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1. Introduction

The goal of this paper is to construct a computable ℵ0-categorical struc-
ture whose first order theory is computably equivalent to the true first order
theory of arithmetic. Recall that a structure is computable if its atomic open
diagram, that is the set of all atomic statements and their negations true
in the structure, is a computable set. Computability of an infinite structure
A = (A;Pn0

0 , Pn1
1 , . . .) is equivalent to saying that the domain A is either

finite or ω and that there exists an algorithm that given an i ∈ ω and el-
ements x1, . . . , xni of the domain decides whether Pni

i (x1, . . . , xni) is true.
If a structure B is isomorphic to a computable structure A then A is called
a computable presentation of B. We often identify computable and com-
putably presentable structures. If there exists an algorithm that decides
the full diagram of a structure A then A is called a decidable structure.
Clearly, decidable structures are computable but the opposite is not always
true. Each computable structure is countable. Therefore, in this paper we
restrict ourselves to countable structures.

One of the major themes in computable model theory investigates com-
putable models of theories. Let T be a deductively closed consistent theory.
If T is decidable then the Henkin’s construction can be carried out effec-
tively for T . Therefore, a complete theory T has a decidable model if and
only if T is decidable. For complete decidable theories T the class of all
decidable models of T has been well studied starting in the 70s. See for
example the results by Goncharov [GN73] [Gon78], Millar [Mil78] [Mil81],
Morley [Mor76], Harrington [Har74], and Peretyatkin [Per78]. These re-
sults investigate decidability of specific models of T such as prime models,
saturated models, and homogeneous models. Roughly, prime models are
the smallest models since they can be embedded into all models of T , and
saturated models are the largest models since all (countable) models of T
can be embedded into saturated models. Prime and saturated models are
unique up to isomorphism, and homogeneous models are characterized by
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the types they realize. Goncharov, Millar, and Morely found characteriza-
tions for these models to be decidable. For instance, the prime model of T
is decidable if and only if the set of all principle types of T is uniformly com-
putable [Har74] [GN73]. Similarly, the saturated model of T is decidable if
and only if the set of all types of T is uniformly computable [Mor76]. If T is
undecidable then one would like to study the class of computable models of
T . One simple observation is that if a complete theory T has a computable
model then 0(ω) the ω-jump of the computable degree computes T . This
bound is sharp given by the model of arithmetic (ω; 0, S,+,×). However,
it is perhaps quite an ambitious goal to hope for results of general charac-
ter that say something reasonable and deep about computable models of T .
Therefore, one would like to study computable models of specific theories
T .

Ershov proves that all computably enumerable extensions of the theory
of trees have computable models [Ers73]. Lerman and Schmerl prove that
all ∆0

2-extensions of the theory of linear orders have computable models
[LS79]. Khisamiev in [Khi98] studies computable models of the theory of
Abelian groups. A series of results investigate computable models of ℵ1-
categorical theories [GHL+03] [KLLS07] [KNS97] [Kud80]. For example,
all models of a trivial strongly minimal theory with a computable model
are decidable in 0′′ [GHL+03]. The current paper contributes to this line of
research by considering computable models of ℵ0-categorical theories. Below
we give a brief background to known results about computable models of
ℵ0-categorical theories.

A complete theory T is ℵ0-categorical if all countable models of T are
isomorphic to each other. A structure A is ℵ0-categorical if its theory is
ℵ0-categorical. It is well-known that T is ℵ0-categorical if and only if for
each n the number of complete n-types of T is finite (e.g. see [Hod93]). If
T is ℵ0-categorical then T is decidable if and only if all of its models (and
hence exactly one model of T ) are decidable. Schmerl in [Sch78] proves
that for every computably enumerable degree X there exists a decidable ℵ0-
categorical theory T such that the type function of T is Turing equivalent
to X. In [LS79] Lerman and Schmerl show that if T is an arithmetical ℵ0-
categorical theory such that the set of all ∃n+2-sentences of T is a Σ0

n+1-set
for each n < ω, then T has a computable model. Knight extends this result
in [Kni94] to include non-arithmetical ℵ0-categorical theories. These results,
however, do not provide examples of computable ℵ0-categorical structures
of high arithmetical complexity. In [GK04] Khoussainov and Goncharov, for
every n ≥ 0 build ℵ0-categorical computable structures whose theories are
equivalent to 0(n), the n-jump of the computable degree. It has been a long
standing open question whether there exists a computable ℵ0-categorical
structure whose first order theory is not arithmetical. In this paper we solve
this problem by proving the following theorem:
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Theorem 1.1. There exists a computable ℵ0-categorical structure whose
first order theory is 1-equivalent to true first order arithmetic Th(ω; 0, S,+,×).

The rest of this paper is devoted to proving this theorem.

2. General Idea

We start by roughly describing the idea of the proof. Suppose we want
to code one bit of Σn information, say ϕ. We will define two n-graphs GΣ,n

and GΠ,n which are ℵ0-categorical and not elementary equivalent. By an
n-graph we mean a structure (V,E) where E is an n-ary relation on V such
that, for all tuples (x1, . . . , xn), if (x1, . . . , xn) ∈ E then all x1, . . . , xn are
pairwise distinct. Furthermore, for an n-graph G = (V,E) we often write
G(x̄) instead of E(x̄). Later, we will define a computable procedure that,
given a Σn-sentence ϕ, produces a computable n-graph Gϕ such that

Gϕ ∼=

{
GΣ,n if ϕ
GΠ,n if ¬ϕ.

We define the n-graphs GΣ,n and GΠ,n inductively. For n = 1, 2, 3 these
graphs are defined as follows. The 1-graph GΠ,1 is a unary relation that
holds of every element, and GΣ,1 is a unary relation that holds on an infinite
and co-infinite set of elements. For example, GΣ,1 can be defined by flipping
a coin randomly. The 2-graph GΠ,2 is the usual random directed graph. In
this random graph for each pair (a1, a2) we flip a coin to decide whether
GΠ,2(a1, a2) holds. The directed graph GΣ,2 has two types of elements.
The first type of elements are connected (via the edge of the graph) to all
other elements of the graph. The second type of elements are connected to
an infinite co-infinite set of elements in a random way. The same idea is
applied in defining the 3-graphs GΠ,3 and GΣ,3. In GΠ,3, for every element b
we have that the graph obtained by Gb(a1, a2) = GΠ,3(b, a1, a2) is isomorphic
to GΣ,2. Moreover, these 2-graphs Gb for the different b’s are, in a certain
sense, randomly independent. In the 3-graph GΣ,3, there is an infinite set
of elements b such that Gb is isomorphic to GΣ,2 and there is an infinite
set of elements b such that Gb is isomorphic to GΠ,2. Precise definitions of
n-graphs GΠ,n and GΣ,n for n > 3 are given in Section 4.

In order to ensure that these graphs are ℵ0-categorical, we will define
them inside of a random structure that we know is ℵ0-categorical. To be
able to decode the bit of information ϕ we will have that the sentence

ψn ≡ (∃x1)¬(∃x2 6= x1)¬...¬(∃xn 6= x1, ..., xn−1)¬G(x1, ...., xn).

holds in GΣ,n but not in GΠ,n. Decoding information will work in a nice
way. Let our sentence ϕ be ∃x1¬∃x2¬...¬∃xn¬R(x1, ...., xn), a Σ0

n-sentence
of arithmetic, written in a certain standard form that will be explained later.
Let q be a computable ‘random’ projection from n-tuples to n-tuples as we
will also define later, and let Gϕ be the computable n-graph defined by
Gϕ(x̄) = R(q(x̄)). The surprising fact is that the isomorphism type of the
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n-graph (ω,Gϕ) does not depend on what ϕ is, but only on whether ϕ holds.
Moreover, Gϕ is isomorphic to either GΣ,n or GΠ,n depending on whether
ϕ holds. Moreover, the connection between ϕ and ψn will be such that ϕ is
true in the arithmetic if and only if ψn is true in Gϕ.

Suppose now we want to code another bit of Σn information. We will now
consider the graphs GΣ,n(x1, ...., xn) or GΠ,n(x1, ...., xn) again, but now, we
will think of x1 as a member of ωn+1. The definitions of these new graphs
will be random enough, that all the m-tuples of elements for m ≤ n will
have the same m-type, as they will be part of (n + 1)-tuples satisfying all
the possible (n+ 1)-types. Furthermore, these new graphs will be randomly
independent from the n-graphs defined previously, and hence will not add
any new m-type for m ≤ n. This will allow as to define infinitely many
such graphs keeping the number of m-types finite, and hence preserving
ℵ0-categoricity.

3. Random string maps

We want to work with finite strings all whose entries are different. So we
need to develop a bit of notation to work with these objects. Recall that by
an n-graph we mean a structure (V,E) where E is an n-ary relation on V
such that, for all tuples (x1, . . . , xn), if (x1, . . . , xn) ∈ E then all x1, . . . , xn
are pairwise distinct.

We will use the following notation. We let V 〈n〉 be the set of n-tuples
from V all whose entries are different. So, an n-graph is nothing more than
a subset r ⊆ V 〈n〉. We also set

V ≤〈n〉 =
n⋃
i=1

V 〈i〉 and V <〈ω〉 =
ω⋃
i=1

V 〈i〉.

We call any pair of the form (V, p) where p : V <〈ω〉 → ω a string ω-map.
Also, we call pairs (V, r) where r : V <〈ω〉 → {0, 1} string 2-map.

We identify each string 2-map (V, r) with the relational structure with
infinitely many predicates (V ;P1, P2, . . .), where Pn(x1, . . . , xn) if and only
if r(x1, . . . , xn) = 1. Similarly, we identify each string ω-map (V, p) with
the following structure (V ;P in)i,n∈ω, where P in(x1, . . . , xn) if and only if
p(x1, . . . , xn) = i.

Now we want to consider random string maps and random string sets.
They are just the Fräıssé limits of the class of finite sting maps and of the
class of finite string sets. Recall that a structure is ultra-homogeneous if every
two tuples which satisfy the same quantifier free types are automorphic.

Theorem 3.1. Let α be either 2 or ω. Let (V, r) be a string α-map. The
following properties are equivalent:

(1) (V, r) is ultra-homogeneous and every finite string α-maps is isomor-
phic to a substructure of (V, r).
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(2) For each finite set V0 ⊆ V and function r0 : (V0 ∪ x)<〈ω〉 → α that
extends r �V <〈ω〉

0 there exists a ∈ V \ V0 such that for every σ in the
set (V0 ∪ {x})<〈ω〉 we have

r0(σ) = r(σx 7→a),

where r(σx7→a) is obtained by replacing a with x in the domain of r.
Furthermore, there is a structure unique up to isomorphism satisfying any
of these properties. For α = 2, this structure is ℵ0-categorical.

Proof. The proof of this theorem is standard (e.g. see [Hod93]). �

We single out the structures that are specified in the theorem above in
the following definition.

Definition 3.2. We call any structure that satisfies any of the conditions
of the theorem the random string α-map.

The next lemma says that each random string α-map is a computable
structure unique up to computable isomorphism.

Lemma 3.3. Let α be either 2 or ω. There exists a computable random
α-map. Moreover, any two computable random α-maps are isomorphic via
a computable map.

Proof. For the first part, one builds the α-map r by stages, finitely much
at a time, satisfying the requirements for (2) of the theorem above stage by
stage. The second part is a typical back and forth argument that can be
carried out effectively. �

We will see now how to use random string ω-maps to transform subset of
ω<ω into random string 2-maps. We need a couple definitions.

Definition 3.4. For a sting ω-map p, we set p̄ : V <〈ω〉 → ω<ω as follows:

p̄(a1a2...ak) = (p(a1), p(a1a2), . . . , p(a1a2...ak)).

We may abuse notation and write p̄(a1a2...ak) as p(a1)p(a1a2) . . . p(a1a2...ak).

By Lemma 3.3, if (V, p) is a random ω-string map then we can assume
that (V, r) is a computable structure, and hence we identify V with ω. With
this identification, the following observation is easy check.

Observation 3.5. If (V, p) is a random string ω-map then p̄ satisfies the
following properties:

(1) For every σ, |p̄(σ)| = |σ|;
(2) If σ ⊆ τ , then p̄(σ) ⊆ p̄(τ);
(3) Given σ0, σ1, τ1 such that n = |σ0|+ |τ1| = |σ0|+1+ |σ1|, and σ0 and

σ1 do not share any entry, there exist infinitely many a ∈ V such
that p̄(σ0aσ1) = p̄(σ0)τ1.
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(4) Given {(σi0, σi1, τ i1) : i = 1, . . . , s} such that σi0 and σi1 do not share
any entry and n = |σi0| + |τ i1| = |σi0| + 1 + |σi1| for all i = 1, . . . , s,
there exist infinitely many a ∈ V such that for each i = 1, ..., s we
have p̄(σi0aσ

i
1) = p̄(σi0)τ i1.

Definition 3.6. A map q : V <ω → {0, 1} is diverse if for every σ ∈ V <ω

there exist k0 and k1 such that q(σk0) = 0 and q(σk1) = 1.

Diverse maps are not necessarily string 2-maps. However, for a diverse
map q and string ω-map p, the composition q ◦ p̄ is a string 2-map.

Lemma 3.7. If (V, p) is a random string ω-map and q is a diverse map,
then q ◦ p̄ is a random string 2-map.

Proof. Let r = q◦ p̄. We show that Condition (2) of Theorem 3.1 is satisfied.
Let V0 ⊂ ω be a finite set and let r0 : (V0 ∪ x)<〈ω〉 → {0, 1} be a function
extending r �V <〈ω〉

0 . We need to show that there exists an element a ∈ V \V0

such that for every σ ∈ (V0 ∪ x)<〈ω〉 we have

r0(σ) = r(σx 7→a).

For each σ ∈ (V0 ∪ {x})<〈ω〉, write σ as σ0xσ1. Since q is diverse, for the
given σ there exists τσ of length |σ1| + 1 such that q(p(σ0)τσ) = r0(σ).
Note that the set (V0 ∪ {x})<〈ω〉 is finite. Now, from the last part of the
observation above, we have that there exist infinitely many a such that
p(σx 7→a) = p(σ0)τσ. Hence, Condition (2) of Theorem 3.1 is satisfied. �

4. The coding structures

In this section we turn our interest to defining the n-graphs GΣ,n and
GΠ,n as suggested in Section 2. Our definition will proceed by induction
using the random string 2-map.

Definition 4.1. Let (ω, r) be the random string 2-map. For each m ≤ n

with 1 ≤ m, and each b̄ ∈ ωn−m we define two m-graphs GΣ,m

b̄
and GΠ,m

b̄

inductively as follows. When m = 1, |b̄| = n− 1, and |a| = 1, we let

GΣ,1

b̄
(a) = r(b̄a) and GΠ,1

b̄
(a) = 1.

Let

GΣ,m

b̄
(a1, ..., am) =

{
GΣ,m−1

b̄a1
(a2, ..., am) if r(b̄a1) = 1

GΠ,m−1

b̄a1
(a2, ..., am) if r(b̄a1) = 0

GΠ,m

b̄
(a1, ..., am) = GΣ,m−1

b̄a1
(a2, ..., am).

The isomorphism types of the structures GΣ,n

b̄
and GΠ,n

b̄
do not depend

on the parameter b̄. In particular, they are all isomorphic to GΣ,n
〈〉 and

GΠ,n
〈〉 , respectively, where 〈〉 is the empty tuple. Also, since there is only one

random string 2-map up to isomorphism, the structures GΣ,n

b̄
and GΠ,n

b̄
up to
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isomorphism do not depend on the presentation of r. However, the particular
presentations of GΣ,n

b̄
and GΠ,n

b̄
do depend on the particular presentation of

r. Note that the n-graphs GΣ,n and GΠ,n obtained for the cases when
n = 1, 2, 3 are exactly as in Section 2. We now prove the following theorem.

Theorem 4.2. The n-graphs GΣ,n and GΠ,n have the following properties:
(1) The n-graphs GΣ,n and GΠ,n are ℵ0-categorical.
(2) There is a ∃n formula ψn in the language of n-graphs which is true

in GΣ,n but false in GΠ,n.
(3) There is a uniform computable procedure that given a Σ0

n sentence
ϕ in the language of arithmetic, builds an n graph Gϕ such that

Gϕ ∼=

{
GΣ,n if ϕ holds
GΠ,n if ¬ϕ holds.

Proof. For Part 1 note that bothGΣ,n andGΠ,n are definable in the structure
(ω, r) which is ℵ0-categorical. This implies GΣ,n and GΠ,n are also ℵ0-
categorical because the number of k-types in each of these structures is at
most the number of k-types in (ω, r).

For Part 2, the sentence distinguishing GΣ,n and GΠ,n is the following:

ψn ≡ (∃x1)¬(∃x2 6= x1)¬...¬(∃xn 6= x1, ..., xn−1)¬G(x1, ...., xn).

When n = 1 the sentence says that there is an element outside of the unary
relation G. This is satisfied by GΣ,1 and falsified by GΠ,1. When n = 2, the
statements says there is an element that is connected to all other elements
of the structure. This is satisfied by GΣ,2 and falsified by GΠ,2. The rest is
proved by induction on n. Suppose G is isomorphic to either GΣ,n or GΠ,n.
Then we have that G ∼= GΣ,n if and only if there exists x such that the
graph Gx defined by Gx(ā) = G(x, ā) is isomorphic to GΠ,n−1.

The last part of the theorem can be proved in several ways. One way of
proving this would be to show that GΣ,n is n-back-and-forth below GΠ,n and
that these structures are n-friendly, and then use Ash and Knight’s theorem
[AK00] (see Thm 18.6). These would require some combinatorial work and
notation needed to apply Ash and Knight’s theorem. Instead, we give a
direct construction of Gϕ which is interesting in its own right.

Consider a Σ0
n formula ϕ. Write ϕ as ∃x1¬∃x2¬...¬∃xn¬Rϕ(x1, ..., xn).

Definition 4.3. Let ϕi(x1, ..., xn−i) be ∃xn−i+1¬...¬∃xn¬Rϕ(x1, ..., xn). We
say that ϕ is in semi-diverse form if for each i and each ā of length n− i− 1
there exists some b such that ϕi(ā, b) holds.

Thus, for the Σ0
n formula ϕ, the definition above states that ϕi(x1, ..., xn−i)

is a Σ0
i sub-formula of ϕ obtained by removing the first (n− i) quantifiers,

and hence it has (n− i) free variables. Furthermore, we have that ϕ ≡ ϕn,
ϕi+1 ≡ ∃xn−i¬ϕi and ϕ0 ≡ R(x1, . . . , xn).
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Observation 4.4. Every Σn formula ϕ is equivalent to one in semi-diverse
form. This can be done by steps starting with i = n − 1 and going down
to i = 0: at each step one modifies the formula ϕi(b̄a) for some a without
changing the value of ϕi+1(b̄). It is only necessary to make a change when
∀a¬ϕi(b̄a), but in this case we have ϕi+1(b̄) ≡ ∃xn−i¬ϕi(b̄xn−i) even if we
change ϕi(b̄a) for one value of a.

An intuition for why we need formulas in semi-diverse form is the fol-
lowing. In the graphs GΣ,m, there are two types of elements, the ones for
which the rest of the graph is GΠ,(m−1), and the ones for which the rest of
the graph is GΣ,(m−1). Therefore we would like similar things to happen
with the formulas ϕi. Namely, if this existential formula is true, then we
want it to have some witnesses, but at the same time we also want to have
some elements which are not witnesses. This intuition is made precise in
the reasoning below that constitutes the proof of Part (3) of the theorem.

Definition 4.5. Let p be a random string ω-map. Given a Σn formula ϕ,
written in semi-diverse form as ∃x1¬∃x2¬...¬∃xn¬Rϕ(x1, ..., xn), we define

Gϕ = Rϕ ◦ p̄,

where p̄ is defined in Definition 3.4.

Clearly Gϕ is a computable n-graph and the definition is uniform on ϕ.
It is not hard to prove that Gϕ |= ψn if and only if ϕ is a true sentence

of the arithmetic. To prove this one uses an induction on i to show that the
statement ϕi(p̄(b̄)) is true if and only if

Gϕ |= (∃xn−i+1 6= b1, ..., bn−i)¬...¬(∃xn 6= b1, ..., bn−i, xn−i+1, ..., xn−1)

¬G(b̄, xn−i+1, ...., xn).

Indeed, when i = 0 then the statement is simply the definition of Gϕ. For
the inductive case one uses the fact that p is random and hence it is onto
on every coordinate. What is left to prove is that Gϕ satisfies Part (3) of
the theorem.

Let Qϕ : ω<ω → {0, 1} be defined as follows. For a non-empty tuple
b̄a ∈ ω≤n with |b̄a| = i, let

Qϕ(b̄a) =

{
ϕi(b̄a) whenever a 6= 0 or ∃x¬ϕi(b̄x),
0 if a = 0 and ∀xϕi(b̄x).

For b̄a ∈ ω>n, define Qϕ(b̄a) in any way so that Qϕ is diverse. Also, note
that this makes Qϕ diverse because ϕ is chosen to be in a semi-diverse form.
Now we apply Lemma 3.7, and have the following statement:

Lemma 4.6. The mapping Qϕ ◦ p is a random string 2-map.

Let r = Q ◦ p and consider GΣ,m

b̄
and GΠ,m

b̄
as in Definition 4.1.
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The next lemma establishes the connection between GΣ,m

b̄
, GΠ,m

b̄
, and Gϕ.

For the lemma, we need another bit of notation. For every b̄ of length n− i
and ā of length i, we set Gϕ

b̄
(ā) = Gϕ(b̄ā).

Lemma 4.7. For every b̄ of length n− i and ā of length i, we have:

Gϕ
b̄
(ā) =

{
GΣ,n−i
b̄

(ā) if ϕi(p̄(b̄))
GΠ,n−i
b̄

(ā) if ¬ϕi(p̄(b̄)).

So, in particular when i = 0, Part (3) of the Theorem is satisfied.

The proof is by reverse induction on i. Suppose i = n− 1. If ϕi(p̄(b̄)) ≡
∃xn¬R(p̄(b̄)xn) holds, then Gϕ

b̄
(a) = r(b̄a) because Qϕ(b̄a) = R(b̄a). There-

fore, Gϕ
b̄

= GΣ,1

b̄
. Otherwise, if ¬ϕi(p̄(b̄)) ≡ ∀xnR(p̄(b̄)xn) holds, then Gb̄

is the whole universe and hence it is isomorphic to GΠ,1. For the induction
step we proceed as follows. If ϕi−1(p̄(b̄)) ≡ ∃xn−i+1¬ϕi(p̄(b̄)xn−i+1) holds,
then for every a, Qϕ(b̄a) = 1 if and only if ϕi(b̄a), and hence

Gϕ
b̄
(aā) = Gϕ

b̄a
(ā)

=

{
GΣ,n−i
b̄a

(ā) if ϕi(p̄(b̄a))
GΠ,n−i
b̄a

(ā) if ¬ϕi(p̄(b̄a))
by induction hypothesis

=

{
GΣ,n−i
b̄a

(ā) if r(b̄a) = 1
GΠ,n−i
b̄a

(ā) if r(b̄a) = 0
because Qϕ(b̄a) = ϕi(b̄a)

= GΣ,n−i+1

b̄
(aā) by definition of GΣ,n−i+1

b̄
.

When ϕi−1(p̄(b̄)) ≡ ∃xn−i+1¬ϕi(p̄(b̄)xn−i+1) does not hold, we have that for
every a, ϕi(p̄(b̄a)) holds, and hence

Gb̄(aā) = Gb̄a(ā)

=

{
GΣ,n−i
b̄a

(ā) if ϕi(p̄(b̄a))
GΠ,n−i
b̄a

(ā) if ¬ϕi(p̄(b̄a))
by induction hypothesis

= GΣ,n−i
b̄a

(ā) because ∀aϕi(p̄(b̄a))
= GΠ,n−i+1

b̄
(aā) by definition of GΠ,n−i+1

b̄
.

This concludes the proof of the lemma, and hence of the theorem. �

5. Coding many bits

Now we want to encode infinitely many bits of information into our struc-
tures, each bit being a Σn-sentence of the arithmetic for various n. So we
will use infinitely many graphs. Since we do not want the different graphs
to have any interaction between each other we will use a variation of the
graphs defined in the previous section.

Definition 5.1. Let (ω, r) be a random string 2-map and l, n,m ∈ ω with
1 ≤ m ≤ n. For each b̄ ∈ ωl+n−m we define two m-graphs GΣ,l,m

b̄
and GΠ,l,m

b̄
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inductively as follows. When m = 1, |b̄| = l + n− 1, and |ā| = 1, set:

GΣ,1

b̄
(a) = r(b̄a) and GΠ,1

b̄
(a) = 1.

When 1 < m < n, |b̄| = l + n−m, and |ā| = m, we let

GΣ,l,m

b̄
(a1, ..., am) =

{
GΣ,l,m−1

b̄a1
(a2, ..., am) if r(b̄a1) = 1

GΠ,l,m−1

b̄a1
(a2, ..., am) if r(b̄a1) = 0

GΠ,l,m

b̄
(a1, ..., am) = GΣ,m−1

b̄a1
(a2, ..., am).

Finally, we define (l + n)-graphs:

GΣ,l,n(a1, ..., al+n) =

{
GΣ,l,n−1
a1...al+1(al+2, ..., al+n) if r(a1...al+1) = 1

GΠ,l,n−1
a1...al+1(al+2, ..., al+n) if r(a1...al+1) = 0

GΠ,l,n(a1, ..., al+n) = GΣ,n−1
a1...al+1

(al+2, ..., al+n).

Note that the definition of GΣ,l,n(a1, ..., al+n) is essentially the same as the
one for GΣ,n(a1, ..., an) if we treat the first l+ 1 coordinates as a single one.
In particular, the structure GΣ,0,n(a1, ..., an) is the same as GΣ,n(a1, ..., an).
We now outline the proof of the following theorem that simply extends
Theorem 4.2.

Theorem 5.2. The (l+n)-graphs GΣ,l,n(a1, ..., al+n) and GΠ,l,n(a1, ..., al+n)
have the following properties:

(1) The structures (ω,GΣ,l,n) and (ω,GΠ,l,n) are ℵ0-categorical.
(2) There is a ∃n formula ψl,n in the language of (l+n)-graphs which is

true in (ω,GΣ,l,n) but false in (ω,GΠ,l,n). These formulas are:

ψl,n ≡ (∃x1, ..., xl+1 all different)

¬(∃xl+2 6= x1, .., xl+1)¬...¬(∃xl+n 6= x1, ..., xn+l−1)¬G(x1, ...., xn+l).

(3) There is a uniform computable procedure that given a Σ0
n sentence

ϕ in the language of arithmetic, builds an n graph Gϕ,l such that

Gϕ,l ∼=

{
GΣ,l,n if ϕ holds
GΠ,l,n if ¬ϕ holds.

Proof. The first two parts of the theorem are proved almost in exactly the
same way as the first two parts of Theorem 4.2 in the previous section.

For Part (3) we need to define Gϕ,l with a slight modification of Gϕ. Sup-
pose ϕ is written in semi-diverse form as ∃x1¬∃x2¬...¬∃xn¬Rϕ(x1, ..., xn).
Let

Rϕ,l(x1, ...., xl+n) = Rϕ(〈x1, ..., xl+1〉, xl+2, ..., xl+n)
where 〈·, ..., ·〉 is a computable bijection ωl+1 → ω. We now define:

Gϕ,l = Rϕ,l ◦ p̄.
To show that Gϕ,l is the desired structure that satisfy Part (3) of the

theorem we proceed as follows. First, we consider the mapping Qϕ as in the
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previous section. Second, we modify Qϕ in the following way. For c̄ ∈ ω<ω
with l < |c̄| ≤ l + n, write c̄ as b̄ā where b̄ ∈ ωl+1, and ā ∈ ω<n and define
Qϕ,l(b̄ā) = Qϕ(〈b̄〉ā). For c̄ ∈ ω<ω with either l ≥ |c̄| or l + n > |c̄| define
Qϕ,l in any way that makes it diverse.

As in the previous section the map Q ◦ p̄ is a random string 2-map. An
analogous version of Lemma 4.7 is now proved in a similar matter. �

6. Putting the n-Graphs together

This is the last step of the proof of our main theorem. The main idea
is to put the n-graphs built in the previous sections into one computable
structure which is defined using the random 2-map.

Lett S ⊆ ω be a set which is one-to-one equivalent with 0(ω). Suppose
that we have a list of sentences of the arithmetic ϕ1, ϕ2, ..., where each ϕi is
Σi-sentence, such that for all i ≥ 1 we have i ∈ S if and only if ϕi holds.

Definition 6.1. Let (ω, r) be a random string 2-map. Define the following
structure

AS = (ω,H1, H2...),
where for each i, Hi is the (1 + 2 + ...+ i)-ary relation

Hi =

{
GΣ,li,i if i ∈ S
GΠ,li,i if i 6∈ S.

where li = 1 + 2 + ...+ (i− 1).

Lemma 6.2. The structure AS satisfies the following properties:
(1) The structure is ℵ0-categorical.
(2) The theory of the structure is one-to-one reducible to S.
(3) The structure is computable.

The first part of the lemma is obvious since AS is being defined from the
structure (ω, r) which is ℵ0-categorical by Theorem 3.1.

The second part follows from the use of the formulas ψl,n defined in the
previous section (Theorem 5.2). Indeed, one can see that S is one-to-one
reducible to the first order theory of the structure AS since i ∈ S if and only
if (ω,Hi) |= ψli,i.

For the last part, one notices that given i, l the structures Gϕi,l can be
constructed effectively. Therefore the structure

(ω,Gϕ1,0, Gϕ2,1, Gϕ3,3, Gϕ4,6, ....)

must be computable. This structure is isomorphic to AS . More explicitly,
the structure AS can be constructed as follows. Define Q : ω<ω → {0, 1} by
letting Q(c̄) = Qϕi,li(c̄) where i is such that li < |c̄| ≤ li + i. The mapping
Q is diverse. Hence, the mapping r = Q ◦ p̄ is a random string 2-map.
Consider the graphs GΣ,li,i and GΠ,li,i using this r. The structure AS is
then (ω,Gϕ1,0, Gϕ2,1, Gϕ3,3, Gϕ4,6, ....).
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