5.6. For every Z ∈ NN, Kω(J ω(Z)) = Z.

Lemma 5.7. For every Z ∈ NN, J ω(Z) ≡T Z(ω).

Proof. We already know that Z(n) ≡T J n(Z) uniformly in n and hence that
Z(ω) =

⊕
n∈N Z(n) ≡T

⊕
n∈N J n(Z). It immediately follows that J ω(Z) ≤T Z(ω).
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For the other direction we need to uniformly compute all the reals J n(Z) from
J ω(Z). We do this as follows. Given Y ∈ NN, let Y −n be Y with its first n ele-
ments removed. Then, J ω(J n(Z)) = J ω(Z)−n. By the lemma above we get that
J n(Z) = Kω(J ω(Z)−n), which we can compute uniformly from J ω(Z). "

As in section 4, where we computably approximated the jump operator, we
will now approximate the ω-Jump operator with a computable operation on finite
strings.

Definition 5.8. The ω-Jump function is the map Jω : N<N → N<N defined as
follows. Given σ ∈ N<N, let

Jω(σ) = 〈J(σ)(0), J2(σ)(0), . . . , Jn−1(σ)(0)〉,
where n is the least such that Jn(σ) = ∅ (there is always such an n, because, by
(P5), |J i(σ)| ≤| σ| − i for i ≤ |σ|). Note that then, by (P1), |Jn−1(σ)| = 1.

Jω is computable (because J is computable) and we will now define its com-
putable partial inverse Kω.

Definition 5.9. Given τ ∈ Jω(N<N), let Kω(τ) = K |τ |(-(τ)) (recall that -(τ) =
〈τ(|τ | − 1|)〉) when τ *= ∅, and Kω(∅) = ∅.

The following properties are the analogues of those of Lemma 4.4 for the ω-Jump
function and its inverse. We will refer to them as (Pω1), . . . , (Pω7).

Lemma 5.10. For σ, σ′, τ ′ ∈ N<N, τ ∈ Jω(N<N),

(Pω1) Jω(σ) = ∅ if and only if |σ| ≤ 1.
(Pω2) Kω(Jω(σ)) = σ for |σ| ≥ 2.
(Pω3) Jω(Kω(τ)) = τ .
(Pω4) If σ *= σ′ and at least one has length ≥ 2, then Jω(σ) *= Jω(σ′).
(Pω5) |Jω(σ)| < |σ| and |Kω(τ)| > |τ | except when τ = ∅.
(Pω6) If τ ′ ⊂ τ then τ ′ ∈ Jω(N<N) and Kω(τ ′) ⊂ Kω(τ).
(Pω7) If Jω(σ′) ⊆ Jω(σ) then, for every m, Jm(σ′) ⊆ Jm(σ).

Proof. (Pω1) follows from (P1) and the fact that Jω(σ) = ∅ is equivalent to J(σ) =
∅.

To prove (Pω2) let |Jω(σ)| = n > 0. Then -(Jω(σ)) = 〈Jn(σ)(0)〉 = Jn(σ)
because |Jn(σ)| = 1 as noticed in the definition of Jω. Thus Kω(Jω(σ)) =
Kn(Jn(σ)) = σ by (P2).

(Pω3) follows from (Pω2) and K(∅) = ∅. (Pω4) follows immediately from (Pω1)
and (Pω2). The first part of (Pω5) is immediate because by (P5) we have J |σ|(σ) =
∅. The second part of (Pω5) is a consequence of the first, (Pω1) and (Pω2).

For (Pω6) look at Figure 2. (Pω6) is obvious when τ ′ = ∅, using the second part
of (Pω5). Otherwise, let σ be such that τ = Jω(σ). The idea is to define σ′ ⊂ σ as
in the picture and then show that τ ′ = Jω(σ′). Notice that |σ| > |τ | ≥ 2 by (Pω5),
and that σ = Kω(τ) by (Pω2). Notice also that

-(τ ′) = 〈τ(|τ ′| − 1)〉 = 〈J |τ ′|(σ)(0)〉 ⊂ J |τ ′|(σ)

because |τ ′| < |τ | and hence |J |τ ′|(σ)| > 1. Let σ′ = K |τ ′|(-(τ ′)). Using (P6)
|τ ′| times we know that σ′ ⊂ σ and J |τ ′|(σ′) = -(τ ′). Now, we need to show that
Jω(σ′) = τ ′. First notice that |Jω(σ′)| = |τ ′| because |J |τ ′|(σ′)| = |-(τ ′)| = 1. By
induction on i ≤ |τ ′| we can show, using (P6) and (P2), that

(5.1) J |τ ′|−i(σ′) = Ki(-(τ ′)) ⊂ Ki(J |τ ′|(σ)) = J |τ ′|−i(σ).

Now for j < |τ ′|, Jω(σ′)(j) = Jj+1(σ′)(0) = Jj+1(σ)(0) = τ(j) = τ ′(j).
For (Pω7) let τ ′ = Jω(σ′). Then, if i = |τ ′| − m, equation (5.1) shows that

Jm(σ′) ⊆ Jm(σ). "
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τ =

!

J ω(σ)

!

$ $

∅

τ(|τ | − 1) = J |τ |(σ)(0) 〈τ(|τ | − 1)〉 = J |τ |(σ)

J

##

...
...

. . .

J
$$

τ(|τ ′| − 1) = J |τ ′|(σ)(0) 〈τ(|τ ′| − 1)〉 = J |τ ′|(σ′) ⊂

K %%

· · · ⊂ J |τ ′|(σ)

J
&&

...
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. . .

K %%

. . .

J
&&

τ(0) = J(σ)(0) J(σ′)

K ''

⊂ · · ·⊂ J(σ)

J
((

% %

σ′ ⊂ · · ·⊂ σ

J))

Figure 2. Assuming τ = Jω(σ) and τ ′ ⊂ τ .

As we did in Section 4, we now explain how the ω-Jump function approximates
the ω-Jump operator.

Lemma 5.11. Given Y, Z ∈ NN, the following are equivalent:

(1) Y = J ω(Z);
(2) for every n there exists σn ⊂ Z with |σn| > n such that Y !n = Jω(σn).

Proof. First assume Y = J ω(Z). When n = 0 let σ0 = Z ! 1, which works by
(Pω1). When n > 0 let σn = Kω(Y ! n). We recommend the reader to look at
Figure 1 again. By (Pω3) we have Y !n = Jω(σn). Since σn = Kn(〈Y (n − 1)〉) =
Kn−1(Y (n− 1)), σn is one of the strings occurring in the definition of Kω(Y ) and
hence σn ⊂ Kω(Y ) = Z by Lemma 5.6. We get that |σn| > n by (P5) applied n
times to σn = Kn(〈Y (n− 1)〉).

Suppose now that (2) holds. By (Pω7), we get that for all m and n, Jm(σn) ⊆
Jm(σn+1). Using Corollary 4.6, it is straightforward to show that for all m < n,⋃

n J
m(σn) = Jm(Z) and hence Jm(σn)(0) = Jm(Z)(0). It follows that for every

m and n > m

J ω(Z)(m) = Jm+1(Z)(0) = Jm+1(σn)(0) = Jω(σn)(m) = Y (m). "
Again as in Section 4, the ω-Jump function leads to the definition of the ω-Jump

Tree.

Definition 5.12. Given a tree T ⊆ N<N the ω-Jump Tree of T is

J T ω(T ) = { Jω(σ) : σ ∈ T }.
Lemma 5.13. For every tree T , J T ω(T ) is a tree computable in T .

Proof. The proof is identical to the proof of Lemma 4.8, using Lemma 5.10 in place
of Lemma 4.4. "
Lemma 5.14. For every tree T , [J T ω(T )] = {J ω(Z) : Z ∈ [T ] }.
Proof. To prove {J ω(Z) : Z ∈ [T ] } ⊆ [J T ω(T )] we can argue as in the proof of
Lemma 4.9, using Lemma 5.11 in place of Lemma 4.5.

To prove the other inclusion, fix Y ∈ [J T ω(T )]. For each n, let σn = Kω(Y !
n) ∈ T . Since Jω(σn) = Y !n by (Pω3), we have σn ⊂ σn+1 for each n by (Pω6).
Let Z =

⋃
n∈N σn ∈ [T ]. Then, by Lemma 5.11 we get Y = J ω(Z). "
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5.3. ω-Jumps versus the epsilon function. Our goal now is to generalize Def-
inition 5.1 with an operator that uses ε rather than ω. We thus wish to define an
operator hω that, given an order preserving function g : J T ω(T ) → X (where X is
a linear order), returns an order preserving function hω

g : T → εX . To do so we will
iterate the h operator of Definition 5.1 along the elements of J T ω(T ).

Let us give the rough motivation behind the definition of the operator hω below.
Suppose we are given an order preserving function g : J T ω(T ) → X . For each i, we
would like to define a monotone function fi : J T i(T ) → εX such that fi = hfi+1 ,
where hfi+1 is as in Definition 5.1. Notice that the range of this function is correct,
using the fact that ωεX is computably isomorphic to εX . However, we do not have
a place to start as to define such fi we would need fi+1, and this recursion goes
the wrong way. Note that if τ = Jω(σ) ∈ J T ω(T ), then 〈τ(i)〉 ∈ J T i(T ), and we
could use g to define fi at least on the strings of length 1, of the form 〈τ(i)〉. (This
is not exactly what we are going to do, but it should help picture the construction.)
The good news is that to calculate fi−1 = hfi on strings of length at most 2, we
only need to know the values of fi on strings of length at most 1. Inductively, this
would allow us to calculate f0 : T → X on strings of length at most i. Since this
would work for all i, we get f0 defined on all T . We now give the precise definition.

First, we need to iterate the Jump Tree operator along any finite string.

Definition 5.15. If T is a tree we define

J T ω
τ (T ) = { J |τ |+1(σ) : σ ∈ T ∧ τ ⊆ Jω(σ) }.

Notice that J T ω
τ (T ) ⊆ JT |τ |+1(T ) and that J T ω

τ (T ) is empty when τ /∈
J T ω(T ). The following Lemma provides an alternative way of defining J T ω

τ (T )
by an inductive definition.

Lemma 5.16. Given a tree T ⊆ N<N,

J T ω
∅ (T ) = J T (T )

J T ω
τ!〈c〉(T ) = J T (J T ω

τ (T )〈c〉).

(T〈c〉 was defined in 2.10 as { ρ ∈ T : 〈c〉 ⊆ ρ ∨ ρ = ∅ }.)

Proof. Straightforward induction on |τ |. "

The next Lemma links J T ω
τ (T ) to J T ω(T ).

Lemma 5.17. Given a tree T ⊆ N<N, τ ∈ N<N, and c ∈ N,

τ"〈c〉 ∈ J T ω(T ) ⇐⇒ 〈c〉 ∈ J T ω
τ (T ).

Proof. This follows immediately from the definitions of J T ω(T ) and J T ω
τ (T ). "

Definition 5.18. Let X be a linear ordering and g : J T ω(T ) → X be a function.
We define simultaneously for each τ ∈ J T ω(T ) a function

fτ : J T ω
τ (T ) → εX

by recursion on |σ|:

fτ (σ) =

{
εg(τ) if σ = ∅;
hfτ!〈σ(0)〉

(σ) if σ *= ∅.

Here hfτ!〈σ(0)〉
is defined according to Definition 5.1. We then define

hω
g = hf∅ : T → εX .
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Remark 5.19. First of all notice that we are really doing a recursion on |σ|. In
fact, to compute hfτ!〈σ(0)〉

(σ) when σ *= ∅ we use fτ!〈σ(0)〉 on strings of the form

J(σ)! i, which have length ≤ |J(σ)| < |σ| by (P5).
Let us notice the functions have the right domains and ranges. The proof is done

simultaneously for all τ ∈ J T ω(T ) by induction on |σ|. Take σ ∈ J T ω
τ (T ) with

|σ| = n. Suppose that for all τ ′ ∈ J T ω(T ) and all σ′ ∈ J T ω
τ ′(T ) with |σ′| < n we

have that fτ ′(σ′) is defined and fτ ′(σ′) ∈ εX .
If σ = ∅, then fτ (σ) = εg(τ) ∈ εX . Suppose σ *= ∅ and let τ ′ = τ"〈σ(0)〉. Then

fτ (σ) = hfτ′ (σ). When computing hfτ′ (σ), we only apply fτ ′ to strings of the
form J(σ)! i. These strings have length less than n and, by Lemma 4.8, belong to
J T (J T ω

τ (T )〈σ(0)〉) = J T ω
τ ′(T ) (by Lemma 5.16). By the induction hypothesis we

have that fτ ′ is defined on these strings and takes values in εX . Therefore, hfτ′ (σ) is
defined and hfτ′ (σ) ∈ ωεX . Using that ωεX = εX , we get that fτ : J T ω

τ (T ) → εX .
Finally, since f∅ : J T (T ) → εX , we get that hω

g : T → εX .

Lemma 5.20. If g : J T ω(T ) → X is (⊃, <X )-monotone, then hω
g : T → εX is

(⊃, <εX )-monotone.

Proof. First, we note that by Lemma 5.2, it suffices to show that f∅ is (⊃, <εX )-
monotone. We will actually show that for every τ ∈ J T ω(T ), fτ is (⊃, <εX )-
monotone.

The proof is again done simultaneously for all τ ∈ J T ω(T ) by induction on the
length of the strings. Suppose that on strings of length less than n, for every τ ′,
fτ ′ is (⊃, <εX )-monotone. Let σ′ ⊂ σ ∈ J T ω

τ (T ) with |σ| = n. Let τ ′ = τ"〈σ(0)〉.
Consider first the case when σ′ = ∅. Then fτ (σ′) = εg(τ) while fτ (σ) is a finite sum

of terms of the form ωfτ′ (J(σ)!i). By the induction hypothesis, the exponent of each
such term is less than or equal to fτ ′(∅) = εg(τ ′) <εX εg(τ). So, the whole sum is
less than εg(τ) = fτ (σ′). Suppose now that σ′ *= ∅. Since the proof of Lemma 5.2
(based on the proof of Lemma 4.11) uses the monotonicity of fτ ′ only for strings
shorter then σ (by (P5)), we get that hfτ′ (σ

′) >εX hfτ′ (σ). "
Theorem 5.21. For every Z ∈ NN, there is a Z-computable linear ordering X
such that the jump of every descending sequence in X computes Z(ω), but there is
a Z-computable descending sequence in εX .

Proof. Let X = 〈J T ω(TZ),≤KB〉 where again TZ = {Z !n : n ∈ N }. By Lemma
5.13, X is Z-computable. By Lemma 5.14, J ω(Z) is the unique path in J T ω(TZ).
Therefore, by Lemma 2.12, the jump of every descending sequence in X computes
J ω(Z) ≡T Z(ω).

Let g be the identity on X , which is obviously (⊃, <X )-monotone. By Lemma
5.20, hω

g is (⊃, <εX )-monotone. Since hω
g is computable, {hω

g (Z !n) : n ∈ N } is a
Z-computable descending sequence in εX . "
5.4. Reverse mathematics results. In this section, we work in the weak sys-
tem RCA0. Therefore, we do not have an operation that given Z ∈ N<N, returns
J (Z), let alone J ω(Z). However, the predicates with two variables Z and Y that
say Y = J (Z) and Y = J ω(Z) are arithmetic as witnessed by Lemmas 4.5 and
5.11. Notice that if condition (2) of Lemma 4.5 holds, then RCA0 can recover the
sequence of ti’s in the definition of J (Z) and show that J (Z) is as defined in 4.1.
Furthermore, RCA0 can show that J (Z) ≡T Z ′ and hence that ACA0 is equivalent to
RCA0+∀Z∃Y (Y = J (Z)), and ACA′

0 is equivalent to RCA0+∀Z∀n∃Y (Y = J n(Z)).
Also, if condition (2) of Lemma 5.11 holds, then as in the proof of that lemma,

in RCA0 we can uniformly build Jm(Z) as
⋃

n J
m(σn), and show that J ω(Z) is

as defined in Definition 5.8. Furthermore, we can prove Lemma 5.7 in RCA0: if
Y = J ω(Z), then Y can compute Z(ω), and if X = Z(ω), then X can compute
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a real Y such that Y = J ω(Z). Therefore, we get that ACA+
0 is equivalent to

RCA0+∀Z∃Y (Y = J ω(Z)).
We already know, from Girard’s result Theorem 1.1 that over RCA0, the state-

ment “if X is a well-ordering then ωX is a well-ordering” is equivalent to ACA0.
We now start climbing up the ladder.

Theorem 5.22. Over RCA0, ∀nWOP(X !→ ω〈n,X〉) is equivalent to ACA′
0.

Proof. We showed, in Corollary 3.3, that ACA′
0; ∀nWOP(X !→ ω〈n,X〉).

Suppose now that ∀nWOP(X !→ ω〈n,X〉) holds. Consider Z ∈ NN and n ∈ ω; we
want to show that J n(Z) exists. By Girard’s theorem we can assume ACA0. Let
Xn

Z = 〈Tn,≤KB〉, where Tn = J T n(TZ) as in the proof of Theorem 5.3. The proof
that there is a Z-computable descending sequence in ω〈n,Xn

Z 〉 is finitary and goes
through in RCA0. So, by WOP(X !→ ω〈n,X〉) we get a descending sequence in Xn

Z .
By Lemma 2.12, using ACA0, we get Yn ∈ [Tn]. For each i ≤ n, let Yi = Kn−i(Yn).
Lemma 4.9 shows that for each i, Yi ∈ [Ti] and Yi = J (Yi−1). Since Z is the only
path through TZ , we get that Y0 = Z, and so Yn = J n(Z). "

Theorem 5.23. Over RCA0, WOP(X !→ εX ) is equivalent to ACA+
0 .

Proof. We already showed that ACA+
0 proves WOP(X !→ εX ) in Corollary 3.5.

Assume RCA0+WOP(X !→ εX ). Let Z ∈ NN; we want to show that there exists
Y with Y = J ω(Z). Build X = 〈J T ω(TZ),≤KB〉 as in Theorem 5.21. The proof
that εX has a Z-computable descending sequence is completely finitary and can be
carried out in RCA0. By WOP(X !→ εX ), we get that X has a descending sequence.
Since we have ACA0 we can use this descending sequence to get a path Y through
J T ω(TZ). Now, the proof of Lemma 5.14 translates into a proof in RCA0 that
Y is J ω of some path through TZ . Since Z is the only path through TZ , we get
Y = J ω(Z) as wanted. "

6. General Case

In this section we define the ωα-Jump operator, the ωα-Jump function, and the
ωα-Jump Tree, for all computable ordinals α. The constructions of Sections 4 and
5, where we considered α = 0 and α = 1 respectively, are thus the simplest cases
of what we will be doing here.

The whole construction is by transfinite recursion, and the base case was covered
in Section 4. If α > 0 is a computable ordinal, we assume that we have a fixed non-
decreasing computable sequence of ordinals {αi : i ∈ N } such that α = supi∈N(αi+
1). (So, if α = γ+1, we can take αi = γ for all i.) Notice that we have

∑
i∈N ωαi =

ωα. In defining the ωα-Jump operator, the ωα-Jump function, and the ωα-Jump
Tree we make use the ωαi -Jump operator, the ωαi -Jump function, and the ωαi -
Jump Tree for each i.

6.1. The iteration of the jump. Our presentation here is different from the one
of previous sections, where we defined the operator first. Here we start from the
ωα-Jump function, prove its basic properties, then use it to define the ωα-Jump
Tree, and eventually introduce the ωα-Jump operator.

Let α > 0 be a computable ordinal and {αi : i ∈ N } be its canonical sequence as
described above. To simplify the notation in the definition of the ωα-Jump function,
assume we already defined Jωαi and Kωαi for all i, and let Jωα

n : N<N → N<N and
Kωα

n : N<N → N<N be defined recursively by

Jωα

0 = id; Jωα

n+1 = Jωαn ◦ Jωα

n ;

Kωα

0 = id; Kωα

n+1 = Kωα

n ◦Kωαn
.
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In other words:

Jωα

n = Jωαn−1 ◦ Jωαn−2 ◦ · · · ◦ Jωα0
,

Kωα

n = Kωα0 ◦Kωα1 ◦ · · · ◦Kωαn−1
.

Definition 6.1. The ωα-Jump function is the map Jωα

: N<N → N<N defined by

Jωα

(σ) = 〈Jωα

1 (σ)(0), Jωα

2 (σ)(0), . . . , Jωα

n−1(σ)(0)〉,

where n is least such that Jωα

n (σ) = ∅. In this case, since Jωα

n (σ) = Jωαn−1 (Jωα

n−1(σ)),
by (Pωα

1) below applied to αn−1, we have |Jωα

n−1(σ)| = 1.
Given τ ∈ Jωα

(N<N), let

Kωα

(τ) = Kωα

|τ | (-(τ)).

In particular Kωα

(∅) = ∅, since Kωα

0 is the identity function.

Since for α = 1 we have αi = 0 for every i, the definitions we just gave match
exactly Definitions 5.8 and 5.9, where we introduced Jω and Kω. We will not
mention again this explicitly, but the reader should keep in mind that the case
α = 1 of Section 5 is the blueprint for the work of this section.

Notice that, by transfinite induction, Jωα

and Kωα

are computable.
The following properties generalize those of Lemmas 4.4 and 5.10. We will refer

to them, as usual, as (Pωα

1), . . . , (Pωα

7).

Lemma 6.2. For σ, τ ′ ∈ N<N, τ ∈ Jωα

(N<N),

(Pωα

1) Jωα

(σ) = ∅ if and only if |σ| ≤ 1.
(Pωα

2) Kωα

(Jωα

(σ)) = σ for |σ| ≥ 2.
(Pωα

3) Jωα

(Kωα

(τ)) = τ .
(Pωα

4) If σ *= σ′ and at least one has length ≥ 2, then Jωα

(σ) *= Jωα

(σ′).
(Pωα

5) |Jωα

(σ)| < |σ| and |Kωα

(τ)| > |τ | except when τ = ∅.
(Pωα

6) If τ ′ ⊂ τ then τ ′ ∈ Jωα

(N<N) and Kωα

(τ ′) ⊂ Kωα

(τ).
(Pωα

7) If Jωα

(σ′) ⊆ Jωα

(σ) and α > 0 then for every m, Jωα

m (σ′) ⊆ Jωα

m (σ).

Proof. The proof is by transfinite induction on α. The case α = 0 is Lemma 4.4.
Since Jωα

(σ) = ∅ if and only if Jωα0 (σ) = ∅, (Pωα

1) follows from the same
property for α0.

To prove (Pωα

2) let |Jωα

(σ)| = n − 1 > 0. Then -(Jωα

(σ)) = 〈Jωα

n−1(σ)(0)〉 =
Jωα

n−1(σ) because |Jωα

n−1(σ)| = 1 as noticed above. SinceKωα

(Jωα

(σ)) = Kωα

n−1(J
ωα

n−1(σ)),
Kωα

(Jωα

(σ)) = σ follows from (Pωα

2) for αn−2, αn−3, . . . , α0.
As in the proof of the case α = 1 in Lemma 5.10, (Pωα

3), (Pωα

4) and (Pωα

5)
follow from the properties we already proved.

The proof of (Pωα

6) is also basically the same as the proof of (Pω6). We rec-
ommend the reader to have Figure 3 in mind while reading the proof. The non-
trivial case is when τ ′ *= ∅. Let σ be such that τ = Jωα

(σ). The idea is to
define σ′ ⊂ σ as in the picture and then show that τ ′ = Jωα

(σ′). Notice that
|σ| > |τ | ≥ 2 by (Pωα

5), and that σ = Kωα

(τ) by (Pωα

2). Notice also that
-(τ ′) = 〈τ(|τ ′| − 1)〉 = 〈Jωα

|τ ′|(σ)(0)〉 ⊂ Jωα

|τ ′|(σ), where the strict inclusion is because

|τ ′| < |τ | and hence |Jωα

|τ ′|(σ)| > 1. By induction on i ≤ |τ ′| we can show, using

(Pωα

6) and (Pωα

2) for α|τ ′|−1, . . . , α1, α0, that

(Kω
α|τ′|−i ◦ · · · ◦Kω

α|τ′|−1
)(-(τ ′)) ⊂ (Kω

α|τ′|−i ◦ · · · ◦Kω
α|τ′|−1

)(Jωα

|τ ′|(σ))

= Jωα

|τ ′|−i(σ)
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τ =

!

J ωα
(σ)

!

$ $

∅

τ(|τ | − 1) = Jωα

|τ | (σ)(0) 〈τ(|τ | − 1)〉 = Jωα

|τ | (σ)
Jω

α|τ|
##

...
...

. . .

Jω
α|τ|−1&&
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...
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Figure 3. Assuming τ = Jωα

(σ) and τ ′ ⊂ τ .

and (Kω
α|τ′|−i ◦ · · · ◦Kω

α|τ′|−1
)(-(τ ′)) ∈ Jωα

|τ ′|−i(N<N). In particular, when i = |τ ′|,
if we set σ′ = Kωα

|τ ′|(-(τ
′)), we obtain σ′ ⊂ σ. Furthermore, by (Pωα

2) applied to
α0, . . . , α|τ ′|−i−1, we also get

(6.1) Jωα

|τ ′|−i(σ
′) = (Kω

α|τ′|−i ◦ · · · ◦Kω
α|τ′|−1

)(-(τ ′)) ⊂ Jωα

|τ ′|−i(σ).

Therefore, for every j < |τ ′|

Jωα

(σ′)(j) = Jωα

j+1(σ
′)(0) = Jωα

j+1(σ)(0) = τ(j) = τ ′(j).

Since Jωα

|τ ′|−1(σ
′) = -(τ ′) which has length 1, we get that Jωα

(σ′) has length |τ ′| as
wanted.

For (Pωα

7) let τ ′ = Jωα

(σ′). Then, if i = |τ ′| − m, equation 6.1 shows that
Jωα

m (σ′) ⊆ Jωα

m (σ). "
We can now introduce the ωα-Jump Tree and prove its computability.

Definition 6.3. Given a tree T ⊆ N<N the ωα-Jump Tree of T is

J T ωα

(T ) = { Jωα

(σ) : σ ∈ T }.

Lemma 6.4. For every tree T , J T ωα

(T ) is a tree computable in T .

Proof. The proof is again the same as the one of Lemma 4.8, using Lemma 6.2 in
place of Lemma 4.4. "

We now define the ωα-Jump operator J ωα

: NN → NN by transfinite induction:
the base case is the Jump operator J (Definition 4.1). Given α we assume that
J ωαn

has been defined for all n. To simplify the notation let us define J ωα

n recur-
sively by J ωα

0 = id, J ωα

n+1 = J ωαn ◦ J ωα

n , so that

J ωα

n = J ωαn−1 ◦ J ωαn−2 ◦ · · · ◦ J ωα0
.

Definition 6.5. Given the computable ordinal α we define the ωα-Jump operator
J ωα

: NN → NN and its inverse Kωα

by

J ωα

(Z)(n) = J ωα

n+1(Z)(0) and Kωα

(Y ) =
⋃

n

Kωα

(Y !n).
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We first show that Kωα

is indeed the inverse of J ωα

.

Lemma 6.6. If Y = J ωα

(Z) then Z = Kωα

(Y ).

Proof. The proof of the lemma is by transfinite induction. Let {αi : i ∈ N } be the
fixed canonical sequence fo α. Recall from the definition of Kωα

that Kωα

(Y !n) =
Kωα

n (〈Y (n − 1)〉). Since 〈Y (n − 1)〉 = 〈J ωα

n (Z)(0)〉 ⊆ J ωα

n (Z), by the induction
hypothesis applied to αn−1, . . . , α0, we get that Kωα

n (〈Y (n − 1)〉) ⊆ Z. So Z ⊇
Kωα

(Y ). By (Pωα

5) applied to α0, . . . , αn−1 we get that |Kωα

n (〈Y (n− 1)〉)| > n+1
and hence Z = Kωα

(Y ). "

Lemma 6.7. For every Z ∈ NN and computable ordinal α, J ωα

(Z) ≡T Z(ωα).

Proof. This is again proved by transfinite induction. Assuming that J ωαi (Z) ≡T

Z(ωαi ) for every i, and uniformly in i, we immediately obtain J ωα

n (Z) ≡T Z(βn),
where βn =

∑n−1
i=0 ωαi , for every n. Since βn < ωα, J ωα

(Z) ≤T Z(ωα) is immediate.
For the other reduction we need to uniformly compute J ωα

n (Z) from J ωα

(Z).
The same way we compute Z from J ωα

(Z) applying Kωα

, we can compute J ωα

n (Z)
by forgetting about α0, . . . , αn−1. In other words, by the same proof as Lemma 6.6
we can show that for every m

J ωα

m (Z) =
⋃

n>m

Kωαm
(Kωαm+1

(. . . (Kωαn−1
(〈Y (n− 1)〉)) . . . ))

using Kωαm ◦Kωαm+1 ◦ · · · ◦Kωαn−1 instead of Kωα

n . "

We can now prove that Jωα

approximates J ωα

, extending Lemma 5.11.

Lemma 6.8. Given Y, Z ∈ NN, the following are equivalent:

(1) Y = J ωα

(Z);
(2) for every n there exists σn ⊂ Z with |σn| > n such that Y !n = Jωα

(σn).

Proof. We first prove (1) =⇒ (2). When n = 0 let σ0 = Z ! 1, which works by
(Pωα

1). Let σn = Kωα

(Y !n). Then σn ⊆ Kωα

(Y ) = Z, and Y !n = Jωα

(σn). We
get that |σn| > n by applying (Pωα

5) n times to σn = Kωα

n (〈Y (n− 1)〉).
The proof of (2) =⇒ (1) is similar to the proof of Lemma 5.11 but uses

transfinite induction. By (Pωα

7), for all m and n, Jωα

m (σn) ⊆ Jωα

m (σn+1), and
hence we can consider

⋃
n J

ωα

m (σn) ∈ NN. Then, by the induction hypothesis,⋃
n J

ωα

m (σn) = J ωα

m (Z), and hence Jωα

m (σn)(0) = J ωα

m (Z)(0) for all m < n. It
follows that for every m and n > m

J ωα

(Z)(m) = J ωα

m+1(Z)(0) = Jωα

m+1(σn)(0) = Jωα

(σn)(m) = Y (m). "

We are now able to show the intended connection between the ωα-Jump Tree
and the ωα-Jump operator.

Lemma 6.9. For every tree T , [J T ωα

(T )] = {J ωα

(Z) : Z ∈ [T ] }.

Proof. To prove {J ωα

(Z) : Z ∈ [T ] } ⊆ [J T ωα

(T )] we can argue as in the proof of
Lemma 4.9, using Lemma 6.8 in place of Lemma 4.5.

To prove the other inclusion, fix Y ∈ [J T ωα

(T )]. Arguing as in the proof of
Lemma 5.14, we first let σn = Kωα

(Y !n) ∈ T . Let Z = Kωα

(Y ) =
⋃

n∈N σn ∈ [T ].

We get that Y = J ωα

(Z) from Lemma 6.8. "
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6.2. Jumps versus Veblen. First, we need to iterate the Jump Tree operator
along a finite string.

Definition 6.10. If T is a tree and τ ∈ J T ωα

(T ) we define

J T ωα

τ (T ) = { Jωα

|τ |+1(σ) : σ ∈ T ∧ τ ⊆ Jωα

(σ) }.

Lemma 6.11. For τ ∈ J T ωα

(T ),

J T ωα

∅ (T ) = J T ωα0
(T )

J T ωα

τ!〈c〉(T ) = J T ω
α|τ|+1

(J T ωα

τ (T )〈c〉).

(T〈c〉 was defined in 2.10.)

Proof. Straightforward induction on |τ |. "
Lemma 6.12. Given a tree T ⊆ N<N, τ ∈ N<N, and c ∈ N

τ"〈c〉 ∈ J T ωα

(T ) ⇐⇒ 〈c〉 ∈ J T ωα

τ (T ).

Proof. Follows from the definitions of J T ωα

(T ) and J T ωα

τ (T ). "
We now generalize the construction of Definition 5.18, by defining an operator

that converts a function with domain J T ωα

(T ) and values in X into a function
with domain T and values in ϕ(α,X ). We will show in Lemma 6.14 that this
operator preserves monotonicity.

Definition 6.13. By transfinite recursion, we build, for each computable ordinal
α, an operator hωα

such that given a linear ordering X and a function

g : J T ωα

(T ) → X ,

it returns
hωα

g : T → ϕ(α,X ).

For α = 0, we let hωα

= h of Definition 5.1. For α > 0 we first define simultane-
ously for each τ ∈ J T ωα

(T ) a function

fτ : J T ωα

τ (T ) → ϕ(α,X )

by recursion on |σ|:

fτ (σ) =






ϕα,g(τ) if σ = ∅;

hωαn

fτ′ (σ) if σ *= ∅, where τ ′ = τ"〈σ(0)〉 and n = |τ ′|.

We then define
hωα

g = hωα0

f∅
: T → ϕ(α,X ).

Lemma 6.14. If g : J T ωα

(T ) → X is total and (⊃, <X )-monotone, then hωα

g : T →
ϕ(α,X ) is also total and (⊃, <ϕ(α,X ))-monotone. Moreover, hωα

g is computable in
g.

Proof. We say that a partial function e on a tree T is (n, T,X )-good if e is defined
on all strings of length less than or equal to n, it takes values in X , and is (⊃, <X )-
monotone on strings of length less than or equal to n.

By transfinite induction on α we will show that for every n ∈ N and every
(n,J T ωα

(T ),X )-good partial function g, we have that hωα

g is (n + 1, T,ϕ(α,X ))-
good.

For α = 0, this follows from the proof of Lemma 5.2: recall that hg(σ) is a finite
sum of terms of the form ωg(J(σ)!i), and |J(σ)| < |σ| by (P5). Thus to compute
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and compare hg on strings of length ≤ n + 1, we need only g to be defined and
(⊃, <X )-monotone on strings of length ≤ n.

Now fix α > 0 and suppose that g is (n,J T ωα

(T ),X )-good. Since hωα

g = hωα0

f∅
,

by the induction hypothesis it is enough to show that f∅ is (n,J T ωα

∅ (T ),ϕ(α,X ))-
good. Notice that if f∅ takes values inϕ(α,X ), then hωα

g takes values inϕ(α0,ϕ(α,X )) =
ϕ(α,X ) (by Definition 2.7). We will prove by induction on m ≤ n that for every
τ ∈ J T ωα

(T ) of length n−m, fτ is (m,J T ωα

τ (T ),ϕ(α,X ))-good. When m = 0, all
we need to observe is that fτ (∅) = ϕα,g(τ) ∈ ϕ(α,X ), and g(τ) is defined because

|τ | = n. Consider now τ ∈ J T ωα

(T ) of length n− (m+ 1). If σ = ∅, then fτ (∅) is
correctly defined as in the case m = 0. For σ ∈ J T ωα

τ (T ) with 0 < |σ| ≤ m + 1,
let τ ′ = τ"〈σ(0)〉. We first need to check that fτ (σ) = hωαn−m

fτ′ (σ) is defined.

By the subsidiary induction hypothesis fτ ′ is (m,J T ωα

τ ′ (T ),ϕ(α,X ))-good. By
Lemma 6.11, J T ωα

τ ′ (T ) = J T ωαn−m
(J T ωα

τ (T )〈σ(0)〉). By the transfinite induction

hypothesis (since αn−m < α) hωαn−m

fτ′ is (m + 1,J T ωα

τ (T )〈σ(0)〉,ϕ(α,X ))-good.
Therefore fτ (σ) is defined. Now we need to show fτ is (⊃, <ϕ(α,X ))-monotone

on strings of length less than or equal to m + 1. Take σ′ ⊂ σ ∈ J T ωα

τ (T )
with |σ| ≤ m + 1. Again let τ ′ = τ"〈σ(0)〉. By the transfinite induction hy-
pothesis, we know that hωαn−m

fτ′ is (m + 1,J T ωα

τ (T ),ϕ(α,X ))-good. Furthermore
fτ ′ is (⊃, <ϕ(α,X ))-monotone and takes values in ϕ(α,X ) ! (ϕα,g(τ ′) + 1), because

fτ ′(∅) = ϕα,g(τ ′). Therefore hωαn−m

fτ′ takes values below ϕαn−m(ϕα,g(τ ′) +1). When
σ′ = ∅, fτ (σ′) = ϕα,g(τ) > ϕαn−m(ϕα,g(τ ′) + 1) > fτ (σ). When σ′ *= ∅, we use the

monotonicity of hωαn−m

fτ′ . "

Theorem 6.15. For every computable ordinal α and Z ∈ NN, there exists a Z-
computable linear ordering X such that the jump of every descending sequence in
X computes Z(ωα), but there is a Z-computable descending sequence in ϕ(α,X ).

Proof. Let X = 〈J T ωα

(TZ),≤KB〉 where TZ is the tree {Z !n : n ∈ N }. By Lemma
6.4, X is Z-computable. By Lemma 6.9, J ωα

(Z) is the unique path in J T ωα

(TZ).
Therefore, by Lemma 2.12, the jump of every descending sequence in X computes
J ωα

(Z) and hence, by Lemma 6.7, computes Z(ωα).
Let g be the identity on X , which is (⊃, <X )-monotone. By Lemma 6.14, hα

g is (⊃
, <ϕ(α,X ))-monotone and computable. Thus {hα

g (Z !n) : n ∈ N } is a Z-computable
descending sequence in ϕ(α,X ). "
6.3. Reverse mathematics results. In this section, we work in the weak system
RCA0. Therefore, again, we do not have an operation that given Z ∈ NN, returns
J ωα

(Z) but the predicate with three variables Z, Y and α that says Y = J ωα

(Z) is
arithmetic as witnessed by Lemma 6.8. Notice that if if we have that condition (2) of
Lemma 6.8 holds, then RCA0 can recover all the J ωα

m (Z) and show that J ωα

(Z) is
as defined in Definition 6.5. We can then prove Lemma 6.7 in RCA0: if Y = J ωα

(Z),
then Y can compute Z(ωα), and Z(ωα) can compute a real Y such that Y = J ωα

(Z).
Therefore, we get that Π0

ωα -CA0 is equivalent to RCA0+∀Z∃Y (Y = J ωα

(Z)) and
that ATR0 is equivalent to RCA0+∀α∀Z∃Y (Y = J ωα

(Z)).

Theorem 6.16. Let α be a computable ordinal. Over RCA0, WOP(X !→ ϕ(α,X ))
is equivalent to Π0

ωα-CA0.

Proof. We already showed that Π0
ωα -CA0; WOP(X !→ ϕ(α,X )) in Corollary 3.7.

The proof of the other direction is just the formalization of Theorem 6.15 exactly
as we did in Theorem 5.23. "

We now give a new, purely computability-theoretic, proof of Friedman’s theorem.
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Theorem 6.17. Over RCA0, WOP(X !→ ϕ(X , 0)) is equivalent to ATR0.

Proof. We already showed that ATR0 proves WOP(X !→ ϕ(X , 0)) in Corollary 3.8.
For the reversal, we argue within RCA0. Let α be any ordinal. Notice that

relative to the presentation of α, all the constructions of this section can be done
as if α were any computable ordinal. Therefore, by the previous theorem it is
enough to show that WOP(X !→ ϕ(α,X )) holds. Let X be a well-ordering. We
now claim that ϕ(α,X ) embeds in ϕ(α + X , 0), which would imply that ϕ(α,X )
is well-ordered too as needed to show WOP(X !→ ϕ(α,X )).

Define f : ϕ(α,X ) → ϕ(α+X , 0) by induction on the terms of ϕ(α,X ), setting

• f(0) = 0,
• f(ϕα,x) = ϕα+x(0),
• f(t1 + t2) = f(t1) + f(t2),
• f(ϕa(t)) = ϕa(f(t)).

The proof that f is an embedding is by induction on terms. Consider t, s ∈
ϕ(α,X ). We want to show that t ≤ϕ(α,X ) s ⇐⇒ f(t) ≤ϕ(α+X ,0) f(s). By
induction hypothesis, assume this is true for pairs of terms shorter than t + s.
Suppose that t ≤ s. Using the induction hypothesis, it is not hard to show that
f(t) ≤ f(s). Suppose now that t *≤ s. Then, none of the conditions of Definition
2.7 hold. If t = 0, t = t1 + t2, or t = ϕa(t1), then we can apply the induction
hypothesis again and get that none of the conditions of Definition 2.7 hold for f(t)
and f(s) either and hence f(t) *≤ f(s). The case t = ϕα,x is the only one that
deserves attention. In this case we have that for no y ≥ x, ϕα,y appears in s. It
then follows that f(s) ∈ ϕ(α + X !x, 0). Since f(t) = ϕα+x(0) is greater than all
the elements of ϕ(α+ X !x, 0) we get f(t) *≤ f(s) a wanted. "
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[RW] Michael Rathjen and Andreas Weiermann. Reverse mathematics and well-ordering prin-
ciples. to appear in “Computability in Context: Computation and Logic in the Real
World”, S.B. Cooper and A. Sorbi (eds.), Imperial College Press.
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