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ON THE PI-ONE-ONE SEPARATION PRINCIPLE

ANTONIO MONTALBÁN

Abstract. We study the proof theoretic strength of the Π1
1-separation axiom scheme.

We show that Π1
1-separation lies strictly in between the ∆1

1-comprehension and Σ1
1-

choice axiom schemes over RCA0.

1. Introduction

In this paper we analyze the strength of a particular subsystem of second order
arithmetic. The topic is closely related to the program of Reverse Mathematics, which is
the area of logic that studies the question of which subsystems of second order arithmetic
are sufficient and necessary to prove theorems in classical mathematics. ([Sim99] is the
standard reference for the subject.) A lot of work has been done on this program in the
last couple of decades.

We study the following natural axiom scheme of second order arithmetic that we call
Π1

1-separation:

Π1
1-SEP : 6 ∃n ∈ N (ϕ(n) & ψ(n)) ⇒ ∃Z ⊆ N ∀n ∈ N (ϕ(n)⇒ n ∈ Z & ψ(n)⇒ n 6∈ Z),

where ϕ and ψ are Π1
1 formulas. In general, when ϕ and ψ are in some class of formulas

Γ, we get the Γ-SEP axiom scheme. We use Π1
1-SEP0 to denote the system RCA0+Π1

1-
SEP. We call the set Z in the statement of Π1

1-SEP, a separator of ϕ and ψ.
Many separation statements have been studied in the context of reverse mathemat-

ics, computability theory and descriptive set theory. For example, in the context of
computability theory, we know that a separator for Π0

1 formulas can always be found
to be computable. For Σ1

0 formulas, we need PA degrees to compute separators, i.e.
degrees which can compute completions of Peano Arithmetic. Σ1

1 formulas can always
be separated by hyperarithmetic sets, but this is not the case for Π1

1 formulas. However,
disjoint Π1

1 formulas can always be separated by a hyperarithmetically low set. All these
results have their counter part in Reverse Mathematics. See Table ?? below.

However, no equivalence of this sort has been found for Π1
1-SEP0. It will follow from

our results that Π1
1-SEP0 is not equivalent to any other well-known subsystem of second

order arithmetic. It is not hard to show that Π1
1-SEP is in between two well-known

systems of second order arithmetic, namely ∆1
1-comprehension and Σ1

1-choice:

∆1
1-CA : ∀n ∈ N (ϕ(n)⇔ ¬ψ(n))⇒ ∃Z ⊆ N ∀n ∈ N (n ∈ Z ⇔ ϕ(n)),

Σ1
1-AC : ∀n ∈ N ∃X ⊆ N(ϕ(n,X))⇒ ∃Z ⊆ N2 ∀n ∈ N (ϕ(n, Z [n])),

The author would like to thank Kazuyuki Tanaka for pointing out that Π1
1-SEP0 is a statement

of hyperarithmetic analysis and motivating the author to work on this question. This research was
partially supported by NSF grant DMS-0600824.
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Γ Γ-SEP0 reference in [Sim99]

Π0
1 RCA0 Exercise IV.4.8

Σ0
1 WKL0 Lemma IV.4.4

Π0
n, n ≥ 2 ACA0

Σ1
1 ATR0 Theorem V.5.1

Π1
2 ∆1

2-CA0 Exercise VII.6.13
Σ1

2 Π1
2-CA0 Exercise VII.6.14

Table 1. The second column lists the systems equivalent to Γ-SEP over
RCA0. To prove the last two rows, use the Π1

1-uniformization principle
[Sim99, Lemma VI.2.1].

where ϕ and ψ are Σ1
1 formulas, and Z [n] = {m : 〈n,m〉 ∈ Z}. Together with RCA0, these

axioms schemes form the systems ∆1
1-CA0 and Σ1

1-AC0. The latter of these implications
appears in [Sim99, Exercise V.5.7]. For the former implication, note that ∆1

1-CA is a
particular case of Π1

1-SEP.
The main result of this paper is that Π1

1-SEP0 lies strictly in between ∆1
1-CA0 and

Σ1
1-AC0. We will show that there is an ω-model of Π1

1-SEP0 where ∆1
1-CA does not hold,

and an ω-model of ∆1
1-CA0 where Π1

1-SEP does not hold.

Theories of hyperarithmetic analysis. Consider HYP, the ω-model of second order arith-
metic, whose second order objects are the hyperarithmetic sets. Let ϕ and ψ be Π1

1

formulas. By the hyperarithmetic quantifier theorem of Spector [Spe60] and Gandy
[Gan60] (see [Sim99, Theorem VII.3.2]), we have that the sets {n : ϕHYP(n)} and
{n : ψHYP(n)} are Σ1

1. Therefore, if these sets are disjoint, there exists a hyperarith-
metic set Z which separates them. It follows that

HYP |= Π1
1-SEP0.

Moreover, Π1
1-SEP0 is what we call a theory of hyperarithmetic analysis.

Definition 1.1. A set of sentences of second order arithmetic S is a theory of hyper-
arithmetic analysis if for every Y ⊆ ω, HYP(Y ) is the least ω-model of S containing
Y .

Examples of known theories of hyperarithmetic analysis are the following schemes:
Σ1

1-dependent choice (Σ1
1-DC0), Σ1

1-choice (Σ1
1-AC0), ∆1

1-comprehension (∆1
1-CA0), and

weak-Σ1
1-choice (weak-Σ1

1-AC0). The unrelativized versions of these results were proved
by Harrison [Har68], Kreisel [Kre62], [Kle59] and [Sim99, Theorem VIII.4.16]. (See
[Sim99, Section VII.6] for definitions of these statements.) The easier way to see that
Π1

1-SEP0 is a theory of hyperarithmetic analysis is using the fact that it is in between
Σ1

1-AC0 and ∆1
1-CA0. As listed above, these four statements go from strongest to weakest,

they all imply ACA0, and, except for Σ1
1-DC0, they are implied by ATR0 (see [Sim99,

VIII.3 and VIII.4]). Moreover, the implications Σ1
1-DC0⇒Σ1

1-AC0, Σ1
1-AC0⇒∆1

1-CA0,
and ∆1

1-CA0⇒weak-Σ1
1-AC0 cannot be reversed as proved by Friedman [Fri67], Steel

[Ste78] and van Wesep [Van77], respectively.
In [Mon06], the author provides the first example of a theorem in classical mathe-

matics that is a statement of hyperarithmetic analysis. This is a theorem that has to
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do with indecomposable linear orderings and was proved by Jullien in [Jul69]. It is
still unknown whether this statement about linear ordering is equivalent to ∆1

1-CA0 or
not. In [Mon06], the author also introduces five other statements of hyperarithmetic
analysis, four of which are about finitely terminating games (clopen games) and the
other one is about Turing jump iterations. The latter one, that we call JI, was very
useful to prove that certain ω-models are closed under hyperarithmetic reducibility. JI
says that for every set X and every ordinal α, if we have that ∀β < α(X(β) exists), then
X(α) also exists, where X(β) is the βth iteration of the Turing jump of X.

Σ1
1-DC0

$,PPPPPP
PPPPPP

Σ1
1-AC0

$,QQQQQQ
QQQQQQ

× Friedman [Fri67]
mm

Π1
1-SEP0

$,QQQQQQ
QQQQQQ

×
Theorem 2.1

^^

∆1
1-CA0

%-SSSSSSS
SSSSSSS

×
Steel [Ste78]

oo

×
Theorem 3.1

^^

weak Σ1
1-AC0

$,RRRRRRRR

RRRRRRRR

×van Wesep [Van77]
nn

JI.

×
Montalbán [Mon06]ii

As opposed to the “big five systems”, namely RCA0, WKL0, ACA0, ATR0 and Π1
1-ACA0,

theories of hyperarithmetic analysis seem to have a very unstable behavior: Small mod-
ifications of theories of hyperarithmetic analysis give, in most of the cases, inequivalent
theories.

The proofs. Our main tool is Steel’s forcing with tagged trees [Ste78]. Steel used this
forcing to prove that Σ1

1-AC0 is strictly stronger than ∆1
1-CA0. Then, van Wesep [Van77]

used it to prove that ∆1
1-CA0 is strictly stronger than weak Σ1

1-AC0, and the author
[Mon06] used it to prove that weak Σ1

1-AC0 is strictly stronger than JI.
To prove that Σ1

1-AC is strictly stronger than Π1
1-SEP, we will use the same model M∞

that Steel constructed in [Ste78, Section 5], which satisfies ∆1
1-CA but not Σ1

1-AC. All we
do is to modify the proof that M∞ |=∆1

1-CA, to get that M∞ |=Π1
1-SEP. A modification

of this model will be used to prove that Π1
1-SEP is strictly stronger than ∆1

1-CA.
For completeness we include the whole definition of the forcing notion and of these

models. Familiarity with [Ste78] is not assumed. Our presentation is different than
Steel’s [Ste78], although some parts of our presentation are exactly the same. He works
with models of set theory and takes the intersection with P(ω) when he wants to
consider models of second order arithmetic. We directly build ω-models of second order
arithmetic, which is probably more natural for the reverse mathematics audience.

Notation. A tree is a downward closed subset of ω<ω, the set of finite strings of natural
numbers. Given a tree T , to each node s ∈ T we assign its well founded rank |s|T which
is either an ordinal or ∞ and satisfies |s|T = sup{|t|T + 1 : t ∈ T, s ( t}. So |s|T = ∞
exactly when s is not in the well-founded part of T . We will use F ⊂

f
ω to say that F

is a finite subset of ω.
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When we write formulas of second order arithmetic, we will use lower case roman
characters x, y, z, n,m, d for variables that represent numbers and upper case roman
characters X, Y, Z,D for sets of numbers. An ω-model of second order arithmetic is one
whose first order part is the standard model of the natural numbers, namely ω.

Our forcing language will consist of computable infinitary formulas of a certain kind.
A computable infinitary Σ0

0 or Π0
0 formula is just an open formula. Given a computable

ordinal α, a computable infinitary Σ0
α formula is given by a (possibly infinite) disjunction

of a c.e. set of formulas ∃x̄ψi(x̄), where ψi is computable infinitary Π0
β for some β < α.

A computable infinitary Π0
α formula is given by a (possibly infinite) conjunction of a

c.e. set of formulas ∀x̄ψi(x̄), where ψi is computable infinitary Σ0
β for some β < α. The

class of formulas Σ0
α(Y1, ..., Yk) is defined analogously but allowing Y1,...,Yk to appear as

parameters. We say that X ⊆ N is a Σ0
α(Y ) set if it can be defined by a Σ0

α(Y ) formula.
See [AK00, Chapter 7] for more background on computable infinitary formulas.

2. Π1
1-SEP0 does not imply Σ1

1-AC0

This section is dedicated to prove the following theorem.

Theorem 2.1. There is an ω-model of Π1
1-SEP0 which is not a model of Σ1

1-AC0. There-
fore, Π1

1-SEP0 does not imply Σ1
1-AC0.

In [Ste78, Section 5], Steel defined an ω-model M∞ ∩ P (ω) and proved it is a model
of ∆1

1-CA0, but not of Σ1
1-AC0. We will prove that it is also a model of Π1

1-SEP0. We
will change Steel’s notation and use M∞ to refer to what Steel called M∞ ∩ P (ω). The
definition of M∞ is given below. Our presentation is slightly different than Steel’s, as
it is done in the context of ω-models of second order arithmetic, rather than models of
set theory. But the construction is essentially the same as Steel’s, except for Subsection
2.7 which contains the new lemmas necessary to show that M∞ |=Π1

1-SEP0.

2.1. The model M∞. To define M∞ we define a generic object

G = 〈TG, {αGi : i ∈ ω}, hG〉,
where TG is a tree on ω; {αGi : i ∈ ω} is a set of paths though TG; and hG : TG →
ωCK1 ∪ {∞} is the well founded rank function for TG. In other words, hG(s) = |s|TG .
We use the function hG to ensure that the tree TG looks well-founded in M∞, and to
prove properties of the forcing notion.

For each F ⊂
f
ω, we let MF be the class of sets which are definable by a computable

infinitary formula that may use TG and αGi for i ∈ F as parameters. In other words,

MF = {X ⊆ ω : ∃µ < ωCK1 (X ∈ Σ0
µ(TG, αGi : i ∈ F ))},

Or equivalently,
MF = P(ω) ∩ LωCK1

({TG} ∪ {αGi : i ∈ F}),
where LωCK1

({TG}∪{αGi : i ∈ F}) is the set of Gödel-constructible sets up to level ωCK1 ,

starting from {TG}∪ {αGi : i ∈ F}. (See [Ste78, page 57] for a definition of Lµ(A).) We
will show in Lemma 2.9 that MF is closed under hyperarithmetic reduction. Finally, let

M∞ =
⋃
F⊂

f
ω

MF .
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We will show that for each F ⊂
f
ω, {αGi : i ∈ F} is the set of paths though TG which

belong to MF [Ste78, Lemma 7]. That is, M∞∩ [TG] = {αGi : i ∈ ω}. It will then follow
that the sequence 〈αGi : i ∈ ω〉 does not belong to M∞. This is the fact used to show
that M∞ 6|=Σ1

1-AC0.
For notational convenience, given µ < ωCK1 , let us also define

Mµ,F = {X ⊆ ω : ∃ν < µ (X is Σ0
ν(T

G, αGi : i ∈ F ))} & Mµ,∞ =
⋃
F⊂

f
ω

Mµ,F .

Let us also name the elements of M∞. Let HF,1 = TG⊕
⊕

i∈F α
G
i . Given µ < ωCK1 , and

e ∈ ω, let

HF,µ =
⊕

ν<µ,e∈ω

Sν,F,e and Sµ,F,e = WHF,µ
e

where W Y
e is the eth c.e. set relative to an oracle Y .

It is not hard to see that the set Sµ,F,e is Σ0
µ(TG, αGi : i ∈ F ) and that Mµ,F = {Sν,F,e :

e ∈ ω, ν < µ}.

2.2. The forcing notion. The forcing conditions are finite approximations to 〈TG, {αGi :
i ∈ ω}, hG〉 in a standard way. The set of forcing conditions P , defined in [Ste78, page
68], consists of the triplets p = 〈T p, fp, hp〉 where

(1) T p is a finite tree;
(2) fp is a nonempty finite function, dom fp ⊂

f
ω, and ran fp ⊆ T p;

(3) hp : T p → ωCK1 ∪ {∞} so that
(a) ∀s, t ∈ T p(s ( t⇒ hp(s) > hp(t)),
(b) ∀s ∈ T p(∃i(s ⊆ fp(i))⇒ hp(s) =∞), and
(c) hp(∅) =∞.

By fiat, ∞ >∞ and ∞ > ωCK1 .
For p, q ∈ P define p ≤ q iff

(4) T q ⊆ T p;
(5) (a) dom f q ⊆ dom fp;

(b) ∀i ∈ dom f q(f q(i) ⊆ fp(i));
(c) ∀i ∈ dom f q(6 ∃s ∈ T q(f q(i) ⊂ s ⊆ fp(i)));
(d) ∀i ∈ dom fp r dom f q∀s ⊆ fp(i)(s 6= ∅ ⇒ s 6∈ T q)

(6) hq = hp �T q.

Let P = (P,≤) and G be a sufficiently P-generic filter (generic enough to force all
the Σ over LF formulas of the forcing language defined below). Define TG =

⋃
p∈G T

p,

αGi =
⋃
p∈G f

p(i) for i ∈ ω, and hG =
⋃
p∈G h

p.

Conditions (5c) and (5d) above are a bit subtle, and are the only ones that could
be unexpected. They are necessary to prove Lemma 2.5. Part (5c) implies that if
p ∈ G and fp(i) is defined, then fp(i) is the largest initial segment of αGi which is in
T p. Part (5d), that is not mentioned in [Ste78] but needs to be added, says that if
p ∈ G and fp(i) is not defined, then no initial segment of αGi is in T p, except for the
empty string. The essential reason to include this clause, that will become clearer later,
is that if p ∈ G and s ∈ T p, s 6= ∅, then whether or not there exists a path through
TG in M∞ extending s depends only on whether ∃i ∈ dom fp(s ⊆ fp(i)) or not, and
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is independent of the values of hp. Conditions (5b), (5c) and (5d) can be stated as
{(i, s) ∈ ω × ω<ω : ∅ ⊂ s ⊆ f q(i)} = {(i, s) ∈ ω × ω<ω : ∅ ⊂ s ⊆ fp(i)} ∩ ω × T q.

2.3. The forcing language. The forcing language is a modification of L∞ defined in
[Ste78, page 58] into a language adequate for second order arithmetic. The language L∞
is appropriate to describe M∞, and, for each F ⊂

f
ω, the language LF is appropriate

to describe MF .
The symbols of LF are: ∈, =, +, × ≤; constants for natural numbers 0, 1,...; number

variables n,m, x, y, z, unranked set variables XH , YH , ... for H ⊆ F , ranked set variables
Xλ
H , X

λ
H , ... for H ⊆ F and λ < ωCK1 ; connectives ∧, ¬; quantifier ∀ for both number

and set variables. A class CF of constants intended to name the elements of MF is
defined by recursion:

• CF
0 = {T,αi, i ∈ F};

• CF
ν+1 = CF

ν ∪ {Sν,F,e : e ∈ ω} ∪ {Hν,F};
• CF

λ =
⋃
µ<λC

F
µ for λ limit;

• CF =
⋃
µ<ωCK1

CF
µ .

Each constant in CF is also a symbol of LF . Let C =
⋃
F⊂

f
ω C

F .

The language L∞, in addition to the symbols of
⋃
F⊂

f
ω LF , has ranked set variables

Xν , Y ν , ... for ν < ωCK1 and unranked set variables X, Y, .... We call a variable F -
restricted iff it is subscripted G for some G ⊆ F ; a formula of L∞ is F -restricted iff all
its bounded variables are F -restricted.

The semantics of the various LF and of L∞ is straightforward. Simply remember
that T denotes T , αi denotes αGi , Sν,F,e denotes Sν,F,e; X

ν
F ranges over Mν,F , Xν ranges

over Mν,∞, XF ranges over MF and X ranges over M∞.
A formula of L∞ is ranked if all its bounded variables are ranked. If ψ is a formula of
L∞, o(ψ) is the least upper bound of {ν : ν is the superscript of a quantified variable
in ψ} ∪ {ν + 1 : some constant of the form Sν,F,e or Hν,F occurs in ψ}. If c ∈ C, let
o(c) = o(∅ ∈ c). If ψ ∈ L∞, let

rk(ψ) = ωCK1 · u(ψ) + ω2 · o(ψ) + ω · r(ψ) + n(ψ),

where u(ψ) is the number of unranked quantifiers in ψ, r(ψ) is the number of ranked
quantifiers, and n(ψ) is the number of connectives.

2.4. The forcing relation. The definition of the forcing relation is also standard. It
can be proved by transfinite induction on the rank of formulas that p 
 ψ if and only if
whenever G is a sufficiently generic filter, p ∈ G andM∞ is the model defined from G,
we have that M∞ |= ψ. This property is what motivated the definition of p 
 σ ∈ T
below.

Definition 2.2. The forcing relation for formulas of L∞ is defined as usual:

(1) p 
 ψ if ψ holds when ψ is a quantifier free formula of arithmetic;
(2) p 
 σ ∈ T if either |σ| < 2, σ ∈ T p, or σ− ∈ T p and hp(σ−) ≥ 1;
(3) p 
 〈n,m〉 ∈ αi if i ∈ dom fp and fp(i)(n) = m;
(4) p 
 n ∈ Sν,F,e if p 
 ∃sR(Hν,F ; e, s,n) where R is a ∆0

0 formula which codes a
universal Turing machine;

(5) p 
 〈e,n, µ〉 ∈ Hν,F if µ < ν and p 
 n ∈ Sµ,F,e;
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(6) p 
 ∀xψ(x) if for all n ∈ ω, p 
 ψ(n);
(7) p 
 ∀Xλ

Fψ(Xλ
F ) if for all ν < λ, e ∈ ω, p 
 ψ(Sν,F,e);

(8) p 
 ∀XFψ(Xλ
F ) if for all ν < ωCK1 , e ∈ ω, p 
 ψ(Sν,F,e);

(9) p 
 ∀Xλψ(Xλ
F ) if for all ν < λ, e ∈ ω, F ⊂f ω, p 
 ψ(Sν,F,e);

(10) p 
 ∀Xψ(Xλ
F ) if for all ν < ωCK1 , e ∈ ω, F ⊂f ω, p 
 ψ(Sν,F,e);

(11) p 

∧
i∈ω ψi if for every i, p 
 ψi;

(12) p 
 ¬ψ if for every q ≤ p, q 6
 ψ.

2.5. Retaggings. The next definition is a key concept when forcing with tagged trees.

Definition 2.3. Let p, p∗ ∈ P, F ⊂
f
ω and µ ∈ ωCK1 . We say that p∗ is an µ-F -absolute

retagging of p, and we write Ret(µ, F, p, p∗), if

(1) T p = T p
∗
, and fp �F = fp

∗
�F ;

(2) for all σ ∈ T p, if hp(σ) < µ, then hp
∗
(σ) = hp(σ); and

(3) if hp(σ) ≥ µ, then hp
∗
(σ) ≥ µ.

Note that for fixed F and µ, Ret(µ, F ; ·, ·) is an equivalence relation on P . Intuitively,
two conditions are retaggings of each other if they are indistinguishable to somebody
living in Mµ,F . This idea is reflected in the following lemma.

Lemma 2.4. [Ste78, Lemma 6] Let ψ be a formula ranked in LF and let p, p∗ ∈ P then

(2.1) Ret(ω · rk(ψ), F, p, p∗) ⇒ (p 
 ψ ⇔ p∗ 
 ψ).

To prove this lemma, the following lemma is key.

Lemma 2.5. [Ste78, Sublemma 4] Let p∗ is an ω · β-F -absolute retagging of p and let
γ < β. Let q ≤ p. Then, there exists q∗ ≤ p∗ such that Ret(ω · γ, F, q, q∗).

p
Ret(ωβ...)

p∗

q
Ret(ωγ...)

q∗

Proof. Let us start proving the following claim. Suppose Ret(δ + 1, F, p, p∗), q ≤ p and
T q r T p has only one element σ. Then there exists q∗ ≤ p∗ such that Ret(δ, F, q, q∗).
The lemma will then follow by induction on the size of T q r T p.

Let T q
∗

= T q = T p
∗ ∪ {σ} and f q

∗
= f q �F . For τ ∈ T p∗ , let hq

∗
(τ) = hp

∗
(τ). Let

τ = σ−. There are two cases. The first case is hq(σ) ≤ δ: define hq
∗
(σ) = hq(σ).

The second case is hqj(σ) > δ. In this case, if σ ⊆ f q(i) for some i ∈ dom f q, then let

hq
∗
(s) = ∞, otherwise it is safe to let hq

∗
(s) = δ. It is not hard to check that q∗ is as

wanted. Notice that to prove that q∗ satisfies Condition (3a) in the definition of P, we
have to use Condition (5c) and (5d) of the definition of q ≤ p. �

Proof of Lemma 2.4. The proof is by transfinite induction on β, the rank of ψ. All the
cases are trivial except for ψ = ¬ϕ. Suppose that p∗ 
 ¬ϕ; we want to show that
p 
 ¬ϕ. Consider q ≤ p; we need to show that q 6
 ϕ. Let γ < β be the rank of ϕ. By
the previous lemma there is a q∗ ≤ p∗ which is a ω · γ-F -absolute retagging of q. Then,
since p∗ 
 ¬ϕ, we have that q∗ 6
 ϕ, and hence q 6
 ϕ. �
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Let Pβ = {p ∈ P : ran hp ⊆ β ∪ {∞}}. It follows from Lemma 2.4 that if we have
ψ = ¬ϕ of rank β and p ∈ Pω·β, Condition 12 in the definition of forcing can be replaced
by

(12′) p 
 ¬ψ if for every q ∈ Pω·β, q ≤ p we have that q 6
 ψ.

The following corollary can then be proved by transfinite induction on β.

Corollary 2.6. [Ste78, Lemma 8] For a formula ψ of rank β, 0(β) can decide whether
p 
 ψ uniformly in ψ, p and β. (Actually, less than 0(β) is required.)

Lemma 2.7. [Ste78, Lemma 7] MF ∩ [TG] = {αGi : i ∈ F} for each F ⊂
f
ω.

Proof. Suppose, toward a contradiction, that S = Sν,F,e ∈ MF is a path through TG

which is different from αGi for i ∈ F . There exists σ ⊂ S such that σ 6⊂ αGi for every
i ∈ F . Let p ∈ G be such that σ ∈ T p and

p 
 S ∈ [T] & σ ⊆ S & ∀i ∈ F (σ 6⊆ αi)

Let β be greater than the ω times the rank of the formula forced above and big enough
so that p ∈ Pβ. Since S is a path in TG and σ ⊆ S, we have that hG(σ) =∞ and hence
hp(σ) = ∞. Now, we define p∗ such that Ret(β, F, p, p∗) and hp

∗
(σ) ∈ ωCK1 . To define

p∗, all we have to do is to change the values of hp(τ) for τ ⊇ σ to ordinals in ωCK1 which
are above β. Since ∀i ∈ F (σ 6⊆ αGi ), there is no difficulty defining p∗ as desired. But
then, by Lemma 2.4, we have that

p∗ 
 S ∈ [T] & σ ⊆ S & ∀i ∈ F (σ 6⊆ αi).

But, on the other hand, since hp
∗
(σ) ∈ ωCK1 , σ is in the well-founded part of TG

∗
for

any generic filter G∗ extending p∗. �

Corollary 2.8. [Ste78, Corollary of Lemma 7] M∞ 6|=Σ1
1-AC.

Proof. Let ψ be the following Σ1
1 formula:

ψ(n,X) ≡ ∃X = 〈X1, ..., Xn〉 ∀i ≤ n (Xi ∈ [TG]) & ∀i 6= j(Xi 6= Xj).

Since ∀i(αGi ∈ [TG]), M∞ |= ∀n∃X ψ(n,X). If we had M∞ |=Σ1
1-AC, then there would

be set Z ∈M∞ such that for every n, Z [n] ∈ [TG] and for n 6= m, Z [n] 6= Z [m]. However,
this set Z would have to be in MF for some finite F . But this will imply that [TG] has
infinitely many paths in MF contradicting the previous lemma. �

We say that a formula is Σ-over-LF iff it is built up from ranked, F-restricted formulas
using ∧, ∀n, and ∃X. For any formula ψ and µ < ωCK1 , ψµ is the result of replacing
“X” by “Xµ” for each unranked (i.e. unsuperscripted) variable X. We observe that if
ψ is Σ-over-LF , µ < ωCK1 and µ > o(d) for any constant d in ψ, then ψµ ⇒ ψ.

Lemma 2.9. [Ste78, Lemma 9]

(1) Let p 
 ψ where ψ ∈ L∞, ψ is Σ-over-LF , and F ⊂
f
ω. Then ∃µ < ωCK1 ∀ρ(µ ≤

ρ < ωCK1 ⇒ p 
 ψρ).
(2) MF |=Σ1

1-AC0, and hence MF is hyperarithmetically closed. Moreover MF =
HYP(T ⊕

⊕
i∈F α

G
i ).
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Proof. Note that by persistence upwards of Σ formulas, we only need to show that for
some µ < ωCK1 , p 
 ψµ. We use induction on the way ψ is build from ranked, F-restricted
formulas. If ψ ≡ ∀nϕ(n), then, by the induction hypothesis, for each n ∈ ω, exists µn
such that p 
 ϕµn(n). Since whether p 
 ϕµn(n) can be decided hyperarithmetically,
there is a µ < ωCK1 which bounds all the µn. For this µ, p 
 ψµ. The case ψ ≡ ϕ0 ∧ ϕ1

is similar, but easier.
Suppose now that ψ ≡ ∃Xϕ(X). That p 
 ψ means that for every q ≤ p exists r ≤ q

and S ∈ C such that r 
 ϕ(S), and then by the induction hypothesis r 
 ϕρ(S) for
some ρ < ωCK1 . Again, since whether r 
 ϕρ(S) can be decided hyperarithmetically, for
each β < ωCK1 there exists γ < ωCK1 such that for every q ∈ Pβ, there exists r ∈ Pγ,
S ∈ Cγ and γq < γ such that r < q, ω · rk(ϕγq(S)) < γ and

r 
 ϕγq(S).

Since we can find γ from β hyperarithmetically, there exists a limit ordinal µ such that
for every β < µ we can find such a γ also < µ. We claim that p 
 ψµ. To prove this
claim, consider q < p. Let q∗ be obtained by changing the value of hq(s) to∞ for every
s with hq(s) ≥ µ. So, Ret(µ, dom f q, q, q∗) and since µ is a limit ordinal, we get that
q ∈ Pβ for some β < µ. Then, there exists γ, r∗ ∈ Pµ, S ∈ Cµ and γq < µ such that
r∗ < q∗, ω · rk(ϕγq(S)) < γ and r∗ 
 ϕγq(S). By Lemma 2.5, there exists r ≤ q such
that Ret(γ, F, r, r∗), and then by Lemma 2.4, r 
 ϕγq(S), and in particular r 
 ϕµ(S).

For the second part, suppose that MF |= ∀n∃Xϕ(n,X), where ϕ is Σ1
1. Let p ∈

G be such that p 
 ∀n∃Xϕ(n,X). By the first part, there exists µ < ωCK1 such
that p 
 ∀n∃Xµϕµ(n,X). So, for each n ∈ ω, there exists SF,µ,en ∈ Mµ,F such that
MF |= ϕµ(n,SF,µ,en). The function n 7→ en is computable in HF,µ+ω, and hence, the set⊕

e∈ω SF,µ,en belongs to MF . So, MF 
 ∃Z∀n(ϕ(n, Z [n])). �

2.6. Automorphisms of P. Another useful tool will be the automorphisms of P. Let
π : ω → ω be a permutation of ω. Then, π induces an automorphism π̂ of P as follows:
T π̂(p) = T p, hπ̂(p) = hp and f π̂(p)(π(i)) = fp(i). Given ψ ∈ L∞, let πψ be the formula
obtained from ψ by replacing αi by απ(i) for each i.

Lemma 2.10. [Ste78, Lemma 10] Let π be a permutation of ω, p ∈ P , and ψ ∈ L∞.
Then p 
 ψ ⇔ π̂(p) 
 πψ.

Proof. Use induction on the rank of ψ. �

Observation 2.11. The main usage of these automorphisms is the following one. Let F
be a finite subset of ω and let K ⊂ ω be finite and disjoint from F . Suppose that p ∈ P
has dom fp ⊆ F , and that ψ has constants in LF . Now, suppose that there exists a
condition r ∈ P such that r ≤ p and r 
 ψ. Then, using an automorphism if necessary,
we can replace r by a condition π̂(r) such that π̂(r) ≤ p, π̂(r) 
 ψ and dom fπ̂(r) is
disjoint from K. In other words, replacing r by π̂(r) if necessary, we could have started
assuming that dom r ∩K = ∅.

Lemma 2.12. [Ste78, Lemma 11] Let F ⊂
f
ω and ψ be a Σ-over-LF sentence. Suppose

σ = rk(ψµ), where µ < ωCK1 . Then,

Ret(ωσ + ω2, F, p, p∗) & dom fp ⊆ F ⇒ (p 
 ψµ ⇒ p∗ 
 ψµ).

Note that ψµ is not in LF because is might have quantifiers of the form ∃Xµ.
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Proof. By induction on the number k of steps needed to build ψ from ranked F -restricted
formulas, we show that the lemma holds with “ωσ + ω2k” replacing “ωσ + ω2”. The
case k = 0 follows from Lemma 2.4. All the cases are easy to prove except for when ψ
is of the form ∃Xϕ(X). We need to prove that ∀q∗ ≤ p∗ ∃r∗ ≤ q∗∃S ∈ Cµ (r∗ 
 ϕµ(S)).

Let q∗ ≤ p∗ be given. Using Lemma 2.5, get q ≤ p with Ret(ωσ+ω(2k+ 1), F, q, q∗).
We can get such a q with dom f q ⊆ F . Since p 
 ψµ, there exists r ≤ q and S ∈ Cµ such
that r 
 ϕµ(S). Choose H so that S ∈ CF∪H

µ , dom f r ⊆ F ∪H and F ∩H = ∅. Using an

automorphism of P if necessary, we could choose r, S and H so that H ∩ dom f q
∗

= ∅.
We now build r∗ ≤ q∗ so that Ret(ωσ + ω2k, F, r, r∗). Then, we would have that
r∗ 
 ϕµ(S) by the induction hypothesis. Define r∗ as follows.

(1) T r
∗

= T r;
(2) (a) f r

∗
(i) = f q

∗
(i) for i ∈ dom f q

∗ \ F ;
(b) f r

∗
(i) = f r(i) for i ∈ F ∪H;

(3) (a) hr
∗
(s) = hq

∗
(s) for s ∈ T q∗ ;

(b) hr
∗
(s) = hr(s) for s with hr(s) < ωσ + ω2k;

(c) hr
∗
(s) =∞ if ∃i(s ⊆ f r

∗
(i));

(d) hr
∗
(s) = ωσ + ω2k + |s|Q otherwise, where Q = {t ∈ T r∗ : t not covered by

the previous cases}.
Now, we just need to check that r∗ is as desired. This is a straightforward checking of
the conditions of the definitions of P and of Ret. �

2.7. Two new lemmas. So far, all the lemmas we have proved are proved in [Ste78],
the only difference being that our setting is oriented to second order arithmetic. The
following two lemmas are new. The first one is a simple extension of Lemma 2.12
([Ste78, Lemma 11]). This proof of the second one is a modification of [Ste78, Lemma
12].

Lemma 2.13. Let F ⊂
f
ω and ψ be a Σ-over-LF sentence. Suppose σ = rk(ψµ), where

µ < ωCK1 . Then,

Ret(ωσ + ω2 + ω, F, q, q∗) & dom f q ⊆ F ⇒ (q∗ 
 ¬ψµ ⇒ q 
 ¬ψµ).

Proof. Suppose, toward a contradiction, that there is an r ≤ q such that r 
 ψµ.
Note that if no such an r exists, then q 
 ¬ψµ. Using an automorphism of P if
necessary, we can choose r such that dom fr ∩ dom f q

∗ ⊆ F . So, we actually have
Ret(ωσ + ω2 + ω, dom fr, q, q

∗). By [Ste78, Sublemma 4], there exists r∗ ≤ q∗ so that
Ret(ωσ+ω2, dom fr, r, r

∗). Then, by Lemma 2.12, we have that r∗ 
 ψµ, contradicting
q∗ 
 ¬ψµ. �

Lemma 2.14. M∞ |= Π1
1-SEP.

Proof. Let ϕ(n), ψ(n) be Σ-over-LF with only n free, F ⊂
f
ω, and M∞ |= ∀n (ψ(n) ∨

ϕ(n)). We need to build D ∈M∞ such that

M∞ |= ∀n(¬ϕ(n)⇒ n ∈ D & ¬ψ(n)⇒ n 6∈ D).

Let p ∈ G be such that p 
 ∀n(ψ(n)∨ϕ(n)). Enlarge F if necessary so that dom fp ⊆ F .
By Lemma 2.9, there exists µ < ωCK1 with

p 
 ∀n(ψµ(n) ∨ ϕµ(n))
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and µ > o(d) for any constant d occurring in ψ or ϕ.
Define the notion of being ν-good exactly as in [Ste78, Lemma 12]: For g : T ′ →

ωCK1 ∪ {∞} where T ′ ⊆f TG, we say that g is ν-good iff ∀s ∈ T ′((hG(s) < ν ⇒
g(s) = hG(s)) & (hG(s) ≥ ν ⇒ g(s) ≥ ν)). Note that deciding whether g is ν-good is
hyperarithmetic in g, TG and ν, since it requires at most ν + ω many Turing jumps of
TG. Fix ν such that p ∈ Pν and rk(ϕµ(n) ∨ ψµ(n)) < ν for all n ∈ ω.

We define a set D which we will show is a separator for ¬ψ and ¬ϕ inM∞ as follows:
Let d ∈ D if and only if there exists q ∈ Pων+ω2+ω2, q ≤ p such that

(1) q 
 ¬ϕµ(d)
(2) T q ⊂ TG

(3) hq is ων + ω2 + ω2-good
(4) ∀i ∈ F (f q(i) is the longest initial segment of αGi on T q)

Note that D is hyperarithmetic in T ⊕
⊕

i∈F α
G
i . Then, since MF = HYP(T ⊕⊕

i∈F α
G
i ), we have that D ∈ MF ⊆ M∞. Now we need to show that if ¬ϕ(d) then

d ∈ D, and that if ¬ψ(d) then d 6∈ D.
Assume first that d ∈ ω and ¬ϕ(d) holds; we claim that d ∈ D. Since ϕ is Σ-over-
LF , ¬ϕµ(d) also holds. Let q∗ ∈ G, q∗ ≤ p and q∗ 
 ¬ϕµ(d). Note that q∗ satisfies
all the conditions (1)-(4) but q∗ might not be in Pων+ω2+ω2, so we need to modify it
a bit. Define q by: T q = T q

∗
, f q = f q

∗
, hq(s) = ∞ if hq

∗
(s) ≥ ων + ω2 + ω2, and

hq(s) = hq
∗
(s) otherwise. Is not hard to see that q satisfies conditions (2)-(4) above.

Note that Ret(ων + ω2 + ω2, dom f q, q, q∗). Using Lemma 2.13, we get that q also
satisfies (1) too. So, q witnesses that d ∈ D.

Assume now that ¬ψ(d); we claim the d 6∈ D. Let r ≤ p, r ∈ G be such that
r 
 ¬ψµ(d). Suppose, toward a contradiction, that d ∈ D and q witnesses it. Using
an automorphism of P if necessary, we can choose q so that dom f q ⊆ F ∪ H where
H∩F = ∅ and H∩dom fr = ∅. The next step is to define q∗ ≤ q, r∗ ≤ r and s∗ ≤ p such
that Ret(ων+ω2+ω, F, s∗, q∗), Ret(ων+ω2+ω, F, s∗, r∗), and dom f s

∗ ⊆ F . Then, since
q∗ 
 ¬ϕµ(d) and r∗ 
 ¬ψµ(d), by Lemma 2.13, we have that s∗ 
 ¬ϕµ(d) ∧ ¬ψµ(d).
But since s∗ ≤ p, this contradicts p 
 ∀n(ψ(n)µ ∨ ϕµ(n)).

p

q

}}}}}}}}
r

AAAAAAAA

q∗
Ret

s∗ r∗
Ret

All that is left now is to define q∗, r∗ and s∗ as wanted. The definition of q∗ and r∗

are exactly as in [Ste78, Lemma 12], but using ων + ω2 + ω instead of ων + ω2. The
one of s∗ slightly differs from the one of s in [Ste78, Lemma 12].

Define q∗ by

(1) T q
∗

= T r ∪ T q;
(2) (a) f q

∗
= f q(i) for i ∈ H;

(b) f q
∗
(i) = αGi �n where n is the largest so that αGi �n ∈ T q∗ , for i ∈ F ;
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(3) (a) hq
∗
(t) = hq(t) for t ∈ T q;

(b) hq
∗
(t) = hr(t) = h(t) if hr(t) < ων + ω2 + ω;

(c) hq
∗
(t) =∞ if ∃i(s ⊆ f q

∗
(i));

(d) hq
∗
(t) = ων + ω2 + ω + |s|Q otherwise, where Q = {t ∈ T q∗ : t not covered

by (a), (b) or (c)}.
One may verify that q∗ ∈ P , that hq

∗
is ων +ω2 +ω-good, and that q∗ ≤ q. Now define

r∗ by:

(1) T r
∗

= T q
∗

= T r ∪ T q;
(2) (a) f r

∗
(i) = f r(i) for i ∈ dom f r r F ;

(b) f q
∗
(i) = αGi �n where n is the largest so that (αGi �n) ∈ T r∗ , for i ∈ F ;

(3) hr
∗

= h �T r
∗
.

One may verify that r∗ ∈ P , r∗ ≤ r and hr
∗

is ων + ω2 + ω-good. Finally, define s by:

(1) T s
∗

= T q
∗

= T r
∗
;

(2) f s
∗

= f q
∗
�F = f r

∗
�F ;

(3) (a) hs
∗
(t) = hq

∗
(t) = hr

∗
(t) = h(t) for if h(t) < ων + ω2 + ω;

(b) hs
∗
(t) =∞ if h(t) ≥ ων + ω2 + ω.

Verifying that q∗, r∗ and s∗ are as claimed is straightforward, though it requires some
checking. �

3. ∆1
1-CA0 does not imply Π1

1-SEP0

This section is dedicated to prove the following theorem.

Theorem 3.1. There is an ω-model of ∆1
1-CA0 which is not a model of Π1

1-SEP0. There-
fore, ∆1

1-CA0 does not imply Π1
1-SEP0.

The model we build, M̃∞, is a modification of M∞ defined in the previous section.
Again, we define a generic object G = 〈TG, {αGi : i ∈ ω}, hG〉, and build M̃∞ from it
exactly as in the previous section.

M̃F = {X ⊆ ω : ∃µ < ωCK1 (X is Σ0
µ(T, αGi : i ∈ F ))},

and
M̃∞ =

⋃
F⊂

f
ω

M̃F .

We define M̃ν,F , M̃ν,∞, Sν,F,e in the same way we did in Subsection 2.1.
We will use the same forcing language, though we will change the forcing notion

a bit. This time, we want TG to satisfy the following property. For every n, either
hG(〈2n〉) = ∞, or hG(〈2n + 1〉) = ∞ or both, and if hG(〈m〉) = ∞, then there are
infinitely many αGi that start with m. The idea is that the formulas that say “there
is no path in TG starting with 2n” and “there is no path in TG starting with 2n + 1”
are disjoint Π1

1 formulas in M̃∞ and we will show that there is no separator for them in
M̃∞. Thus M̃∞ 6|=Π1

1-SEP. We will then have to prove that M̃∞ still satisfies ∆1
1-CA0.

The forcing notion is defined as follows. The new set of conditions P̃ consists of the
conditions p ∈ P (defined in Subsection 2.2) which satisfy the following extra conditions

(1̃) For every n, if either 〈2n〉 ∈ T p or 〈2n + 1〉 ∈ T p, then both 〈2n〉 and 〈2n + 1〉
are in T p.
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(2̃) For every n, if 〈2n〉 ∈ T p and 〈2n + 1〉 ∈ T p, then either hp(〈2n〉) = ∞, or
hp(〈2n+ 1〉) =∞ or both.

(3̃) For i ∈ dom fp, fp(i) 6= ∅.
For p, q ∈ P̃ we define p ≤ q exactly as we did in Subsection 2.2 except that we

substitute Condition (5d) by

(5̃d) ∀i ∈ dom fp r dom f q (∀s ⊆ fp(i)(|s| ≥ 2⇒ s 6∈ T q)).
This new condition says that if p ∈ G and fp(i) is not defined, then no initial segment
of αGi is in T p, except maybe for the empty string or 〈m〉, where m = αGi (0).

Let P̃ = (P̃ ,≤) and G be a sufficiently P̃-generic filter.
The forcing relation is defined exactly as in Subsection 2.4. The notion of retaggings

is also the same as the one in the previous section. However, most of the lemmas about
retaggings proved in the previous section do not hold for this new forcing notion, but
the following slight modifications do, where we assume F ⊆ dom fp.

Lemma 3.2. Let p∗ is an (ω · β)-F -absolute retagging of p and let µ < β. Let q ≤ p.
Assume that F ⊆ dom fp. Then, there exists q∗ ≤ p∗ such that Ret(ω · µ, F, q, q∗).

The reason why Lemma 2.5 does not hold, is that we do not have condition (5d)
anymore, so we cannot guarantee that q∗, build in the proof of Lemma 2.5, is in P̃
because it might not satisfy (3a) for i ∈ F ∩ dom f q \ dom fp. But in the lemma above,
there is no i ∈ F \ dom fp, so we do not have this problem. It is not hard to verify that
the same construction of Lemma 2.5 goes though here.

The proof of the following lemmas are the same as the proofs of the corresponding
lemmas in the previous sections but assuming that F ⊆ dom fp.

Lemma 3.3. [Ste78, Lemma 6] Let ψ be a ranked formula in LF and let p, p∗ ∈ P, be
such that F ⊆ dom fp, dom fp

∗
, then

(3.1) Ret(ω · rk(ψ), F, p, p∗) ⇒ (p 
 ψ ⇔ p∗ 
 ψ).

Corollary 3.4. For a formula ψ of rank β, with constants in CF , and p with F ⊆
dom fp, 0(β) can decide whether p 
 ψ uniformly in ψ, p, F and β.

Lemma 3.5. M̃F ∩ [TG] = {αGi : i ∈ F} for each F ⊂
f
ω.

Lemma 3.6. (1) Let p 
 ψ where ψ ∈ L∞, ψ is Σ-over-LF , and F ⊂
f
ω. Assume

that F ⊆ dom fp. Then ∃µ < ωCK1 ∀ρ(µ ≤ ρ < ωCK1 ⇒ p 
 ψρ).
(2) M̃F |=Σ1

1-AC0, and hence M̃F is hyperarithmetically closed.

Automorphisms of P̃ work the same way as automorphisms of P.

Lemma 3.7. [Ste78, Lemma 10] Let π be a permutation of ω, p ∈ P̃ , and ψ ∈ L∞.
Then p 
 ψ ⇔ π̂(p) 
 πψ.

3.1. Not a Model of Π1
1-SEP0.

Lemma 3.8. M̃∞ 6|=Π1
1-SEP.

Proof. Let ψ0(n) be the Π1
1 formula that says “there is no path in TG starting with 2n”

and let ψ1(n) say “there is no path in TG starting with 2n + 1”. The first observation
is that for j = 0, 1, M̃∞ |= ψj(n) if and only if hG(〈2n + j〉) 6=∞: Clearly if hG(〈2n +
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j〉) 6= ∞ then there is no path in TG starting with 2n + j. On the other hand, if
hG(〈2n + j〉) = ∞, then by genericity, there will be some p ∈ G and i ∈ dom fp such
that fp(i)(0) = 2n + j. Then, since for every n, hG(〈2n〉) = ∞, or hG(〈2n + 1〉) = ∞
or both, we have that

M̃∞ |=6 ∃n (ψ0(n) & ψ1(n)).

In terms of the forcing relation, we get that p 
 ψj(n) if and only if hp(〈2n+ j〉) 6=∞.

Suppose toward a contradiction that there exists S ∈ M̃∞ which is a separator of ψ0

and ψ1. Let F be such that S ∈ M̃F . There exists p ∈ G such that

p 
 ∀n (ψ0(n)⇒ n ∈ S & ψ1(n)⇒ n 6∈ S),

and F ⊆ dom fp. Let m be such that hG(〈2m〉) = hG(〈2m + 1〉) = ∞ and 〈2m〉 6∈ T p.
Either m ∈ S or not. Suppose without loss of generality that m ∈ S. Let q ∈ G, q ≤ p
be such that

q 
 m ∈ S

and both 〈2m〉 and 〈2m+ 1〉 are in T q. Let µ be ω times the rank of the formula forced
above. Let q∗ be such that q∗ ≤ p, Ret(µ, F, q, q∗) and hq

∗
(〈2m + 1〉) 6= ∞. Such a q∗

can be easily obtained by changing the values of hq(σ) for σ with σ(0) = 2m+ 1 which
are ∞ to ordinals greater than µ. But then we have that

q∗ 
 ∀n (ψ0(n)⇒ n ∈ S & ψ1(n)⇒ n 6∈ S) & m ∈ S,

and at the same time q∗ 
 ψ1(m), getting a contradiction. �

3.2. New Retagging notion. When we consider Σ-over-LF formulas, a new notion
of retagging will be necessary.

Definition 3.9. Let p, p∗ ∈ P̃, F ⊂
f
ω and µ ∈ ωCK1 . We say Ret≤(β, p, p∗), if

Ret(µ, dom fp; p, p∗) and for every m with 〈m〉 ∈ T p we have that if hp(〈m〉) =∞, then
hp

∗
(〈m〉) =∞.

Now, for fixed µ, Ret≤(µ, ·, ·) is not an equivalence relation anymore, but a quasi-
ordering (or pre-ordering). The key property of this new retagging notion is the following
lemma.

Lemma 3.10. [Ste78, Lemma 11] Let F ⊂
f
ω and ψ be a Σ-over-LF sentence. Suppose

σ = rk(ψµ), where µ < ωCK1 . Then,

Ret≤(ωσ + ω2, p, p∗) & F ⊆ dom fp ⇒ (p 
 ψµ ⇒ p∗ 
 ψµ).

Before proving the lemma, we need the following version of Lemma 2.5

Lemma 3.11. [Ste78, Sublemma 4] If Ret≤(ω · β, p∗, p), q ≤ p and γ < β, then, there
exists q∗ ≤ p∗ such that Ret≤(ω · γ, q∗, q).

Proof. The proof is the same as the proof of Lemma 2.5, where F = dom f q. Note that
dom f q

∗
= dom f q = F . One just has to observe that q∗ constructed in the proof of

Lemma 2.5 satisfies Ret≤(δ, q∗, q). �
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Proof of Lemma 3.10. The proof is essentially the same as the one of Lemma 2.12. The
case k = 0 can still be proved using Lemma 2.4 since we have that Ret(ωσ, F, p, p∗).
Again, the case where ψ is ∃Xϕ(X) is the interesting one. The definition of q, that
was done using Lemma 2.5, is now done using Lemma 3.11. So we have Ret≤(ωσ +
ω(2k + 1), q, q∗). The rest of the proof is exactly the same except for a small change
in the definition of r∗ needed to get Ret≤(ωσ + ω2k, p∗, p). The change is that before
condition (3d) we need to add the following condition
(3c’): hr

∗
(s) =∞ if |s| = 1 and s not covered by the previous cases.

The compatibility of (3a) and (3c) in the definition of r∗ is not immediate anymore.
Now, as opposed to in the proof of Lemma 2.12, there could be some s ∈ T q∗ , s 6= ∅
and an i ∈ dom f r \ F such that s ⊆ f r

∗
(i) = f r(i). Here is where we have to use

Ret≤(ωσ + ω(2k + 1), q, q∗). Because, for such an s, we have that hq(s) = hr(s) = ∞,
and therefore hq

∗
(s) =∞ too. �

Lemma 3.12. M̃∞ |=∆1
1-CA0.

Proof. This proof is a slight modification of [Ste78, Lemma 12]. It suffices to show the
following.

(∗) Let ϕ(n), ψ(n) be Σ-over-LF with only n free, F ⊂
f
ω, and M̃∞ |=

∀n(ψ(n)⇔ ¬ϕ(n)).
Then M̃∞ |= ∃D∀n(ψ(n)⇔ n ∈ D).

Assume the hypothesis of (∗). Let p ∈ G be such that p 
 ∀n(ψ(n) ⇔ ¬ϕ(n)).
Enlarge F if necessary so that dom fp ⊆ F . By Lemma 2.9 there exists µ < ωCK1 with
p 
 ∀n(ψµ(n) ∨ ϕµ(n)) and µ > o(S) for any constant S occurring in ψ or ϕ.

Define the notion of being ν-good exactly as in Lemma 2.14: For g : T ′ → ωCK1 ∪{∞}
where T ′ ⊆f TG, we say that g is ν-good iff ∀s ∈ T ′((hG(s) < ν ⇒ g(s) = hG(s)) &
(hG(s) ≥ ν ⇒ g(s) ≥ ν)). Recall that deciding whether g is ν-good is hyperarithmetic
in g, TG and ν. Fix ν such that ran hp ⊆ ν ∪ {∞} and rk(ϕµ(n) ∨ ψµ(n)) < ν for all
n ∈ ω.

We define a set D in M̃∞ as follows: d ∈ D if and only if there exists q ∈ Pων+ω2 ,
q ≤ p such that

(1) q 
 ψµ(d)
(2) T q ⊂ TG

(3) hq is ων + ω2-good
(4) ∀i ∈ F (f q(i) is the longest initial segment of αGi on T q)

Note that D is hyperarithmetic in T ⊕
⊕

i∈F α
G
i . Then, since M̃F = HYP(T ⊕⊕

i∈F α
G
i ), we have that D ∈ M̃F ⊆ M̃∞. Now we show that ¬ϕ(d) if and only if d ∈ D.

Assume first that d ∈ ω and ¬ϕ(d) holds; we claim that d ∈ D. By Σ persistence,
¬ϕµ(d) also holds in M̃∞. Let q∗ ∈ G, q∗ ≤ p and q∗ 
 ¬ϕµ(d), and hence q∗ 
 ψµ(d).
Note that q∗ satisfies all the conditions (1)-(4) but q∗ might not be in Pων+ω2 , so we
need to modify it a bit. Define q by: T q = T q

∗
, f q = f q

∗
, hq(s) =∞ if hq

∗
(s) ≥ ων+ω2,

and hq(s) = hq
∗
(s) otherwise. It is not hard to see that q satisfies conditions (2)-(4)

above. Note that Ret≤(ων + ω2, q∗, q), so by Lemma 3.10, we get that q also satisfies
(1). So, q witnesses that d ∈ D.

Assume now that ϕ(d); we claim that d 6∈ D. Let r ≤ p, r ∈ G be such that
r 
 ¬ψ(d), and hence r 
 ¬ψµ(d) & ϕµ(d). Suppose, toward a contradiction, that
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d ∈ D and q witnesses it. So we have that q 
 ψµ(d). Using an automorphism of P̃ if
necessary, we can choose q so that dom f q ⊆ F∪H where H∩F = ∅ and H∩dom f r = ∅.
The next step is to define q∗ ≤ q, r∗ ≤ r and s∗ ≤ p such that Ret≤(ων+ω2, q∗, s∗) and
Ret≤(ων+ω2, r∗, s∗). Then, by Lemma 3.10, this would imply that s∗ 
 ϕµ(d)∧ψµ(d).
But since s∗ ≤ p, this contradicts p 
 ∀n(ψµ(n)⇔ ϕµ(n)).

p

q

}}}}}}}}
r

AAAAAAAA

q∗
Ret≤

s∗ r∗
Ret≥

Now, we just need to define q∗, r∗ and s∗ as wanted. The definitions of q∗, r∗ and s∗

are exactly as in [Ste78, Lemma 12]. So, the definition of q∗ and r∗ are exactly as in
Lemma 2.14 using ων + ω2 instead of ων + ω2 + ω.

Define q∗ by

(1) T q
∗

= T r ∪ T q;
(2) (a) f q

∗
= f q(i) for i ∈ H;

(b) f q
∗
(i) = αGi �n where n is the largest so that αGi �n ∈ T q∗ , for i ∈ F ;

(3) (a) hq
∗
(t) = hq(t) for t ∈ T q;

(b) hq
∗
(t) = hr(t) = h(t) if hr(t) < ων + ω2;

(c) hq
∗
(t) =∞ if ∃i(s ⊆ f q

∗
(i));

(d) hq
∗
(t) = ων+ω2 + |s|q otherwise, where Q = {t ∈ T q∗ : t not covered by (a),

(b) or (c)}.
One may verify that q∗ ∈ P̃ , that hq

∗
is ων + ω2-good, and that q∗ ≤ q. Now define r∗

by:

(1) T r
∗

= T q
∗

= T r ∪ T q;
(2) (a) f r

∗
(i) = f r(i) for i ∈ dom f r r F ;

(b) f q
∗
(i) = αGi �n where n is the largest so that αGi �n ∈ T r∗ , for i ∈ F ;

(3) hr
∗

= h �T r
∗
.

One may verify that r∗ ∈ P̃ , r∗ ≤ r and hr
∗

is ων + ω2-good. Finally, define s by:

(1) T s
∗

= T q
∗

= T r
∗
;

(2) f s
∗

= f q
∗ ∪ f r∗ ;

(3) (a) hs
∗
(t) = hq

∗
(t) = hr

∗
(t) = h(t) for if h(t) < ων + ω2;

(b) hs
∗
(t) =∞ if h(t) ≥ ων + ω2.

�
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