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Abstract. Knight and Stob proved that every low4 Boolean algebra is 0(6)-isomorphic
to a computable one. Furthermore, for n = 1, 2, 3, 4, every lown Boolean algebra is
0(n+2)-isomorphic to a computable one. We show that this is not true for n = 5:
there is a low5 Boolean algebra that is not 0(7)-isomorphic to any computable Boolean
algebra.

It is worth remarking that, because of the machinery developed, the proof uses at
most a 0′′-priority argument. The technique used to construct this Boolean algebra
is new and might be useful in other applications, such as to solve the lown Boolean
algebra problem either positively or negatively.

1. Introduction

Computable structures are one of the main objects of study of effective mathemat-
ics. Which mathematical structures have computable presentations is an active area
of research in effective mathematics and computability theory. Related to this is the
question of what kind of information can be encoded in the isomorphism type of a given
structure. Downey and Jockusch [DJ94], proved that every low Boolean algebra has
a computable presentation. In other words, if the information encoded in the isomor-
phism type of a Boolean algebra is low, then there is no information in it at all. This
result was extended by Thurber [Thu95] to low2 Boolean algebras, and by Knight and
Stob [KS00] to low4.

The natural question to follow-up is whether every lown Boolean algebra has a com-
putable presentation. This problem, originally posed by Downey and Jockusch [DJ94],
is still open. One problem here is that the combinatorics of the proofs get exponentially
more complicated at each level. We will show that there are also new types of obsta-
cles that appear for the first time at n = 5. When n = 1, 2, 3, 4, it follows from the
earlier results that every lown Boolean algebra is isomorphic to a computable one via
an isomorphism that is computable in 0(n+2). (For n = 2, the isomorphism found by
Thurber is actually computable in 0′′′.) We construct a low5 Boolean algebra that is not
0(5+2)-isomorphic to any computable one. Therefore, a proof that every low5 Boolean
algebra is isomorphic to a computable one would have to be, in essence, different than
the known proofs for the lower cases.

An interesting feature of our proof is that it does not use more than an infinite injury
construction. This is due to the new techniques developed, which are based on the
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authors’ work in [HM]. The main notion is that of an n-Z-approximation of a Boolean
algebra. We believe that this notion will be useful in a solution of the lown problem, and
more generally, in problems regarding degree spectra or relational spectra of Boolean
algebras.

In Section 2, we briefly review the main definitions and results of [HM], which will
suffice for the reader to understand the main ideas in our proof. In [HM], we studied
the n-back-and-forth relations on Boolean algebras, providing general invariants for the
back-and-forth equivalence classes of algebras. These are invariants are constructed, for
each n, from a finite set of special types we denote by BFn and call the n-indecomposable
back-and-forth types. (A Boolean algebra is n-indecomposable if for any way of express-
ing the algebra as a finite sum of subalgebras, at least one subalgebra is in the same
n-back-and-forth class. See Definition 2.3.) We additionally provided, for each n, a
finite set of Boolean algebra unary predicates Rα, one for each α ∈ BFn, which are
interdefinable with the the sets of predicates used in [DJ94, Thu95, KS00] to solve the
low4 Boolean algebra problem. The main property of our predicates is that given a
Boolean algebra B and a set Z ≥ 0(n), the following two statements are equivalent:

• The computably infinitary Πc
n diagram of B (to be defined later) is computable

in Z;
• B and the finitely many relations Rα(B) for α ∈ BFn are computable in Z.

This result motivates the following definition.

Definition 1.1. Given n and a Boolean algebra A = (A,≤,∨,∧,¬, 0, 1), we let Bn(A)
be the structure

(A,≤,∨,∧,¬, 0, 1,Rα(A) : α ∈ BFn),

where Rα(A) = {a ∈ A : A |= Rα(a)}. We say that A is n-Z-approximable if Bn(A) is
computable in Z.

The main lemmas in [DJ94, Thu95, KS00] say that for n = 1, 2, 3, 4, every n-Z ′-
approximable Boolean algebra has a copy that is (n − 1)-Z-approximable. If A is a
computable, or even a lown, Boolean algebra, then Bn(A) is 0(n)-computable. Con-
versely, if follows from [Mon, Theorem 3.1] that if Bn(A) is 0(n)-computable, then A
has a lown copy. (Using the notation from [Mon], we have that Bn(A) is the nth jump
of the structure A.) By [Mon, Theorem 3.5] the lown Boolean algebra question can be
restated as follows.

Question 1. Does every n-Z(n)-approximable Boolean algebra have a Z-computable
copy?

We will approximate n-Z-approximable Boolean algebras by Z-computable sequences
of finite labeled Boolean algebras. This type of approximation, which is the main concept
of the paper, is introduced in Section 3 and applied in the subsequent sections.

The rest of the paper is dedicated to building a low5 Boolean algebra that is not 0(7)-
isomorphic to any computable Boolean algebra. In Section 5 we establish some lemmas
used in the construction of the low5 Boolean algebra in Section 6.

2. Background
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2.1. Preliminaries. Let L be a computable language. We will be considering Σn and
Πn formulas in Lω1ω and also computable Σn and Πn formulas for n ∈ ω. We refer to
these latter classes as Σc

n and Πc
n for brevity. We note that Σ0, Π0, Σc

0 and Πc
0 all denote

the class of finitary quantifier-free formulas of L. See [AK00, Chapters 6 and 7] for
more on these formula classes.

We occasionally use the nonstandard notation Σc,X
n to mean the fragment of Σn

formulas where conjunctions and disjunctions are required to be X-c.e. So, Σc,0
n = Σc

n.
We consider only countable Boolean algebras and we use the signature ≤,∧,∨,−, 0, 1,

but otherwise we follow the standard reference [Mon89]. We denote Boolean algebras
by A,B, C and their elements by a, b, c. We denote the relative algebra by A � a = {b ∈
A : b ≤ a}.

A partition of an element a in a Boolean algebra A is a finite sequence a0, . . . , ak
(which we will write as (ai)i≤k) of pairwise disjoint elements (that is, ai ∧ aj = 0 for all
i 6= j) such that a = a0∨ . . .∨ak; a partition of a Boolean algebra A is a partition of its
unit, 1A. We will write a = a0 ∨̇ . . . ∨̇ ak to mean that (a0, . . . , ak) is a partition of a.

2.2. Back-and-forth relations. The main notion studied in [HM] is that of n-back-
and-forth relations of Boolean algebras. The purpose behind the use of these relations
is to identify the computable Boolean algebras which cannot be distinguished by 0(n).

Definition 2.1. [AK00, §15.3.4] Let A and B be Boolean algebras. Let A ≤0 B if either
both A and B are the trivial one-element Boolean algebra, or neither is. For n > 0,
A ≤n B if for every partition (bi)i≤k of B, there is a partition (ai)i≤k of A such that
B � bi ≤n−1 A � ai for each i ≤ k. Let A ≡n B if A ≤n B and B ≤n A.

Theorem 2.2 (Karp; Ash and Knight). Let A and B be Boolean algebras. The following
are equivalent:

(1) Given a Boolean algebra C that is isomorphic to either A or B, deciding whether
C ∼= A is (boldface) Σ0

n-hard.
(2) All the infinitary Σn sentences true in B are true in A.
(3) A ≤n B.

Sketch of the proof. The equivalence of (2) and (3) is due to Karp; see [AK00, Propo-
sition 15.1]. For (1) ⇒ (2), note that if there is a infinitary Σn sentence ϕ that is true
in B but not in A, then to decide whether C ∼= A, all we have to do is check whether
C |= ϕ, and if so, we know that C ∼= B. Checking whether C |= ϕ holds is Σ0

n, so
deciding whether C ∼= A is Π0

n, and hence not Σ0
n-hard. For (2) ⇒ (1) we use [AK00,

Theorem 18.6]. Let Z be a set that can compute the n-back-and-forth relations among
tuples of elements from A and B. Relative to Z, we have that A and B are n-friendly.
Let ϕ(X) be a Σ0

n formula of arithmetic with real parameters and a real free variable
X, and assume that Z was also chosen to compute all the real parameters in ϕ(X).
Using the uniformity in [AK00, Theorem 18.6] we obtain a Z-computable procedure
(hence a continuous function) that given X, produces a Boolean algebra CX such that

CX
∼=

{
A if ϕ(X),

B if ¬ϕ(X).

(See [Kec95, §22B] for more on boldface hard classes.) �
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In [HM] we studied the family of ordered monoids

(BAs/ ≡n , ≤n , ⊕)

where BAs is the class of all countable Boolean algebras and A⊕B is the direct sum, or
Cartesian product, of A and B. We call the equivalence classes bf-types, or n-bf-types.

Our aim in this section is to show that there is a computable structure of finite
invariants for the n-bf-types: a computable ordered monoid (INVn , ≤n , +) with

(BAs/ ≡n ,≤n,⊕) ∼= (INVn,≤n,+),

and a map Tn from Boolean algebras to INVn such that

A ≤n B ⇐⇒ Tn(A) ≤n Tn(B) and Tn(A⊕ B) = Tn(A) + Tn(B).

To our knowledge, the back-and-forth equivalence classes through the first five levels
(i.e., ≡0,...,≡4) were first described by [Ala04]. Here are the first three levels:

• A ≤0 B if and only if (|A| = 1 ⇐⇒ |B| = 1).
• A ≤1 B if and only if A ≤0 B and |A| ≥ |B|.
• A ≤2 B if and only if |A| = |B| and |At(A)| ≥ |At(B)|, where At(B) is the set

of atoms of B.

The key to our investigation of the n-back-and-forth types in [HM] are the n-indecomposable
Boolean algebras:

Definition 2.3 ([HM]). A Boolean algebra A is n-indecomposable if for every partition
(ai)i≤k of A, there is some i ≤ k with A ≡n A � ai.

The main results we proved about this class of Boolean algebras are summarized in
the following theorem.

Theorem 2.4 ([HM]). For each n, there are only finitely many n-back-and-forth equiva-
lence classes among the n-indecomposable algebras. Furthermore, every Boolean algebra
can be decomposed into a finite sum of n-indecomposable algebras.

We use BFn to denote the set of invariants in INVn that correspond to n-indecomposable
Boolean algebras. So, INVn is finitely generated by BFn under +.

2.3. Back-and-forth invariants for indecomposables. We start by defining what
we call back-and-forth invariants on the Stone space of a Boolean algebra. Recall that
the Stone space of A is the set of ultrafilters Ult(A) with the topology given by the
basic clopen sets Oa = {V ∈ Ult(A) : a ∈ V } for a ∈ A.

For each n, we define a finite set BFn of combinatorial objects that we will use as
back-and-forth invariants for ultrafilters. Each BFn is a subset of the power set of
BFn−1, and BF0 = {∗}, where ∗ is just a symbol. On each BFn, we will define a
partial ordering ≤n in a combinatorial way. (See Definition 2.6 below.) Before defining
BFn and ≤n, we define the invariant maps.

Definition 2.5. Let A be a Boolean algebra other than the trivial one-element algebra.
For X ⊆ BFn we let maxX be the antichain of ≤n-maximal elements of X. Let
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dcX ⊆ BFn be the ≤n-downward closure of X. To each ultrafilter U of a Boolean
algebra A and each n ∈ ω we assign an n-bf-type as follows.

t0(U) = ∗
t̂n+1(U) =

{
α ∈ BFn : U is an accumulation point of {V ∈ Ult(A) : tn(V ) = α}

}
.

tn+1(U) = max t̂n+1(U).

The accumulation points of a set are determined by the topology on the Stone space.
So, α ∈ t̂n+1(U) if and only if ∀a ∈ U ∃∞V ∈ Ult(A) (a ∈ V & tn(V ) = α). If
tn(U) = α, we say that U is an α ultrafilter. We define BFn to be the set of subsets
of BFn−1 which appear in the image of the map tn. Note that all the elements of BFn

are ≤n-antichains from BFn−1. In [HM, Section on Realizability] we characterize this
image in terms of a combinatorial property.

Notice that t̂n(U) contains more information about U than tn(U). The reason why
we choose to work with tn(U) is that (as we will show) the information contained in
tn(U) is exactly what can be decoded with n Turing jumps, whereas the information in
t̂n(U) is more extensive than this.

The idea now is to lift the definition of tn from ultrafilters to n-indecomposable
Boolean algebras. We can view an n-indecomposable element of a Boolean algebra as
a small enough neighborhoods of an ultrafilter so that the n-back-and-forth properties
of that element are given by those of the ultrafilter.

We still have not defined ≤n. The goal of the definition of ≤n on BFn is to obtain
the following result. For any n-indecomposable Boolean algebras A and B,

A ≤n B ⇐⇒ tn(A) ≤n tn(B).

We will also define a projection map (·)n : BFn+1 → BFn such that for every n-
indecomposable Boolean algebra A,

(tn+1(A))n = tn(A).

Definition 2.6. By induction on n, we define a relation ≤n on BFn and a map
(·)n : BFn+1 → BFn.

• On BF0 = {∗}, let ∗ ≤0 ∗.
• For α ∈ BFn+1, let (α)n = max{(γ)n−1 : γ ∈ α} ∈ BFn, unless n = 0, in which

case (α)0 = ∗.
• For α, β ∈ BFn+1, let α ≤n+1 β if (α)n ≡n (β)n and dc β ⊆ dcα.
• For α, β ∈ BFn+1, let α ≡n+1 β if α ≤n+1 β and β ≤n+1 α.

The following theorem shows the connection between ultrafilters and n-indecomposable
Boolean algebras.

Theorem 2.7. [HM] For any Boolean algebra A, the following are equivalent.

(1) There is an ultrafilter U ∈ Ult(A), such that for every V ∈ Ult(A) with V 6= U ,
we have tn−1(V ) ∈ dc tn(U).

(2) There is an ultrafilter U ∈ Ult(A) such that A ≡n A � a for all a ∈ U .
(3) A is n-indecomposable.
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IfA satisfies any of the conditions of the theorem above we say thatA is n-indecomposable
for U , and we define tn(A) to be tn(U). If A is any Boolean algebra, a ∈ A, and A � a
is n-indecomposable for U , then we let tn(a) = tn(U). Equivalently: For n = 0, let
t0(a) = ∗. Given tn, let t̂n+1(a) ⊆ BFn be the set of α ∈ BFn such that there are
infinitely many distinct α ultrafilters V ∈ Oa; then let tn+1(a) = max t̂n+1(a). If A � a
is n-indecomposable and tn(a) = α, we say that a has n-indecomposable type α, or that
a is an α element.

For each α ∈ BFn, there is a computable n-indecomposable Boolean algebra Aα of
n-bf-type α (see [HM, Section 5]). For each α ∈ BFn we define a Boolean algebra
predicate Rα as follows. For a Boolean algebra B and b ∈ B, we let

B |= Rα(b) ⇐⇒ B � b ≥n Aα.
We show in [HM, Lemma 8.9] that each of these predicates is Πc

n. The predicates Rα

for α ∈ BFn capture all the structural information of a Boolean algebra that can be
obtained with n Turing jumps, as shown in the next theorem.

Theorem 2.8. Let B be a Boolean algebra, R ⊆ B and n ∈ ω. The following are
equivalent.

(1) R relatively intrinsically Σn+1. That is, if A ∼= B and (A, Q) ∼= (B, R) then Q
is a Σ0

n+1(A) subset of ω.
(2) R is explicitly Σn+1. That is, R can be defined in B by a computable infinitary

Σc
n+1 formula with finitely many parameters from B.

(3) There exists a 0(n)-computable sequence {ϕi : i ∈ ω} of finitary Σ1 formulas that
use the predicates Rα for α ∈ BFn, together with a finite tuple of parameters
p̄ ∈ B such that

x ∈ R ⇐⇒
∨
i∈ω

ϕi(p̄, x).

The equivalence of the first two statements is due to Ash, Knight, Manasse and
Slaman, and Chisholm (see [AK00, Theorem 10.1]). The equivalence of the latter two
statements is proved in [HM, Theorem 8.11].

The importance of the predicates {Rα : α ∈ BFn} leads to the following definition,
stated previously in 1.1,

Definition 2.9. An n-Boolean algebra (n-algebra, for short), denoted by Bn(A), is a
structure (A,≤,∨,∧,¬, 0, 1,Rα : α ∈ BFn) where A = (A,≤,∨,∧,¬, 0, 1) is a Boolean
algebra. If Bn(A) is Y -computable, we say that A is n-Y -approximable.

Using the notation from Montalbán [Mon], Theorem 2.8 states that Bn(A) is the
nth jump of the structure A. The next theorem, a corollary of 2.8 , provides provides
alternative characterizations of n-0n-approximable algebras.

Theorem 2.10. Let A be a presentation of a Boolean algebra. The following are equiv-
alent:

(a) Bn(A) is computable in 0(n).
(b) The Σc

n+1-diagram of A is a Σ0
n+1 set of formulas.

(c) The Πc
n-diagram of A is computable in 0(n),

The following theorem is a consequence of [Mon, Theorem 3.1].



BOOLEAN ALGEBRA APPROXIMATIONS 7

Theorem 2.11. Let A be a Boolean algebra, and let Z be any set. If Bn(A) is Z(n)-
computable, then A has a Z-lown copy. Furthermore, an isomorphism between A and
its Z-lown copy can be computed by Z(n).

In our main construction, we will build a 5-0(5)-approximable Boolean A algebra
which is not 0(7)-isomorphic to any computable Boolean algebra. Then using Theorem
2.11, we will get that A is 0(5)-isomorphic to a low5 Boolean algebra. This low5 Boolean
algebra is then also not 0(7)-isomorphic to any computable one.

2.4. General back-and-forth invariants. Let (INVn,+, 0) be the free commutative
monoid with generators BFn. Given σ = α1 + ...+αk ∈ INVn, let Aσ = Aα1⊕ ...⊕Aαk

,
where Aαi

is a Boolean algebra of n-bf-type αi. Given σ, τ ∈ INVn, let σ ≤n τ
if Aσ ≤n Aτ . This induces an equivalence relation ≡n on INVn; let INVn be the
quotient structure (INVn,≤n +). The invariant map from Boolean algebras to INVn

is now defined in the obvious way.

Definition 2.12. Given a Boolean algebra B, let B0⊕ ....⊕Bk be a partition of B into
n-indecomposable Boolean algebras. Let Tn(B) ∈ INVn be the ≡n-equivalence class of

tn(B0) + ....+ tn(Bk) ∈ INVn.

We proved in [HM, Section 7] that this definition is independent of the choice of the
partition B1 ⊕ ....⊕ Bk of B and that

Tn : (BAs/ ≡n ,≤n,⊕)→ (INVn,≤n,+)

is an isomorphism. We also give a purely combinatorial definition of ≤n on INVn in
[HM, Section 7].

2.5. Exclusive bf-types.

Definition 2.13. We say that α ∈ BFn is exclusive if (α)n−1 6∈ dcα.

In terms of Boolean algebras, if A is n-indecomposable and has an exclusive n-
indecomposable type, then for every partition a0, . . . , a` of A there is a unique i such
that A ≡n−1 A �αi. On the other hand, if A is n-indecomposable but its n-bf-
type is not exclusive, then there are infinitely many ultrafilters U ∈ Ult(A) with
tn−1(U) ≥n−1 tn−1(A). For example, the 1-atom Int

(
ω
)

is n-indecomposable for ev-
ery n, but it has an exclusive n-indecomposable type only when n ≥ 3. For n = 2,
Int
(
ω
)

has the 2-indecomposable type {{}}, corresponding to an algebra bounding in-

finitely many atoms, as does the algebra Int
(
2 · η

)
which is not exclusive for any n. For

n = 1, there are two bf-types: the exclusive type of the atom {} and the type for an
infinite algebra {∗} = t1(Int

(
ω
)
), where {} ≥1 {∗}.

Up to level four, every exclusive n-indecomposable type is a ≤n-maximal element in
BFn. This is not the case at level five, and we will exploit this in our construction.

3. Boolean algebra approximations

In this section we introduce the notion of an n-approximation of a Boolean algebra.
This notion, which is one of the main applications of the work in [HM], is new, although
it has roots in the work of others. The idea of using back-and-forth increasing sequences
of finite approximations appears in the work of Ash on η-systems, but in a very general
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setting. (See Chapter 12 of [AK00] on n-systems, and especially Section 15.6, for a moti-
vation of these constructions, which bear a close relationship to our n-approximations.)
In [KS00] they used finite Boolean algebras with additional predicates to approximate
lown Boolean algebras in their proof, for n = 1, 2, 3, 4, that every lown Boolean algebra
has a computable copy. Their construction in the low4 case corresponds to what we call
a 3-approximation, although we use the predicates Rα for α ∈ BF3, while they used a
finite set of predicates sufficient for defining these relations via Boolean combinations.

3.1. Finite labeled Boolean algebras. To approximate an n-Boolean algebra, we
use finite n-labeled Boolean algebras.

Definition 3.1. A finite n-labeled Boolean algebra is a pair (C, tCn), where C is a finite
Boolean algebra and tCn : C → INVn is such that

(1) for every minimal element a ∈ C, tCn(a) ∈ BFn;

(2) if b =
∨k
i=0 ai, where each ai is a minimal element in C, then tCn(b) =

∑k
i=0 t

C
n(ai).

The minimal elements of a finite Boolean algebra are its atoms. We want to avoid
using the word “atom” in this context, however, because we already use it to refer to
one of the n-bf-types. A minimal element of C may or may not be labeled with the
n-bf-type “atom”.

Given two finite n-labeled Boolean algebras C0 and C1, we write

C0 ⊆n C1

if C0 is a subalgebra of C1 and for every x ∈ C0, tC0n (x) = tC1n (x).
We write

C0 ≤n C1

if C0 is a subalgebra of C1 and for every x ∈ C0, tC0n (x) ≤n tC1n (x).

Note that every n-labeled Boolean algebra is also an (n− 1)-labeled Boolean algebra
using the labeling function tCn−1(b) = (tCn(b))n−1. We denote this (n−1)-labeled Boolean
algebra by (C)n−1.

We observe that if C0 ≤n C1, then (C0)n−1 ⊆n−1 (C1)n−1, since α ≤n β implies α ≡n−1

β.

Definition 3.2. Let B be a an n-labeled Boolean algebra, b ∈ B and σ = tBn(b) ∈ BFn.

We say that b splits into a σ-full partition if there exists a partition b =
∨`
i=0 ai in B

such that

• tBn(a0) = σ,
• for every δ ∈ σ, there is some j with 0 < j ≤ ` such that tBn−1(aj) = δ.

For σ ∈ INVn, we say that b splits into a σ-full partition if there exists a partition
b =

∨`
i=0 ai in B such that each ai has n-indecomposable bf-type and splits into a

tBn(ai)-full partition.

Remark 3.3. Note that for any Boolean algebra B and every b ∈ B, if TBn (b) = σ then
there always exists a σ-full partition of b [HM, Lemma 7.4 (2)]. This need not be the
case for finite n-labeled Boolean algebras.
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3.2. n-approximations. We consider sequences of finite n-labeled Boolean algebras.

Definition 3.4. An n-approximation is a sequence {(Ak, tkn) : k ∈ ω} of finite n-labeled
Boolean algebras such that

(1) for each k, Ak ≤n Ak+1;
(2) for each k and every minimal element b of Ak, b splits in Ak+1 into a tk+1

n (b)-full
partition.

An n-Z-approximation is an n-approximation that is computable in Z.

Remark 3.5. If A has an n-Z-approximation by {(Ak, tkn) : k ∈ ω} and m < n, then it
is also has an m-Z-approximation by {(Ak, tkm) : k ∈ ω}, where tkm(x) =

(
tkn(x)

)
m

.

Theorem 3.6. Let {(Ak, tkn) : k ∈ ω} be an n-approximation of A =
⋃
kAk. Then for

every x ∈ A, {tkn(x) : k ∈ ω} eventually stabilizes and TAn (x) = limk→∞ t
k
n(x).

Proof. It is clear that A is a Boolean algebra. What we need to prove is that for
every a ∈ A, TAn (a) = limk→∞ t

k
n(a). That is, we need to show that the sequence

{tkn(a) : k ∈ ω} stabilizes, and that once it stabilizes at a certain n-bf-type, it ends up
building an element of that type. The fact that we are taking full partitions of every
minimal element at every step guarantees the latter. In this proof we will cite results
and definitions from [HM] which might be difficult for the reader unfamiliar with that
source to follow.

We prove, by induction on n, that for every n-indecomposable element a ∈ A, if
TAn (a) = α ∈ BFn then ∃k0 ∀k ≥ k0(tkn(a) = α). This is sufficient since every b ∈ A
is a finite sum of n-indecomposables (by Theorem 2.4), and if the property holds for
the n-indecomposables in a partition of b, then it also holds for b. Since for every k,
(Ak)n−1 ⊆n−1 (Ak+1)n−1, we may assume, by the induction hypothesis, that for every x
and sufficiently large k, TAn−1(x) = tkn−1(x).

First, we show that for every k, tkn(a) ≤n TAn (a) = α. Let (α0, . . . , α`) ∈ BF<ω
n−1 be

a partition of α (see [HM, Definition 7.3]), so that (by [HM, Lemma 7.5]) we need to
find a partition (β0, . . . , β`) of tkn(a) such that αi ≤n−1 βi for every i ≤ `. By [HM,
Lemma 7.4], there exists a partition a = a0 ∨̇ . . . ∨̇ a` such that αi ≤n−1 T

A
n−1(ai).

Let k1 be such that a0, . . . , a` ∈ Ak1 and TAn−1(ai) = tk1n−1(ai) for each i. Then we

have αi ≤n−1 T
A
n−1(ai) = tk1n−1(ai). Now, tkn(a) ≤n tk1n (a), so there exists a partition

(β0, . . . , β`) of tkn(a) such that tk1n−1(ai) ≤n−1 βi. It follows that αi ≤n−1 βi for every
i ≤ `, as required.

Now, we need to show that for some k0, tk0n (a) = TAn (a) = α. Recall that for β ∈
BFn ⊆ P(BFn−1), dc(β) = {γ ∈ BFn−1 : ∃δ ∈ β (γ ≤n−1 δ)}. For α = β0 + ... + βl ∈
INVn, let dc(α) =

⋃l
i=0 dc βi. It follows from [HM, Theorem 7.18.(3a)] that this is

well-defined on INVn. In terms of Boolean algebras, we have that δ ∈ dc(α) if and only
if every Boolean algebra of n-bf-type α has infinitely many ultrafilters of (n−1)-bf-type
≥n−1 δ.

Since the sequence tkn(a) is ≤n-increasing, it follows from [HM, Theorem 7.18.(3a)]
that for every k, dc(tkn(a)) ⊇ dc(tk+1

n (a)). Let k0 be such that ∀k ≥ k0 dc(tkn(a)) =
dc(tk0n (a)). We will now prove that tk0n (a) ≥n α using the following which is also implied
by [HM, Theorem 7.18.(3)].
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Given α ∈ BFn and β0 + ...+βl ∈ INVn, we have that α ≤n β0 + ...+βl
if and only if
(1) dc(β0 + ...+ βl) ⊆ dcα;
(2) there is a partition (α0, . . . , αl) ∈ INV<ω

n−1 of α such that for each i,
(βi)n−1 ≤n−1 αi.

To show (1), that dc(tk0n (a)) ⊆ dcα, fix δ ∈ dc(tk0n (a)). We claim that there are
unboundedly many disjoint elements below α of (n-1)-bf-type ≥n−1 δ. Suppose not,
and that r ∈ ω is maximal such that, for some u > k0, there exists a tuple a0, ..., ar of
disjoint minimal elements in Au � a with tun−1(ai) ≥n−1 δ. Observe that for every s > u
and for each i ≤ r, there is a minimal element ai,s ∈ As � ai with tsn−1(ai,s) ≥n−1 δ (by
[HM, Lemma 7.12]). Furthermore, there is at most one such ai,s; otherwise, r would not
be maximal. This implies that δ 6∈ dc tu+1

n (ai) for every i ≤ r; otherwise a tu+1
n (ai)-full

partition would add at least a second element of type ≥n−1 δ below ai, contradicting
the maximality of r. Let b = a − (a0 ∨ ... ∨ ar). Since δ ∈ dc(tu+1

n (a)), it follows that
δ ∈ dc

⋃
tu+1
n (b). But since b splits into a tu+1

n (b)-full partition, this would add an n−1-
indecomposable bf-type ≥n−1 δ below b contradicting the maximality of r. This proves
our claim and that δ ∈ dcα.

To show (2), let a0, . . . , a` be the minimal elements of Ak0 � a, and let βi = tk0n (ai).

So, tk0n (a) =
∑`

i=0 βi and βi ≡n−1 T
A
n−1(ai). Then (TAn−1(ai))i≤` is a partition of α as

required by (2). �

Theorem 3.7. Let A be a presentation of a Boolean algebra, and let Z be any set. The
following are equivalent:

(1) A is n-Z-approximable. That is, Bn(A) is Z-computable (Definition 2.9).
(2) A has n-Z-approximation.

Proof. First, let us assume that Z computes Bn(A). We will define an n-Z-approximation
{(Ak, tkn) : k ∈ ω} of A. Let u be the partial function on A defined so that, for each
a ∈ A, u(a) is the ≤n-greatest n-bf-type γ ∈ BFn such that Rγ(a) holds in A, if such
γ exists, and u(a) is undefined otherwise. Note that the function u and its domain are
Z-computable and that u(a) ≤n TAn (a). Moreover, if a ∈ A is n-indecomposable, then
u(a) = TAn (a).

To define A0, search for a partition a0, . . . , a` of 1A such that for every i, u(ai) is
defined (which must exist by Theorem 2.4). Let A0 be the Boolean algebra generated
by these ai, and let t0n(ai) = u(ai).

Let {b0, b1, . . .} be an enumeration of the non-zero elements of A. To ensure that
A =

⋃
k∈ωAk, we will make sure that bk ∈ Ak+1. Suppose we have already defined

(Ak, tkn) so that (Ak, tkn) ≤n (A, TAn ) and {b0, . . . , bk−1} ⊆ Ak. For each minimal element
a of Ak, look for a partition a0, . . . , a` ∈ A of a such that

• u(ai) is defined for each i ≤ `;

• for some h ≤ `, a ∧ bk =
∨h
i=0 ai and a− bk =

∨`
i=h+1 ai;

• tkn(a) ≤n
∑`

i=0 u(ai);

• the elements a0, ..., a` can be joined in some way to produce a
(∑`

i=0 u(ai)
)
-full

partition of a.
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There exists such a tuple of elements in A, by applying Remark 3.3 to a ∧ bk to
obtain a partition a0, . . . , ah and to a − bk to obtain a partition ah+1, . . . , a`, so that a
Z-computable search will eventually find such a partition of a.

Let Ak+1 be the extension of Ak generated by the partitions a0, . . . , a` chosen below
each minimal element a of Ak. For each of these new elements ai, let tk+1

n (ai) = u(ai).

For each b ∈ Ak+1 with b =
∨j
i=1 ci, where the ci’s are minimal elements in Ak+1, let

tk+1
n (b) =

∑j
i=1 u(ci).

For every minimal element d ∈ Ak+1, we have tk+1
n (d) ≤n TAn (d), hence (Ak+1, t

k+1
n ) ≤n

(A, TAn ). For every minimal element c ∈ Ak, we have tkn(c) ≤n tk+1
n (c), hence (Ak, tkn) ≤n

(Ak+1, t
k+1
n ). For every minimal element a ∈ Ak, both bk ∧ a and a − bk are in Ak+1,

hence bk ∈ Ak+1. This completes the proof of (2).
Suppose now that we have an n-Z-approximation {(Ak, tkn) : k ∈ ω} of A. By Remark

3.5, we have m-Z-approximations of A for m ≤ n as well. Furthermore, for m < n, and
for all α ∈ BFm and a ∈ A, we have that Rα(a) if and only if tkm(a) ≥m α, where k is
such that a ∈ Ak. This is because for all m < n, tkm(a) = TAm (a). Thus, the predicates
Rβ are computable in Z for β ∈ BFn−1. Given a ∈ A, we have that Rα(a) if and only if
∃k (tkn(a) ≥n α), so all the predicates Rα(A) for α ∈ BFn are computably enumerable
in Z. On the other hand, from the inductive step in the proof of [HM, Lemma 8.9],
we get that Rα is Πc

1 over the predicates Rβ for β ∈ BFn−1. Since we are assuming
the predicates Rβ for β ∈ BFn−1 are Z-computable, we get that Rα(A) is co-c.e. in Z.
Thus, the predicates Rα(A) for α ∈ BFn are computable in Z. �

Remark 3.8. The proof of Theorem 3.7 is uniform in the following sense. We can
uniformly go from a Z-computable index for Bn(A) to a Z-computable index for the se-
quence {Ak : k ∈ ω}, and vice versa. When we refer to an index for an n-Z-approximable
Boolean algebra, we mean an index of either of these two kinds.

Remark 3.9. Suppose that {(Ak, tkn) : k ∈ ω} is an n-approximation of A. Then the
ultrafilters U of A are in one-to-one correspondence with the sequences {ak : k ∈ ω},
where ak is a minimal element of Ak and ak ≥ ak+1. (Given U , let ak be the unique
minimal element of Ak that is in U . Given {ak : k ∈ ω}, let U = {a ∈ A : ∃k (a ≥ ak)}.)

With this in mind, we say that a ∈ A bounds V ∈ Ult(A) if V ∈ Oa.

4. Some useful 5-bf-types

We now describe the 5-indecomposable types we are going to use in our construction.
All the 5-bf-types are described in [HM, Section 6]. There are two 5-indecomposable
types that are the principal actors in our construction: w = f23 and u = f24. The key is
that both u and w are exclusive 5-indecomposable types (Definition 2.13) and w <5 u.
No such pair of exclusive n-indecomposable types exists for n = 1, 2, 3, 4. Another key
actor is w∞ = f12, which is not exclusive. The relationship of w∞ to w and u is given
by

w∞ <5 w <5 u.

These three 5-bf-types have the same parent, which we call α = e6 ∈ BF4. In other
words, (u)4 = (w)4 = (w∞)4 = α. The 5-approximable Boolean algebras we construct
will use only seven of the twenty-seven 5-indecomposable types: f0, f1, f2, f12, f23, f24, f26.
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Let
D = {f0, f1, f2, f12, f23, f24, f26} ⊂ BF5,

and let 〈D〉 = {
∑k

i=0 βi : k ∈ ω, βi ∈ D} ⊆ INV5, the subset of INV5 generated by
D under addition. The first five of the seven 5-indecomposable types listed have the
property that all Boolean algebras with that type are isomorphic: f0 corresponds to
atoms, f1 to 1-atoms, f2 to 2-atoms, f26 to the atomless Boolean algebra, and u = f24

to the interval algebra Int
(
ω2 + η

)
. We will say that such back-and-forth types are

isomorphism types. The other two 5-bf-types are not isomorphism types, but in our
construction we will consider only one Boolean algebra of type w = f23, namely, the
interval algebra Int

(
ω3 + η

)
; and we will consider only two Boolean algebras of type

w∞ = f12: Int
(
(ω3 + η) · ω

)
, which we call a 1-w-atom and has only one ultrafilter of

type w∞, and Int
(
(ω2 + 1 + η) · η

)
, which has densely many ultrafilters of type w∞.

(We will not be using interval algebras in what follows; we just wanted to give an idea
of what these types look like.)

We are going to build a sequence {A[s] : s ∈ ω} of finite 5-labeled Boolean algebras
with the following properties:

(D1) All the minimal elements of A[s] are labeled with types in D;
(D2) Elements of type f0, f1, f2, f26, and u never change their type. Minimal elements

in A[s] of 5-indecomposable type w∞ can either retain type w∞ or increase their
type to w in A[s + 1]. Minimal elements of type w can either retain type w or
increase their type to u.

(D3) Each minimal element a of A[s] splits in A[s+ 1] into a canonical t
A[s+1]
5 (a)-full

partition as indicated in the table below.

(D4) t
A[s]
5 (1) = w∞ for all s.

Note that these conditions guarantee that {A[s] : s ∈ ω} is a 5-approximation of some
Boolean algebra A with T5(1A) = w∞.

In our construction, we will use a particular kind of full partitions that we call canon-
ical partitions and we list below. To each γ ∈ D, we will assign a tuple (γ0, . . . , γk) ∈
BF<ω

5 such that γ ≡5

∑
i≤k γi, γ0 = γ, and for each i with 1 ≤ i ≤ k, (γi)4 ∈ γ. Note

the similarities to the definition of γ-full partition (Definition 3.2). To help the reader
picture these types, in the final column we note the isomorphism type of the algebra
constructed below an element of a given type, provided the type of the element does
not change during the construction.

type canonical partition algebra
f0 f0 Int

(
2
)

f1 f1, f0 Int
(
ω
)

f2 f2, f0, f1 Int
(
ω2
)

f26 f26, f26 Int
(
η
)

u = f24 u, f0, f1, f26 Int
(
ω2 + η

)
w = f23 w, f0, f1, f2, f26 Int

(
ω3 + η

)
w∞ = f12 w∞, w∞, f0, f1, f2, f26 −

The following theorem describes (〈D〉,≤5,+).
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Theorem 4.1. The following equations hold in INV5:

(1) u = u+ f0 = u+ f1 = u+ f26

(2) w = w + f0 = w + f1 = w + f2 = w + f26

(3) w∞ = w∞+f0 = w∞+f1 = w∞+f2 = w∞+f26 = w∞+u = w∞+w = w∞+w∞

(4) w + u = w + w

Proof. To show (1)-(3), we use the following consequence of [HM, Lemma 7.12] and
[HM, Theorem 7.18.(3)]: Given β, γ ∈ BFn,

β /n γ =⇒ β = β + γ,

where γ /n β was defined in [HM, Definition 5.2]. We let the reader verify (using the
material in [HM, Section 6] ) that u /5 f0, f1, f26, that w /5 f0, f1, f2, f26, and that w∞ /5

f0, f1, f2, f26, u, w. Part (4) follows from [HM, Theorem 7.18.(3)], using the partition
(α, α). �

Definition 4.2. Let A be a Boolean algebra and γ an n-indecomposable type. We let
num(γ,A) ∈ ω ∪ {∞} be the number of ultrafilters in A of type γ.

For a finite n-labeled Boolean algebra A, we let num(γ,A) be the number of minimal
elements of A of type γ.

Definition 4.3. A 1-w-atom is a 5-indecomposable Boolean algebra A that satisfies
the following properties:

(i) T5(A) = w∞.
(ii) For each element a ∈ A with T4(a) = α, T5(a) ∈ {w,w∞}.

(iii) There is no disjoint pair a, b ∈ A with num(α,A � a) = num(α,A � b) =∞.

The conditions listed for a 1-w-atom do not determine a unique isomorphism type.
However, if we construct a 5-approximation of a Boolean algebra A which satisfies (D1)-
(D4), then every subalgebra of A which is a 1-w-atom will be isomorphic to the interval
algebra Int

(
(ω3 + η) · ω

)
. (We will not use this fact in our construction.)

Lemma 4.4. Let {A[s] : s ∈ ω} be a 5-approximation of a Boolean algebra A that
satisfies (D1)-(D4). Suppose that for every s0 there exists s ≥ s0 such that A[s] has
exactly one minimal element of 5-indecomposable type w∞ and no minimal elements of
5-indecomposable type u. Then A is a 1-w-atom.

Proof. By condition (D4), T5(A) = w∞. By condition (D1), every 5-indecomposable
element a ∈ A with T4(a) = α must satisfy T5(a) ∈ {u,w,w∞}. Since there are no
minimal elements of type u in any approximation of A, it follows that T5(a) ∈ {w,w∞}.
Finally, if there were disjoint elements a, b ∈ A with num(α,A � a) = num(α,A � b) =
∞, then we would have Tn(a) = w∞ = Tn(b), since Tn(a), Tn(b) ∈ 〈D〉 and w∞ is the
only 5-bf-type in 〈D〉 with α ∈ dcw∞ by part (3) of Theorem 4.1. By Theorem 3.6,
there is an s0 such that for all s ≥ s0, ts5(a) = T5(a) = w∞ and ts5(b) = T5(b) = w∞.
Thus, at every stage s ≥ s0 there are distinct minimal elements a′, b′ ∈ A[s] with a′ ≤ a,
b′ ≤ b and ts5(a′) = w∞ = tr5(b′). This contradicts the hypothesis about A. �

4.1. Picturing n-approximations. A good way to picture n-approximations is by the
use of labeled trees. Let {(A[s], tsn) : s ∈ ω} be an n-approximation. At the root of the
tree, we put one node labeled t0n(1A). At the sth level of the tree, we draw the minimal
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elements of A[s] and label them using tsn. The ordering on the nodes of the tree comes
from the ordering of the minimal elements of A[s+ 1] relative to those of A[s]. So, the
labels of the children at level (s+ 1), of a node a at level s, form a ts+1

n (a)-full partition.
Notice that the label of a does not need to be ts+1

n (a), but tsn(a).
In the picture below we draw the first few levels of the trees corresponding to 5-

approximations of the Boolean algebras Af1 , Af26 , and Au, which are of types f1, f26,
and u, respectively. All of these examples satisfy (D1)-(D4), and the 5-bf-types of the
elements do not change over time.

f1 ??

f0 f1 ??

f0 f0 f1 ??

f0 f0 f0 f1

f26

f26

lllllll
f26

RRRRRRR

f26
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f26
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u f26
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5. Necessary tools

In this section we establish several lemmas that will be useful in our construction.
First, we look at how to deal with guesses of answers to 0′′ questions. Second, we
consider infinite sums of n-Z-approximable Boolean algebras. Third, we show how to
enumerate all the 4-0-approximable Boolean algebras, recursively in 0′. The reader
might want to skip the technical proofs in this section in a first read of the paper.

5.1. Zero double guesses. The following lemma shows that the guesses to 0′′ questions
can be ordered so that the correct one is the limit infimum of all the guesses. This is not
new and is essentially what happens when one does infinite-injury priority argument on
a tree of strategies.

Lemma 5.1. Given e ∈ ω, there are total computable functions z : ω → ω and g : ω → ω
such that there is at most one ` with z(s) = ` for infinitely many s; moreover, there
is an `0 with z(s) = `0 for infinitely many s if and only if ϕ0′′

e (0) ↓, in which case
ϕ0′′
e (0) = g(`0).

Remark 5.2. We can construct z and g so that, also, for every `, if z(s) < ` ≤ s then
z(t) 6= ` for all t ≥ s. Thus, if ϕ0′′

e (0) = g(`0) then `0 ≤ z(s) for all s ≥ `0.

Proof. Let K = 0′ and Z = K ′ = 0′′. Fix a computable enumeration {k0, k1, . . .} of
K. We construct a computable approximation of K using finite strings {Ks : s ∈ ω}:
Ks ∈ {0, 1}ks+1 satisfying Ks(x) = 1 if and only if x = ki ≤ ks for some i ≤ s. We
say that a stage t is a true stage if ∀s > t(ks > kt); thus, t is a true stage if and
only if Kt = K � kt + 1, and also if and only if Kt ⊆ Ks for all s (where “⊆” means
initial segment). Thus, K =

⋃
t a true stage Kt (where the union is of partial functions

into {0, 1}).
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Similarly, we construct a computable approximation {Zs}s∈ω of Z so that Z =
limt a true stage Zt: Given a string σ ∈ {0, 1}<ω and x < |σ|, we define

σ′(x) =

{
1 if ϕσx,|σ|(x) ↓
0 otherwise

(where ϕσx is the xth Turing functional) and take Zs = K ′s. If Z(x) = 1, then there
exists a finite string σ ⊆ K with σ′(x) = 1 and a true stage t with σ ⊆ Kt; in this
case Zs(x) = 1 for all s ≥ t. If Z(x) = 0, then K ′t(x) = 0 for every true stage t with
x < |K ′t|. Thus, Z = limt a true stage K

′
t.

We now define g and z as follows. Let

g(s) = ϕZs
e,s(0),

and g(s) = 0 if this computation does not converge. If ϕZs
e (0) ↓, then let Z̃s (the use of

this computation) be the shortest initial segment of Zs such that ϕZ̃s
e (0) ↓, and otherwise

let Z̃s = Zs (i.e. if ϕZs
e (0) ↑). Let K̃s be the shortest initial segment of Ks such that

K̃ ′s ⊇ Z̃s. We define z(s) to be the least t ≤ s such that Kt ⊆ Ks and K̃t = K̃s. Note
that g(s) = g(z(s)) because Z̃s = Z̃z(s).

We show that g and z are as claimed. Suppose z(s) = `0 for infinitely many s. Then
`0 is a true stage, since K`0 ⊆ Ks for infinitely many s. We now claim that Z̃`0 ⊆ Z. If
not, then since `0 is a true stage, there is some x such that Z̃`0(x) = 0 and Z(x) = 1.
In this case there would be another true stage t > `0 with Zt(x) = 1. But now for each
s ≥ t we have Zs(x) = 1, so that Z̃s 6= Z̃`0 . This contradicts that z(s) = `0 for infinitely
many s. It follows that ϕ0′′

e (0) ↓= g(`0).
Suppose ϕ0′′

e (0) ↓, and let t be the least true stage for which ϕZt
e (0) ↓ and Z̃t ⊆ Z. It

follows that for any true stage s ≥ t we must have Z̃t = Z̃s, and of course Kt ⊆ Ks, so
that z(s) = z(t). Therefore, if ϕ0′′

e (0) ↓ then there is some ` with z(s) = ` for infinitely
many s (namely ` = z(t)), and g(`) = ϕ0′′

e (0).

Finally, we show that z satisfies the condition stated in Remark 5.2: that z(s) < ` ≤ s

implies that z(t) 6= ` for every t ≥ s. Since z(s) < s, ϕ
Zz(s)
e (0) ↓. If K` 6⊆ Ks, then

K` 6⊆ Kt for any t ≥ s, so that z(t) 6= ` for all t ≥ s. If K` ⊆ Ks, then Kz(s) ⊆ K` ⊆ Ks

and K̃z(s) = K̃` = K̃s, so that z(`) = z(s) < `. Since for every t, z(z(t)) = z(t), we can
never have z(t) = `. �

5.2. Infinite sums of Boolean algebras. The second tool is ω-sums of Boolean al-
gebras. Given a sequence of Boolean algebras {Ai : i ∈ ω}, we define

A =
∑
i∈ω

Ai

to be the Boolean algebra whose domain is the set of infinite sequences which are
eventually constant and equal to either zero or one. In other words, the domain of A is

A = {〈ai : i ∈ ω〉 : ai ∈ Ai, (∃n∀k > n (ak = 0Ak
)) ∨ (∃n∀k > n (ak = 1Ak

))}
and the operations are calculated coordinatewise. (See [Mon89, Ch. 4, §11] for more
information on this operation, that they call the free product.)
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Lemma 5.3. Let {Ai : i ∈ ω} be a Z-computable sequence of uniformly n-Z-approximable
Boolean algebras. Let γ be a non-exclusive n-indecomposable type, and suppose that each
Ai has type γ. Then

∑
i∈ωAi is also n-Z-approximable and has n-indecomposable type

γ.

Proof. For each i ∈ ω, let {Ai[s] : s ∈ ω} be an n-Z-approximation of Ai. For notational
convenience, assume that for every i, Ai[0] is the two-element Boolean algebra and

t
Ai[0]
n (1Ai

) = γ. Define A[s] ⊆ A as follows.

A[s] = {〈a0, a1, . . .〉 : ∀i ≤ s ai ∈ Ai[s− i] &
(
(∀i ≥ s ai = 0Ai

) ∨ (∀i ≥ s ai = 1Ai
)
)
}.

In other words,

A[s] ∼= A0[s]⊕A1[s− 1]⊕ ...⊕As−1[1]⊕As[0].

Let tsn(〈a0, a1, ...〉) =
∑

i≤s t
Ai[s−i]
n (ai). Note that A[s] is a finite n-labeled Boolean

algebra and A[s] ≤n A[s + 1]. To see that {A[s] : s ∈ ω} is an n-Z-approximation, we
have to show that every minimal element a of A[s] splits in A[s+ 1] into a ts+1

n (a)-full
partition. Observe that if a = 〈a0, a1, ...〉 is a minimal element of A[s], then either, for
some i < s, ai is a minimal nonzero element of A[s− i] and aj = 0 for j 6= i; or ai = 0
for i < s and ai = 1Ai

for i ≥ s. In the former case, we have that ai splits in Ai[s− i+1]

into a t
Ai[s−i+1]
n (ai)-full partition. In the latter case, we have that 1As splits in As[1] into

a γ-full partition. In either case, a splits in A[s+ 1] into a ts+1
n (a)-full partition. �

5.3. Listing of all n-Z-approximable Boolean algebras. In this subsection we
show that there is a 0′-computable enumeration of (n+1)-0′-approximations which lists
all the Boolean algebras that have a computable n-approximation.

Lemma 5.4. Suppose s > 0 and {(Ak, tkn) : k < s} is a sequence of finite n-labeled
Boolean algebras that satisfy the conditions of Definition 3.4. Then there is an n-
approximation {(Ak, tkn) : k ∈ ω} extending {(Ak, tkn) : k < s}.

Proof. We show how to build (As, tsn). The rest of the sequence is then built in the
same way, one step at a time. For each a ∈ As−1, let tsn(a) = ts−1

n (a). What we need to
do now is to build a full partition for each minimal element of A[s]. For each minimal
a ∈ As−1, we add new disjoint elements {aγ : γ ∈ tsn(a)} ∪ {â} below a, and let tsn(aγ)
be such that (tsn(aγ))n−1 = γ and tsn(a) /n t

s
n(aγ), and let tsn(â) = tsn(a). The existence

of these tsn(aγ) ∈ BFn follows from the following fact: If B is a Boolean algebra of
n-bf-type α that is n-indecomposable for ultrafilter U ∈ Ult(B), and V ∈ Ult(B) with
V 6= U , then tn(B) /n tn(V ) (see [HM, Definition 5.2], and the comment immediately
thereafter); furthermore, for each γ ∈ α there must be some such V ∈ Ult(B) with
tn(V ) = γ. Note that this is a tsn(a)-full partition of a. Thus, {(Ak, tkn) : k ≤ s} also
satisfies the conditions of Definition 3.4. �

Lemma 5.5. There is a 0′-computable list {Ce : e ∈ ω} of (indices for) (n + 1)-0′-
approximable Boolean algebras such that for every n-0-approximable algebra D, there is
an index e with D = (Ce)n. Furthermore, the index e can be found 0′-uniformly from an
index for an n-0-approximation of D.

Proof. Fix e ∈ ω, the index of a purported n-0-approximation of D. We write D[s] for
ϕe(s), a purported finite n-labeled Boolean algebra in the n-0-approximation {D[s] :
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s ∈ ω} of D. Given t, if D[s] is defined for all s < t, then it is computable to check that
the conditions of Definition 3.4 are satisfied for {D[s] : s < t} (which we will write as
{D[s]}s<t).

First, check that the following condition is met: For every t and each stage u, if for
each k < t, D[k] converges by stage u, then {D[k]}k<t meets the conditions of Definition
3.4. This is a Π0

1 condition, so it is computable in 0′. If the condition does not hold,
then ϕe does not give an n-approximation, and hence we need not worry about how to
build Ce. Just let Ce be any (n + 1)-approximation. Suppose now that this condition
holds.

The problem is that 0′ cannot check whether ϕe is total. So, we will verify this one
step at a time; while ϕe looks total, we define Ce by stages. If we ever discover that
ϕe does not converge at some input, then we continue the construction of Ce using the
previous lemma. We now carry out this construction.

To compute the predicates Rγ on D, we use the following observation: For each
γ ∈ BFn+1, let Īγ be the set of sequences (τ0, . . . , τk) ∈ BF<ω

n for which there is a
partition

∑
i≤k ρi of γ with τi ≤n ρi for each i. (See [HM, Section 7.1] for background on

partitions.) Note that Īγ is computable because there are only finitely many partitions
of γ of size k. If B is any Boolean algebra and a ∈ B, then

Rγ(a) ⇐⇒ ∀a0 ∨̇ ... ∨̇ ak = a
[ k∧
i=0

Tn(ai) ∈ BFn =⇒ (Tn(a0), ..., Tn(ak)) ∈ Īγ
]
.

We will construct an (n + 1)-0′-approximable Boolean algebra Ce (as in Definition
3.4) by defining the relations Rγ on Ce for each γ ∈ BFn+1. This approach suffices
by Theorem 3.7. Our construction uses a 0′ oracle. At stage s we will build a finite
(n+ 1)-labeled Boolean algebra Ce[s] and then let Ce =

⋃
s Ce[s]. We will now drop the

subscript and write just C for Ce.
At stage 0, if D[0] does not converge let C be any (n + 1)-0′-approximable Boolean

algebra.
At stage s+ 1, check whether D[s+ 1] converges. If it does, let (C[s+ 1])n = D[s+ 1].

For each γ ∈ BFn+1, we extend the predicate Rγ to each a ∈ C[s+ 1] r C[s] as follows:

(*) Let Rγ(a) if and only if for all t ≥ s and all stages u, if D[t] converges by
stage u, then for all partitions a1 ∨̇ ... ∨̇ ak = a with a0, . . . , ak ∈ D[t] and∧k
i=0 Tn(ai) ∈ BFn, we have that (Tn(a0), ..., Tn(ak)) ∈ Īγ.

Note that (∗) is a Π0
1 condition. Also, note that R(γ)n(a) holds in D[s+ 1]. Otherwise,

if D[s + 1] does not converge, we have that ϕe is not total. Define C by extending the
sequence {C[t] : t ≤ s} constructed thus far using Lemma 5.4. �

6. No zero-triple proof

The following theorem is the heart of our construction of a low5 Boolean algebra which
is not isomorphic to a computable Boolean algebra via a 0(7)-computable isomorphism.
We will use the relativization of this theorem to 0(4) in the proof of Theorem 6.8.

Theorem 6.1. There exists a 5-0′-approximable Boolean algebra which is not 0′′′-
isomorphic to any 4-0-approximable Boolean algebra.
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Proof. Let {Ci : i ∈ ω} be a 0′-computable listing of 5-0′-approximations to Boolean
algebras which includes all 4-0-approximable Boolean algebras, as in Lemma 5.5. We
assume that the listing is such that there is a 0′-computable function h : ω × ω → ω
with the property that for each c ∈ Ci we have

Ch(i,c) = Ci � c.

Let {ΦX
e : e ∈ ω} be a computable listing of Turing functionals.

We are going to build a 5-0′-approximable Boolean algebra

A =
∑
e,i∈ω

A〈e,i〉,

that, for each e, i ∈ ω, satisfies the requirement:

Re,i : A〈e,i〉 is not isomorphic to Ci � Φ0′′′
e (1A〈e,i〉).

Satisfying these requirements suffices to establish the theorem. For suppose, toward a
contradiction, that Φ0′′′

e : A → Ci is an isomorphism; then we must haveA〈e,i〉 isomorphic

to Ci � Φ0′′′
e (1A〈e,i〉), contradicting Re,i.

Fix e and i. By the uniformity of Lemma 5.1, we can compute indices for two 0′-
computable functions

ze,i : ω → ω and ge,i : ω → ω

such that

ge,i(`0) = h(i,Φ0′′′

e (1A〈e,i〉)),

where `0 ∈ ω is the only number satisfying ze,i(s) = `0 for infinitely many s. If
Φ0′′′
e (1A〈e,i〉) ↑, then no ` occurs infinitely often.

The remainder of the proof is the construction of the restricted algebra A〈e,i〉 using the
two 0′-computable functions ze,i and ge,i to guess the restricted algebra Ch(i,Φ0′′′

e (1A〈e,i〉 ))
.

(If Ci is not the image of Φ0′′′
e , then the construction is moot.) We will drop reference

to the subscripts e and i in what follows and just write z, g, A, and C. We abbreviate
Ch(i,g(`)) as B`. For simplicity, we will also drop the 0′ oracle, as we can relativize the
proof later. Thus, our goal now is to prove the following proposition.

Proposition 6.2. Let {B` : ` ∈ ω} be a computable sequence of 5-0-approximable
Boolean algebras, and let z : ω → ω be a total computable function with the properties
of the one in Lemma 5.1. We can build, uniformly in z and {B` : ` ∈ ω}, a 5-0-
approximable Boolean algebra A such that: if there is a number `0 with the property
that z(s) = `0 for infinitely many s, then A is not isomorphic to B`0.

Let C = B`0 . We will build A as a uniform sum of 5-0-approximable Boolean algebras

A =
∑
`∈ω

A`,

where A` is a subalgebra we build on the guess that ` = `0 and C = B`.
We construct each A` to be 5-0-approximable in stages s, so that {A`[s] : s ∈ ω} is

computable uniformly in `. These approximations will all satisfy properties (D1)-(D4)
from Section 4 so that each A` will have 5-indecomposable type w∞; it will then follow
from Lemma 5.3 that A is 5-0-approximable with 5-indecomposable type w∞. Let `0
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be the unique value (if it exists) such that for infinitely many s, z(s) = `0. (If `0 does
not exist, think of `0 as ∞.)

(B1) If ` < `0, then A` will have infinitely many ultrafilters of type w∞, and finitely
many of type w or u.

(B2) If ` = `0, then A`0 will have either one ultrafilter of type w∞ and infinitely many
of type w, or infinitely many of type w∞ and finitely many of type w. In either
case it will have no ultrafilters of type u.

(B3) If `0 < `, then A` will have infinitely many ultrafilters of type w∞, none of type
w and finitely many of type u.

In the table below we list num(γ,A`) for γ = u,w,w∞. The symbol f means “finitely
many”.

u w w∞

` < `0 f f ∞
` = `0 0 ∞ 1

f ∞
` > `0 f 0 ∞

Thus, in total, A will contain either exactly one 1-w-atom and hence infinitely many
w ultrafilters, or no 1-w-atom and only finitely many w ultrafilters. In either case it
will contain infinitely many u ultrafilters and infinitely many w∞ ultrafilters.

We will assign a worker G` to construct the algebra A` using a strategy which will
ensure that the following condition is met:

G` : (∃∞s) z(s) = ` =⇒ A is not isomorphic to B`.
Of course, only G`0 has a real responsibility.

The goal of G` is achieve one of the following conditions.

(S1) A has finitely many w ultrafilters, and there are more w ultrafilters in B` than
there are in A.

(S2) A` is a 1-w-atom and, for every b ∈ B`, B` � b is not a 1-w-atom because one of
the following applies:
(a) tB`

5 (b) 6= w∞;
(b) b bounds a u ultrafilter in B`;
(c) b splits into two elements, each of which bounds infinitely many α ultrafil-

ters.

We describe G`’s strategy. First, if B` does not have 5-bf-type w∞, then we have
nothing to do, as A will have 5-bf-type w∞. So suppose it does, and hence from some
stage onward 1B`

has type w∞; this is the moment when we start working for G`. We
will attempt to satisfy (S1) as follows: If we see some b ∈ B` such that B` � b has more w
elements than A has so far, then we will restrain the overall production of w elements
in A. If all these w elements below b stay with 5-bf-type w forever, we will end up
satisfying (S1). However, some of these elements may increase their 5-bf-type to u.
If this happens, then b satisfies (S2b), and we can take one step toward making A` a
1-w-atom. Taking this step implies increasing the 5-bf-type of all but one of the w∞

minimal elements in A`[s] to w in A`[s + 1]. Notice that this may injure the restraint
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that other elements b are imposing on the production of w elements, so we will have
to order the elements b ∈ B` according to some order of priorities. We will argue that
if we never manage to satisfy (S1), then we will satisfy (S2), as follows. For every w∞

element b of B`, there are three possibilities: (i) b splits into two or more w∞ elements,
(ii) there is some u element below b, and (iii) there are too many w elements below b.
Hence, we would win by (S2c), (S2b), or (S1), respectively. As long as there are no u
elements and too few w elements below b, we believe (S2c) will hold. At stages where
that occurs we will wait until a large number of α elements appear in B` � b. The reason
is that if (S2c) actually does hold, then all these α elements will have to turn into either
u or w elements. If we see any u element below b, then (S2b) holds. Otherwise, we will
see a lot of w elements at once - enough to act towards (S1), as mentioned above.

We now describe the construction of the sequence {(A`[s], t`[s]5 ) : s ∈ ω}. The con-
struction will be computable uniformly in `. At each stage s, A`[s] will contain at
least one minimal element of 5-indecomposable type w∞; the other minimal elements
which have 4-indecomposable type α will have 5-indecomposable type u, w, or w∞. The

sequence {(A`[s], t`[s]5 ) : s ∈ ω} will satisfy conditions (D1)-(D4) from Section 4.

We write A≤` to denote
∑l

i=0Ai. For each stage s, we will define rs ∈ ω, which will
tell us how far to look into the approximation of the B`.

Construction of A`:
Stage 0. For every `, let A`[0] be the Boolean algebra with two elements {0, 1},

where t
`[0]
5 (1) = w∞. We set r0 = 0.

Stage s + 1. There are two steps. In Step 1, the construction makes modifications
only to the 5-bf-types of elements in A`[s] (which will change only by increase, if at
all). Step 2 is where each subalgebra is extended to A`[s+1] according to the canonical
partitions discussed in Section 4.

Step 1. Each worker G` is in one of three states: cancelled, inactive, or active; all
workers are inactive at stage 0.

G` is cancelled at stage s+1. This happens when z(s) < ` < s and s is the first stage
after stage ` at which z(s) < `. By Remark 5.2, we will never have z(s) = ` after this
stage, so we need not worry about G` anymore. If there are any minimal w elements
in A`[s], increase their 5-bf-type to u. Leave the 5-bf-types of all the other minimal
elements unchanged. Define rs+1 = rs + 1 and proceed to Step 2.

G` is inactive at stage s + 1. This happens when either ` 6= z(s) or t
B`[rs]
5 (1) 6= w∞,

unless G` has been cancelled at this stage. No change is made to the values of t
`[s]
5 .

Define rs+1 = rs + 1 and proceed to Step 2.

G` is active at stage s+ 1. This happens when z(s) = `. We will call s+ 1 an `-stage.
There are two possible strategies for active G`: restrained or unrestrained.

• restrained: Restrain the production of w elements at this stage because condition
(S1) currently holds.
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• unrestrained: It looks as though condition (S2) may hold at the end, so take one
step toward building a 1-w-atom.

There are two phases: the strategy phase, where the strategy is determined, and the
action phase, where any actions modifying the types of elements occur.

Strategy phase. The first step is to look far enough into the approximation of B`, or
in other words, to define rs+1: For each minimal α element b ∈ B`[rs], we search for a
stage rb ≥ rs in the 5-∅-approximation of B` at which one of the following conditions
holds.

(W1) All minimal α elements in B`[rb] � b have exclusive 5-indecomposable types.
(W2) num(α,B`[rb] � b) ≥ 2 · num(α,A[s]) + 2 (i.e. there are many more α elements

in B`[rb] below b than there are currently in A[s]).

(W3) t
B`[rb]
5 (1) >5 w

∞ or some minimal element a ∈ B`[rb] has 4-bf-type not in {(σ)4 :
σ ∈ D}.

Once this task has been completed for each minimal element b of B`[rs], set rs+1 to
the maximum of all the rb and rs + 1.

If we find a stage at which (W3) holds, then we know that A cannot be isomorphic
to B`, and so we restrain G` at every stage at which it is active. In what follows we
suppose that (W3) does not hold.

We say that b ∈ B`[rs+1] requires attention at stage s+ 1 if

num(w,B`[rs+1] � b) > num(w,A≤`[s]), and
num(u,B`[rs+1] � b) = 0.

If no b ∈ B`[rs+1] requires attention at this stage, then declare the strategy of G` to be
unrestrained, and move on to the action phase.

Otherwise, let b0 be the ≤N-least b ∈ B`[rs+1] (i.e., the one of highest priority) that
requires attention at this stage. We declare the strategy of G` to be restrained by
b0, unless the previous `-stage was restrained by c for some c <N b0, in which case
we declare the strategy of G` to be unrestrained. (Notice that in this latter case, c
has stopped requiring attention at s + 1, as b0 is the ≤N-least element that requires
attention. The idea here is that we want G` to have at least one unrestrained stage
before being restrained by some element of lower priority.)

Action phase. If G` has the unrestrained strategy, then increase the 5-type of every
minimal w∞ element of A`[s] to w, except for one element which will remain with 5-type
w∞. (In doing this, we are taking one step towards building a 1-w-atom.)

Otherwise, if G` has a restrained strategy, do not change the 5-type of any element
of A`[s]. (In doing this, we avoid building a 1-w-atom and add no new w elements.)

Step 2. We have already defined t
`[s+1]
5 on all the elements of A`[s]. Extend A`[s]

to A`[s+ 1] by splitting each minimal element a of A`[s] into a canonical t
`[s+1]
5 (a)-full

partition as described in Section 4. ♦

6.1. Verifications. We begin by proving that the construction does not get stuck in
the strategy phase while waiting for one of the conditions (W1), (W2), (W3) to hold.

Lemma 6.3. Let s + 1 be a stage at which G` is active. For each minimal element
b ∈ B`[rs], there is some stage rb ≥ rs at which one of the conditions (W1)-(W3) is
satisfied.
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Proof. Fix a minimal element b in B`[rs]. Note that it is decidable during the con-
struction whether or not each condition (W1)-(W3) holds for a given stage rb. Sup-
pose (W3) never occurs. We claim that if there are only finitely many α elements in
B` � b, they all have exclusive 5-bf-type. The reason is that if a ∈ B` � b has 4-bf-type
α but not exclusive 5-bf-type, then α ∈ dc tB`

5 (a). So, there are infinitely many ul-
trafilters in B` � a with 4-bf-type ≥4 α. But α = e6, which is the only 4-bf-type in
{(σ)4 : σ ∈ D} = {e0, e1, e2, e8, e6} that is ≥4 α (see [HM, Section 6]). Thus, if B` � b
bounds only finitely many α elements, they must each have exclusive 5-bf-types. So,
either num(α,B`[rb] � b) ≥ 2 · num(α,A[s]) + 2 and for rb sufficiently large we will see
that (W2) holds; or, we will find a stage rb ≥ rs at which all the α elements in B` � b
have exclusive 5-bf-type and (W1) holds. �

We have shown that the construction always outputs a Boolean algebra A, indepen-
dently of the specifics of z and {B` : ` ∈ ω}. We now show that if `0 does exist, then
A 6∼= B`0 . This is necessarily true if (W3) holds at any stage; so, in what follows, we
assume that this condition never holds.

Lemma 6.4. The algebras A` have type w∞ and satisfy conditions (B1)-(B3).

Proof. For all s and `, t
`[s]
5 (1) = w∞, so each A` has type w∞.

Suppose first that ` < `0. Then for all s ≥ `0, z(s) > `, hence G` is always inactive
after stage `0. Thus, the types of elements of A` no longer change after stage `0; so A`
will have densely many w∞ elements and just as many w or u elements as it had by
stage `0. Therefore, (B1) holds.

Suppose now that `0 < `. Then G` will be cancelled at some stage s + 1, and hence
A`[s + 1] has some w∞ elements, some u elements and no w elements. By remark 5.2,
G` will never be active after this stage, and hence it will always be inactive. A` will
end up having densely many w∞ elements, just as many u elements as it had at stage
s+ 1, and no w elements. Thus, (B3) holds.

Suppose finally that ` = `0. Then there are infinitely many stages at which z(s) = `0,
and for every s ≥ `0, z(s) ≥ `0. Thus, G` is never cancelled, so it has no u-elements
(which can be introduced only at a stage where G` is cancelled), and G` is active
infinitely often. Since the 5-bf-types do not change when G` has the restrained strategy
at `-stages, if G` has the restrained strategy at cofinitely many `-stages, then the 5-bf-
types of A` will also not change at cofinitely many `-stages. In this case A` will contain
only finitely many elements of type w and densely many elements of type w∞. If G` has
the unrestrained strategy at infinitely many `-stages, A` will have exactly one element
of type w∞, because at each such stage there will be only one minimal element of A`[s]
left in A`[s+ 1] with type w∞, as in Lemma 4.4. �

The following lemma shows how the number of w-elements in A[s] fluctuates. Keep
in mind that for all s and `,

num(w,A[s]) = num(w,A<`[s]) + num(w,A`[s]) + num(w,A>`[s]).
Lemma 6.5. Let s1 + 1 be an `-stage and let s0 + 1 be the previous `-stage. Then

num(w,A<`[s1 + 1]) = num(w,A<`[s0 + 1]) = num(w,A<`[s1]),
num(w,A>`[s1 + 1]) = num(w,A>`[s0 + 1]) = 0,
num(w,A`[s1 + 1]) ≤ num(α,A`[s1]).
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Thus, num(w,A[s1 + 1]) ≤ num(α,A[s1]). Furthermore, if G` has a restrained strategy
at s1 + 1, then

num(w,A[s1 + 1]) = num(w,A[s0 + 1]) = num(w,A≤`[s1]).

Proof. Given that s1 + 1 is an `-stage and s0 + 1 is the previous `-stage, Remark 5.2
implies that for every stage s with s0 < s ≤ s1 + 1, z(s) ≥ `. Hence, every `1 < ` is
inactive during these intermediate stages. Thus, num(w,A<`[s0+1]) = num(w,A<`[s1+
1]) = num(w,A<`[s1]).

Each `1 > ` which is active before stage s0, and has not yet been cancelled, will be
cancelled at s0+1. Therefore, num(w,A>`[s0+1]) = 0. And similarly, num(w,A>`[s1+
1]) = 0.

The third inequality follows from the fact that every minimal element in A`[s1] of
type α has, in A`[s1 + 1], at most one minimal element of type w below.

If G` has a restrained strategy at s1 +1, then num(w,A≤`[s1]) = num(w,A≤`[s1 +1]).
Since ` is not active between stages s0 + 2 and s1, it follows that num(w,A≤`[s0 + 1]) =
num(w,A≤`[s1]). So, num(w,A[s1 + 1]) = num(w,A[s0 + 1]) = num(w,A≤`[s1]). �

Observation 6.6. The 5-approximation of B` need not respect the properties (D1)-(D4)
from Section 4. However, we can make the following observations:

Since the 4-bf-types do not change in any 5-approximation, we have that, for every
b ∈ B, num(α,B[t] � b) is non-decreasing on t.

Suppose that b ∈ B[t] and that c0, ..., ck are the minimal elements which are below b in

B[t′] for some t′ ≥ t. Using [HM, Lemma 7.12] we get that for some i0, t
B[t]
5 (b) ≤ t

B[t′]
5 (ci0)

and that, for all other i, t
B[t]
5 (b) /5 t

B[t′]
5 (ci). Therefore, if b has type w∞ in B[t], and ci

has 4-bf-type α and exclusive 5-bf-type, then ci has 5-bf-type either u or w. Also, if b

has type w, then there is exactly one i with t
B[t′]
4 (ci) = α, and t

B[t′]
5 (ci) is either u or w.

Lemma 6.7. One of the following holds.

(1) There exist a b0 ∈ B`0 and some s0 such that for every `0-stage s ≥ s0, G`0 is
restrained by b0. In this case, we win by (S1).

(2) There is no such b0, and we win by (S2).

Proof. Suppose first that there exists a b0 as in (1). Then num(w,B`[rs0+1] � b0) >
num(w,A≤`0 [s0]). By Lemma 6.5 the number of w elements does not change between
successive `-stages, and since G`0 is restrained b0 at all `-stages ≥ s0, no new w elements
are added at `0-stages. So num(w,A≤`0 [s0]) = num(w,A). Since b0 requires attention
at every `0-stage s ≥ s0, we have that num(u,B`[rs] � b0) = 0 at all these stages. This im-
plies that no w element in B`[rs0+1] � b can change its 5-bf-type, because, by Observation
6.6, some new u element would show up. Hence num(w,B` � b0) ≥ num(w,B`[rs0+1] � b0).
We conclude that

num(w,B`) ≥ num(w,B`[rs0+1] � b0) > num(w,A≤`0 [s0]) = num(w,A),

and thus (S1).
Suppose now there is no such b0. We first prove that there are infinitely many

unrestrained `0-stages, and hence that A`0 is a 1-w-atom. Note that if s0 and s1 are
consecutive `0-stages at which G`0 is restrained - (say) by c0 and c1 respectively - then
necessarily c0 ≥N c1 (because if c0 is less than the least c that requires attention at stage
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s1, namely, c1, then G`0 would have an unrestrained strategy at s1). Therefore, if G`0

is restrained from some `0-stage on, then from some point on it will be restrained by
the same c. But we are assuming that (1) does not hold. This implies that there are
infinitely many unrestrained `0-stages. Then, by Lemma 4.4, A`0 is a 1-w-atom.

Next, we prove that there is no b ∈ B`0 such that B`0 � b is a 1-w-atom. At the
same time, by induction on b ∈ N, we show that for each b there is a stage after
which G`0 is never restrained by b. Suppose this is the case for all c <N b. Let s0

be an `0-stage after which G`0 is never restrained by any c <N b. If G`0 is ever re-
strained by b at some `0-stage s ≥ s0, then at some stage s1 > s it has to stop
requiring attention since we assuming (1) does not hold. This means that either
num(w,B`[rs1 ] � b) ≤ num(w,A≤`[s1 − 1]) or num(u,B`[rs1 ] � b) > 0. In the former
case, we have that num(w,A≤`[s1]) = num(w,A≤`[s]), by using Lemma 6.5 at the `0-
stages between s and s1 So, num(w,B`[rs] � b) > num(w,B`[rs1 ] � b). But the only way
the number of w elements can decrease is if some of them increase their 5-bf-type and
new u elements appear. Therefore, in either case, some u element had to appear below
b at stage s1. Since the 5-bf-type of u elements never changes, b will never again require
attention, and b is not a 1-w-atom. It follows that there is a stage after which G`0 is
never again restrained by b, and b never again requires attention. We now show that b
cannot be a 1-w-atom.

Let s1 be an `0-stage beyond which b never again restrains G`0 . We may as well assume
b has 5-bf-type w∞ and does not bound any u ultrafilters, otherwise b is definitely not a
1-w-atom. At stage s1 there is some minimal w∞ element b1 < b for which rb1 is defined
by (W2). It follows that num(α,B`[rs1 ] � b) ≥ 2 ·num(α,A[s1−1])+2. Let d ∈ B`[s1] � b
be such that

num(α,B`[rs1 ] � d) > num(α,A[s1 − 1]) and

num(α,B`[rs1 ] � b− d) > num(α,A[s1 − 1]).

If both d and b−d have type w∞, then B` � b cannot be a 1-w-atom and we win by (S2c).
Suppose that this is not the case, and that (say) d does not have 5-bf-type w∞. Since d
must have a 5-bf-type in 〈D〉, it follows that d bounds finitely many α ultrafilters and
these must all be w ultrafilters (since b bounds no u ultrafilters). Let s3 > s1 be the
first `0-stage at which all the minimal α elements below d have 5-bf-type w. We will
show that b requires attention at s3, in contradiction to our assumption that this never
happens beyond s1. At each `0-stage s with s1 ≤ s < s3 we have

num(α,A[s− 1]) < num(α,B`[rs] � d).

This is true at s = s1 by hypothesis. If s > s1, then we still believe d has type w∞ and
hence there is some minimal w∞ element d1 such that rd1 is defined by (W2), and so

num(α,A[s− 1]) < num(α,B`[rs] � d1) < num(α,B`[rs] � d).

Let s2 be the last `0-stage before s3. Then

num(α,A[s2 − 1]) < num(α,B`[rs2 ] � d) ≤ num(α,B`[rs3 ] � d).

By Lemma 6.5,

num(w,A≤`0 [s3 − 1]) = num(w,A[s2]) ≤ num(α,A[s2 − 1]).
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Hence num(w,A≤`0 [s3 − 1]) < num(w,B`[rs3 ] � b) and b requires attention at stage s3

in contradiction to our assumption that b never requires attention after s1. �

This proves that G`0 is satisfied and hence finishes the proof of Proposition 6.2 and
Theorem 6.1. �

6.2. Main theorem. We now come to the main result in this paper.

Theorem 6.8. There is a low5 Boolean algebra that is not 0(7)-isomorphic to any com-
putable Boolean algebra.

Proof. We relativize Theorem 6.1 to 0(4): There exists a 5-0(5)-approximable Boolean
algebra A which is not 0(7)-isomorphic to any 4-0(4)-approximable algebra. Recall that
every computable presentation of a Boolean algebra is 4-0(4)-approximable, hence A is
not 0(7)-isomorphic to any computable Boolean algebra. By Theorem 2.11, there is a
low5 copy B ofA via an isomorphism that is computable in 0(5). If B were 0(7)-isomorphic
to a computable Boolean algebra, then A would be too. �

Remark 6.9. The Boolean algebra A constructed in the previous proof is isomorphic to
a computable one. The reason is that the Boolean algebra A (that is A〈e,i〉) constructed
in Proposition 6.2 can be shown to be isomorphic to either

k⊕
i=1

Aw ⊕
ω∑
i=1

(Au ⊕Aw∞) or A1w ⊕
ω∑
i=1

(Au ⊕Aw∞),

when `0 exists, and to
ω∑
i=1

(Au ⊕Aw ⊕Aw∞)

when it does not, where Au is the unique isomorphism type of 5-bf-type u, namely,
Int
(
ω2 +η

)
; Aw is the unique isomorphism type of 5-bf-type w which satisfies properties

(D1)-(D4) of Section 4, namely, the interval algebra Int
(
ω3+η

)
; Aw∞ is the isomorphism

type of the Boolean algebra of 5-bf-type w∞, which satisfies (D1)-(D4) and has the
property that the 5-bf-types never increase, namely, Int

(
(ω2 + 1 + η) · η

)
; and A1w is

the 1-w-atom which satisfies (D1)-(D4), namely, Int
(
(ω3 + η) · ω

)
. All these algebras

are computably presentable.
Furthermore, 0(7) can go through the construction in the proof of Proposition 6.2

and decide how the requirements are satisfied (recall that the proof given there is later
relativized to 0(5)), so 0(7) can find an isomorphism between A〈e,i〉 and one of these

computable algebras. However, 0(7) does not know if `0 exists, so it cannot uniformly
compute these isomorphisms. But 0(8) can. One can then show that the relativization
of the Boolean algebra A =

∑
e,i∈ωA〈e,i〉 constructed in the proof of Theorem 6.1 is

0(8)-isomorphic to the following computable Boolean algebra:

ω∑
j=1

(
Aw ⊕A1w ⊕

ω∑
i=1

(Au ⊕Aw∞)⊕
ω∑
i=1

(Au ⊕Aw ⊕Aw∞)
)
.
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