
The Journal of Symbolic Logic

Volume 00, Number 0, XXX 0000

EMBEDDING JUMP UPPER SEMILATTICES INTO THE TURING
DEGREES.

ANTONIO MONTALBÁN

Abstract. We prove that every countable jump upper semilattice can be embedded in

D, where a jump upper semilattice (jusl) is an upper semilattice endowed with a strictly

increasing and monotone unary operator that we call jump, and D is the jusl of Turing

degrees. As a corollary we get that the existential theory of 〈D,≤T ,∨, ′〉 is decidable.

We also prove that this result is not true about jusls with 0, by proving that not every

quantifier free 1-type of jusl with 0 is realized in D. On the other hand, we show that every

quantifier free 1-type of jump partial ordering (jpo) with 0 is realized in D. Moreover,

we show that if every quantifier free type, p(x1, ..., xn), of jpo with 0, which contains the

formula x1 ≤ 0(m) & ... & xn ≤ 0(m) for some m, is realized in D, then every every

quantifier free type of jpo with 0 is realized in D.

We also study the question of whether every jusl with the c.p.p. and size κ ≤ 2ℵ0 is

embeddable in D. We show that for κ = 2ℵ0 the answer is no, and that for κ = ℵ1 it is

independent of ZFC. (It is true if MA(κ) holds.)

§1. Introduction. We deal with the following kind of structures.

Definition 1.1. A partial jump upper semilattice (pjusl) is a structure

J = 〈J,≤J ,∪, j〉

where 〈J,≤J 〉 is a partial ordering, ∪ is a partial binary operation and j are
partial unary operation such, that for all x, y ∈ J ,
• if x ∪ y is defined, it is the least upper bound of x and y, and
• if j(x) is defined then x <J j(x); and if j(y) is also defined and x ≤J y,

then j(x) ≤J j(y).
By partial operation we mean that it does not need to be defined everywhere.
A jump upper semilattice (jusl) is a pjusl where j and ∪ are total operations. A
jump partial ordering (jpo) is a pjusl where j is total but ∪ is undefined.

Given pjusls, J1 and J2, an embedding of J1 into J2 is an injective map
f : J1 → J2 such that for all x, y ∈ J1:
• x ≤J1 y if and only if f(x) ≤J2 f(y);
• if j(x) is defined, then f(j(x)) = j(f(x)); and
• if x ∪ y is defined, then f(x ∪ y) = f(x) ∪ f(y).

I would like to thank my thesis adviser, Richard A. Shore, for suggesting this the problem
and for many helpful discussions.

c© 0000, Association for Symbolic Logic

0022-4812/00/0000-0000/$00.00

1

2 ANTONIO MONTALBÁN

Observe that, D = 〈D,≤T ,∨, ′〉, the set of Turing degrees together with the
Turing reduction, the join operation and the Turing Jump is a jusl.

We address the question of which pjusls can be embedded into D. The first
embeddablity result about D was proved by Kleene and Post in [KP54]. One
of the things they proved there is that every finite upper semilattice can be
embedded into D. Various others results have been proved. Sacks proved in
[Sac61] that every partial ordering of size at most ℵ1 with the c.p.p. can be
embedded into D. (Recall that we say that a partial order has the c.p.p. or
countable predecessor property if every element has at most countably many
predecessors.) Abraham and Shore extended this result to upper semilattices in
[AS86]. (They even embedded the upper semilattices as initial segments of D.)
Hinman and Slaman, proved in [HS91], that every countable jpo is embeddable
in D. We prove here that every countable jusl is embeddable in the Turing
degrees. We also construct a jpo of size continuum with the c.p.p. which cannot
be embedded in D. For cardinals κ between ℵ0 and 2ℵ0 , we show that, if MA(κ)
holds, then every jusl with the c.p.p. and size κ can be embedded in D. (MA(κ)
is defined in 6.12.) These two last results imply that whether every jpo (or jusl)
of size ℵ1 is embeddable in D is independent of ZFC.

These kinds of results are always related to decidability results. We know that
the elementary theory of 〈D,≤T 〉 is undecidable, as was shown by Lachlan in
[Lac68]. However, it is still of interest to know which segments of the theory of
D are decidable. For example, form the results of Kleene and Post in [KP54],
we get that the ∃-theory of 〈D,≤T 〉 is decidable. Then Jockusch and Slaman,
[JS93], showed that the ∀∃-theory of 〈D,≤T ,∨〉 is decidable. Their result is
optimal in the sense that the ∀∃∀-theory of the same structure is undecidable.
This follows from the undecidability of the ∀∃∀-theory of 〈D,≤T 〉, proved by
Schmerl (see [Ler83, Corollary VII.4.6]). Another interesting result, proved by
Jockusch and Soare is that the whole elementary theory of 〈D, ′〉 is decidable
(see [Ler83, Exercise III.4.21]). Here, as a corollary of our main result, we get
that the existential theory of 〈D,≤T ,∨, ′〉 is decidable. This result is optimal
too, since the ∀∃-theory was recently proved undecidable by Shore and Slaman,
in [SS].

About 〈D,≤T , ′〉, we know that the ∀-theory is decidable and that the ∀∃∀-
theory is undecidable. But, we do not know much about the ∀∃-theory. A
sub case of this question, that remains open, is whether the existential theory of
〈D,≤T , ′, 0〉 is decidable. The best approximation to this question is a result due
to Lempp and Lerman [LL96]. They proved that every quantifier free formula,
ϕ(x1, ..., xn), in the language of 〈D,≤T , ′, 0〉, that is consistent with the axioms
of jpo with 0 (see 5.1 for a definition of jpo with 0) and with the formula x1 ≤T
0′ & ... & xn ≤T 0′, is realized by a n-tuple of r.e. degrees. We call a type,
p(x1, ..., xn) of jpo with 0 archimedean if, for some m ∈ ω, it contains the formula
x1 ≤T 0(m) & ... & xn ≤T 0(m). We prove that if every quantifier free (q.f.)
archimedean type of jpo with 0 is realized in D, then every q.f. type of jpo with
0 is realized in D. It seems likely that the hypothesis of every q.f. archimedean
type being realized in D can be proved using iterated trees of strategies, which
is a method created by Lempp and Lerman (see, for example, [LL96]). Hinman
and Slaman proved in [HS91] and [Hin99] that every q.f. archimedean 1-type of

EMBEDDING JUMP UPPER SEMILATTICES INTO THE TURING DEGREES. 3

jpo with 0 is realized in D. (Actually they proved something equivalent to this.
See the proof of Corollary 5.9 for an explanation of the equivalence.) We extend
their result and prove here that every q.f. 1-type of jpo with 0 is realized in D.
We also show that this result cannot be extended to jusl with 0. More precisely,
we prove that not every quantifier free 1-type of jusl with 0 is realized in D. This
also implies that not every countable jusl with 0 can be embedded in D.

Outline. We start by proving that any countable pjusl which supports a jump
hierarchy is embeddable in D. (We define jump hierarchies in 2.1.) We do this via
a forcing construction that uses some ideas from the one that Hinman and Slaman
used in [HS91]. We both simplify the construction in [HS91] and add new features
to it. Then, in section 3, we show that certain simple pjusls support jump
hierarchies and we deduce that the existential theory of 〈D,≤T ,∨, ′〉 is decidable.
In section 4 we prove our main result: Every countable jusl is embeddable in
D. To do this we show that every countable jusl can be embedded into one
that supports a jump hierarchy. Part of this proof uses Fräıssé limits which are
somewhat similar to the geometric part of the forcing notion used by Hinman
and Slaman in [HS91]. In the last two sections we study pjusls with 0 and
uncountable pjusls.

§2. The Main construction.

Definition 2.1. Given a structure P = 〈P,≤P , ...〉, where 〈P,≤P 〉 is a partial
ordering, a Jump Hierarchy over P is a map H : P → ωω such that, for all
x, y ∈ P ,
• P ≤T H(x);
•

⊕
x≤P y

H(x) ≤T H(y);
• if x <P y then H(x)′ ≤T H(y).

When such an H exists, we say that P supports a jump hierarchy.

This section is devoted to proving the following theorem.

Theorem 2.2. Every countable partial jump upper semilattice which supports
a jump hierarchy can be embedded in D.

We shall use a forcing construction (see [SW]). We shall also use different kinds
of codings. Here is a description of them.

Definition 2.3. For any X, Y , Z ∈ ωω, and any n ∈ ω:
1. X codes Y (directly) in the nth column if X [n] = Y . (Where X [n](m) =
X(〈n,m〉).)

2. X jump codes Y in the nth column if for all m,

Y (m) = lim
z
X(〈n,m, z〉);

that is, for some function S and all m and z ≥ S(m), Y (m) = X(〈n,m, z〉).
S is called a Skolem function for the coding.

3. X codes Y lazily in the nth column if for allm and z, eitherX(〈n,m, z〉) = 0
or X(〈n,m, z〉) = Y (m) + 1, and for each m there is at least one z such
that Y (m) + 1 = X(〈n,m, z〉).

4 ANTONIO MONTALBÁN

4. X and Y code Z lazily in the nth column if for all k, l and m ∈ ω,

X(〈n,m, l〉) = Y (〈n,m, l〉) = k 6= 0=⇒Z(m) = k − 1,

and for each m there is at least one l such that X(〈n,m, l〉) = Y (〈n,m, l〉) =
Z(m) + 1.

Observation 2.4. For X, Y and Z ∈ ωω,

• If X codes Y directly or lazily in some column, then Y ≤T X.
• If X jump codes Y in some column, then Y ≤T X ′.
• If X and Y code Z lazily, then Z ≤T X ⊕ Y .

Fix J = 〈J,≤J ,∪, j〉, a countable partial jump upper semilattice. Assume
that J , the universe of J , is a recursive subset of ω. Let H : J → ωω be a jump
hierarchy over J .

In a first reading of this proof, the reader can assume that ∪ and j are total:
there are no essential changes in the proof when we allow ∪ and j to be partial.

We shall define a function RG : J → ωω via a forcing construction. The map
x 7→ degree(RG(x)) : J → D is going to be the desired embedding. For each
x ∈ J , RG(x) consists of:

• A direct code of H(x) in the 0th column.
• A jump coding of RG(j(x)) in the 2nd column if j(x)↓. This jump coding

has SkG(x) as a Skolem function.
• A lazy coding of RG(y) in the (3y)th column for all y <J x.
• A lazy code of the Skolem function SkG(y) in the (3y+ 1)st column for all
y such that j(y) = x.

• In the (3bx, zc+ 2)nd column, RG(x) and RG(z) code RG(x ∪ z) lazily for
each z |J x such that x ∪ y is defined, where bx, zc = min(〈x, z〉, 〈z, x〉) (it
is a code for the unordered pair {x, z}), and x |J z stands for x 6≤J z &
z 6≤J x.

2.1. The forcing notion. Now we define a partial ordering IP . Then we
consider a generic filter G over IP , and from it define RG : J → ωω.

Construction of IP and RG. Let ĪP̄ be the set of pairs p = 〈Rp, Skp〉,
where Rp and Skp are finite partial functions J×ω ⇀ ω. We order ĪP̄ by reverse
inclusion in both coordinates. (i.e: 〈r, s〉 ≤ 〈r′, s′〉 ⇐⇒ r ⊇ r′ & s ⊇ s′.) For
x ∈ J , we write Rp(x) for the partial function ω ⇀ ω defined by Rp(x)(n) =
Rp(x, n). The same for Skp(x) : ω ⇀ ω. Let IP be the set of p ∈ ĪP̄ such that,
for all x, y, z ∈ J , all the following conditions are satisfied:

1. Rp(x) can be consistently extended to code H(x) in the 0th column. i.e:

Rp(x)[0] ⊂ H(x)

as partial functions.
2. If j(x)↓, Skp(x) specifies part of a Skolem function for a jump coding of
Rp(j(x)) in the 2nd column of Rp(x). More specifically, if n ∈ ω and
Skp(x)(n)↓ = k, then Rp(j(x))(n)↓ and for all m ≥ k,

Rp(x)(〈2, n,m〉)↓=⇒Rp(x)(〈2, n,m〉) = Rp(j(x))(n).

EMBEDDING JUMP UPPER SEMILATTICES INTO THE TURING DEGREES. 5

3. If y <J x, Rp(x) is compatible with coding Rp(y) lazily in the 3yth column.
i.e:

∃m
(
Rp(x)(〈3y, n,m〉)↓ = k 6= 0

)
=⇒Rp(y)(n)↓ = k − 1.

4. If j(y) = x, Rp(x) is compatible with lazy coding Sk(y) in the (3y + 1)st
column. i.e:

∃m
(
Rp(x)(〈3y + 1, n,m〉)↓ = k 6= 0

)
=⇒Skp(y)(n)↓ = k − 1.

5. If z |J x, y = x ∪ z and for some n,m ∈ ω we have that

Rp(x)(〈3bx, zc+ 2, n,m〉)↓ = Rp(z)(〈3bx, zc+ 2, n,m〉) = k 6= 0

then Rp(y)(n)↓ = k − 1.
Let G be an arithmetically (in IP) IP -generic filter. Let RG(x) =

⋃
{Rp(x) : p ∈

G} and SkG(x) =
⋃
{Skp(x) : p ∈ G}. 3

Lemma 2.5. (The conditions on IP are not contradictory.) For each x ∈ J
and n ∈ ω the sets {q ∈ IP : Rq(x, n)↓} and {q ∈ IP : Skq(x, n)↓} are dense in
IP . Hence RG(x), SkG(x) ∈ ωω.

Moreover, given p ∈ IP and n = 〈k,m〉 ∈ ω, there exists t ∈ ω such that if we
define q just by extending p so that Rq(x, n)↓ = t (i.e. Rq = Rp ∪ {〈〈x, n〉, t〉}
and Skq = Skp), then q ∈ IP . t can be obtained as follows.

1. If n is in the 0th column, i.e. k = 0, let Rq(x, n) = H(x)(m).
2. If k = 2 and m = 〈m1,m2〉 then, if j(x)↓, Skp(x,m1)↓ = s 6= 0 and
s ≤ m2, define Rq(x, n) = Rp(j(x),m1). (Observe that if Skp(x,m1)↓, then
Rp(j(x),m1)↓.) Otherwise, define Rq(x, n) arbitrarily.

3. Now, suppose that k = 3y, y <J x and m = 〈m1,m2〉. We can always set
Rq(x, n) = 0. But, if we also know that Rp(y,m1)↓ = l, then we could set
Rq(x, n) = l + 1.

4. Now suppose that k = 3y + 1 with j(y) = x, and m = 〈m1,m2〉. Then, if
Skp(y,m1)↓ = m3 set Rq(x, n) = 0 or = m3+1, otherwise set Rq(x, n) = 0.

5. If k = 3bx, zc + 2 with z |J x and x ∪ z defined, then we can always set
Rq(x, n) = 0. Actually, we can set Rq(x, n) to be anything we want as long
as Rq(x, n) 6= Rq(z, n) or Rq(x, n) = Rq(x∪z,m1)+1 where n = 〈m1,m2〉.

6. In any other case we can set Rq(x, n) arbitrarily.

Sketch of the proof. We have to show that q ∈ IP . To do this we have
to check all the conditions in the definition of IP . For example, suppose that
n = 〈0,m〉 and that we have set Rq(x, n) = H(x)(m). Since Rp(x)[0] ⊂ H(x), we
also have that Rq(x)[0] ⊂ H(x). Hence q satisfies condition 1 in the definition of
IP . Conditions 2-5 are trivially satisfied. We leave the other cases to the reader.

Since this is true for all p, it implies that {q ∈ IP : Rq(x, n)↓} is dense in IP .
Now we have to show that {q ∈ IP : Skq(x, n)↓} is dense in IP . Consider

p ∈ IP and suppose that Skp(x, n)↑. We want to show that there is an extension
p2 of p such that Skp2(x, n)↓. Let p1 be an extension of p such that Rp1(j(x), n)↓.
Let m be such that for all i ≥ m Rp1(z, 〈3x + 1, n, i〉)↑ and let p2 be such that
Rp2 = Rp1 and Skp2 = Skp1 ∪{〈〈x, n〉,m〉}. It is easy to verify that p2 ∈ IP . 2

Lemma 2.6. For all x, y, z ∈ J :
1. H(x) is directly coded in the 0th column of RG(x).

6 ANTONIO MONTALBÁN

2. if j(x)↓, then RG(j(x)) is jump coded in the 2nd column of RG(x) with
Skolem function SkG(x).

3. If y <J x, then RG(y) is lazily coded in the (3y)th column of RG(x).
4. If j(y) = x, then, RG(x) codes SkG(y) lazily in the (3y + 1)st column.
5. If x |J z and x ∪ z↓, then RG(x) and RG(z) code RG(x ∪ z) lazily in the

(3bx, zc+ 2)nd column.

Proof. For example, for the third part use Lemma 2.5 and observe that, once
Rp(y, n)↓, the set

{q : ∃i
(
Rq(x, 〈3y, n, i〉) = Rq(y, n) + 1

)
}

is dense below p. The other parts are similar. 2

Corollary 2.7. For all x and y in J,
1. H(x) ≤T RG(x);
2. if j(x)↓, then RG(j(x)) ≤T RG(x)′;
3. if y ≤J x, then RG(y) ≤T RG(x);
4. if j(y)↓ ≤J x, then SkG(y) ≤T RG(x);
5. if x |J y and x ∪ y↓, then RG(x ∪ y) ≡T RG(x)⊕RG(y).

Moreover, all these Turing reductions are uniform in x and y.

Proof. All the proofs are immediate from the previous lemma and observa-
tion 2.4. For (4) observe that SkG(y) ≤T RG(j(y)) ≤T RG(x). 2

2.2. Preservation of nonorder. We have already proved that x ≤J y im-
plies that RG(x) ≤T RG(y). In this subsection we prove that if x 6≤J y, then
RG(x) �T RG(y). To do this we need to analyze IP a little bit more. We shall
prove a combinatorial lemma about IP that is going to be useful in the next
subsection too.

Definition 2.8. For x ∈ J , define
1. Jx = {y ∈ J : y ≤J x} and J j

x = {y ∈ J : j(y)↓ ≤J x};
2. ĪP̄ x = {〈r, s〉 : r and s are finite partial functions, r : Jx × ω ⇀ ω and s :
J j
x × ω ⇀ ω};

3. p �x = 〈Rp � Jx, Skp � J j
x〉 ∈ ĪP̄ x.

Definition 2.9. Say that p ∈ IP is nice at x ∈ J if for all y, z with y |J z and
y ≤J x 6≥J z, and for all i ∈ ω

Rp(z)[3by,zc+2] ⊆ Rp(y)[3by,zc+2]

as partial functions.

Observation 2.10. For every x, the set of p which are nice at x is dense.

Proof. Use Lemma 2.5. Given y, z with y |J z and y ≤J x 6≥J z, extend
Rp(y) by adding 0’s to its (3by, zc + 2)nd column at the same places where
Rp(z)[3by,zc+2] is defined. 2

In the next lemma we need to consider p � j(x) even if j(x) is undefined. In
that case define p � j(x) = p �x ∪

⋃
{p � j(y) : y ≤J x & j(y)↓}. Where ∪ is the

union of compatible partial functions.

EMBEDDING JUMP UPPER SEMILATTICES INTO THE TURING DEGREES. 7

Lemma 2.11. For all p, q ∈ IP and x ∈ J such that p is nice at x, we have
that

q ≤ p � j(x) =⇒ q �x ∪ p ∈ IP .

Proof. Let r = q �x ∪ p. We have to check that all the conditions in the
definition of IP are satisfied by r.

Condition 1: Rr(y)[0] ⊆ Rp(y)[0] ∪Rq(y)[0] ⊂ H(y) as partial functions.
Condition 2: Consider y ∈ J such that j(y)↓. We want to show that Skr(y)

is part of a Skolem function for a jump coding of Rr(j(y)) in the 2nd column
of Rr(y). There are three possible cases: j(y) ≤J x; y ≤J x but j(y) 6≤J x;
and y 6≤J x. If j(y) ≤J x, then, since r �x = q �x, the condition holds because
it does at q. If y 6≤J x, then the condition holds because it does at p. So,
suppose that y ≤J x but j(y) 6≤J x. We have that Skr(y) = Skp(y). So,
whenever Skr(y, n)↓ = k, Skp(y, n)↓ = Skq(y, n) = k, because q ≤ p � j(x).
Then, Rp(j(y), n)↓ = Rq(j(y), n) = Rr(j(y), n). Now, if Rr(y, 〈2, n,m〉)↓ = l for
some m ≥ k, then l = Rr(j(y), n).

Condition 3: Suppose that y <J z and we want to check that Rr(z) is compat-
ible with lazy coding of Rr(y) in the (3y)th column. If z ≤J x, then everything
works fine, because it does at q. Otherwise, Rr(z) = Rp(z). So, if for some n, i
and k, Rr(z, 〈3y, n, i〉)↓ = k 6= 0, then Rp(z, 〈3y, n, i〉)↓ = k 6= 0; and therefore,
Rr(y, n) = Rp(y, n)↓ = k − 1.

Condition 4: Suppose that j(y) = z and we want to check that Rr(z) is
compatible with lazy coding of Skr(y) in the (3y+1)th column. If z ≤J x, then
everything works fine, because it does at q. Otherwise, Rr(z) = Rp(z). So, if for
some n, i and k, Rr(z, 〈3y+1, n, i〉)↓ = k 6= 0, then Rp(z, 〈3y+1, n, i〉)↓ = k 6= 0;
and therefore, Skr(y, n) = Skp(y, n)↓ = k − 1.

Condition 5: Suppose that y |J z and that y ∪ z is defined. If both y and
z are ≤J x or neither of them is, then the condition holds: in the former case
because it holds at q, and in the later case because it does at p. So assume that
y ≤J x 6≥J z. Also assume that for some m

Rr(y, 〈3by, zc+ 2,m〉)↓ = Rr(z, 〈3by, zc+ 2,m〉)↓ = k 6= 0

then Rp(z, 〈3by, zc+2,m〉)↓ = k too, because Rr(z) = Rp(z). Thus, we also have
that Rp(y)(〈3by, zc+2,m〉)↓, because p is nice at x. Necessarily Rp(y)(〈3by, zc+
2,m〉) = k. Therefore Rp(z ∪ x)(m)↓ = k + 1, and then Rr(z ∪ x)(m)↓ = k + 1
too. 2

Corollary 2.12. For all p ∈ IP and x ∈ J , p �x ∈ IP .

Proof. Observe that the empty condition, ∅, is nice at x and that p ≤
∅ � j(x) = ∅. Therefore p �x = p �x ∪ ∅ ∈ IP . 2

Corollary 2.13. If y 6≤J x, then RG(y) 6≤T RG(x).

Proof. Suppose, toward a contradiction, that for some p ∈ G, p
 {e}RG(x) =
RG(y), where {e} is the eth Turing functional and
 is the strong forcing relation,

∗
IP , as defined in [SW]. Moreover, by observation 2.10, we can assume that p

is nice at x. Let n be of the form 〈1,m〉 such that Rp(y, n)↑. (Remember
that the 1st column is the one that is not coding anything.) Let q ≤ p be

8 ANTONIO MONTALBÁN

such that q
 {e}RG(x)(n) = i for some i ∈ ω. Let r = q �x ∪ p. Since
q ≤ p ≤ p � j(x), we have that r ∈ IP by the previous lemma. Then, since
Rr(x) = Rq(x), r
 {e}RG(x)(n) = i. But Rr(y, n) is undefined. Extend r to
r∗ by setting Rr∗(y, n) = i + 1. From Lemma 2.5 we get that r∗ ∈ IP . Then,
r∗
 {e}RG(x)(n) 6= RG(y)(n), contradicting our assumption about p. 2

2.3. RG preserves the jump. Fix x ∈ J such that j(x) is defined. We
have already proved that RG(j(x)) ≤T RG(x)′. Now, we want to prove that
RG(x)′ ≤T RG(j(x)).

We start by studying the complexity of the statement “p decides {e}RG(x)(e)↓”.

Definition 2.14. 1. IP x = ĪP̄ x ∩ IP ;
2. IP p,x = {q �x : q ∈ IP & q ≤ p};
3. G �x = G ∩ IP x.

Three easy facts about IP x that we are going to use are:

Observation 2.15. • IP p,x ⊆ IP x.
• IP x is recursive in H(x).
• Every p ∈ IP x is nice at x.

We are going to show later that some p ∈ G � j(x) decides {e}RG(x)(e)↓. First
we study the complexity of G � j(x).

Lemma 2.16. G �x ≡T RG(x).

Proof. Clearly RG(x) ≤T G �x. Now we prove that G �x ≤T RG(x). Ob-
serve that q̄ ∈ IP x is in G �x iff for all y, Rq̄(y) ⊂ RG(y) and Skq̄(y) ⊂ SkG(y).
We observed in 2.15 that IP x ≤T H(x), and by corollary 2.7, H(x) ≤T RG(x),
∀y ∈ Jx(RG(y) ≤T RG(x)) and ∀y ∈ J j

x(SkG(y) ≤T RG(x)), uniformly in y. 2

Lemma 2.17. For p nice at x,
1. IP p,x = IP p � j(x),x = {q̄ ∈ ĪP̄ x : q̄ ≤ p �x & q̄ ∪ p ∈ IP};
2. IP p,x is recursive in H(x) uniformly in p.

Proof. We shall prove that

IP p,x ⊆ IP p � j(x),x ⊆ {q̄ ∈ ĪP̄ x : q̄ ≤ p �x & q̄ ∪ p ∈ IP} ⊆ IP p,x.

Since p ≤ p � j(x), we have that IP p,x ⊆ IP p � j(x),x. Now consider q̄ ∈ IP p � j(x),x.
There is some q ≤ p � j(x) such that q̄ = q �x. From Lemma 2.11, we get that
q �x ∪ p ∈ IP . So q̄ ∈ {q̄ ∈ ĪP̄ x : q̄ ≤ p �x & q̄ ∪ p ∈ IP}. Now consider q̄ ∈ ĪP̄ x
such that q̄ ≤ p �x and r = q̄ ∪ p ∈ IP . Clearly r ≤ p and r �x = q̄, so q̄ ∈ IP p,x.
This proves the first part.

For second part, given q̄ ∈ ĪP̄ x, we want to decide, recursively inH(x), whether
q̄ ∈ IP p.x. Note that checking if q̄ ≤ p �x is clearly recursive, uniformly in p. To
check if r = q̄∪p ∈ IP one has to check the conditions in the definition of IP . All
but the first condition, can be checked recursively in J . For the first condition
we already have that, for y 6≤J x, Rr(y)[0] = Rp(y)[0] ⊆ H(y). So we only have
to check if ∀y ≤J x(Rr(y)[0] ⊆ H(y)), which we can do recursively in H(x). 2

Lemma 2.18. For p nice at x, and e ∈ ω:
1. The following are equivalent:

EMBEDDING JUMP UPPER SEMILATTICES INTO THE TURING DEGREES. 9

(a) p
 {e}RG(x)(e)↑;
(b) p � j(x)
 {e}RG(x)(e)↑;
(c) p �x
IPp,x {e}RG(x)(e)↑.

2. Whether p decides {e}RG(x)(e)↓ can be decided recursively in H(x)′, uni-
formly in p and e. Moreover, if p decides {e}RG(x)(e)↓, we can also tell
whether p forces {e}RG(x)(e)↓ or its negation.

Proof. By definition of forcing we have that, p
 {e}RG(x)(e)↑ if and only if

∀q ≤ p∀s ∈ ω({e}Rq(x)
s (e)↑).

This is equivalent to

∀q̄ ∈ IP p,x∀s ∈ ω({e}Rq̄(x)
s (e)↑),(2.1)

which, by definition of
IPp,x
, is equivalent to p �x
IPp,x

{e}RG(x)(e)↑. We have
shown that (1a) is equivalent to (1c). We get that (1b) is equivalent to (1c)
in the same way because IP p,x = IP p � j(x),x. Whether p
 {e}RG(x)(e)↓, can
be decided recursively, because we only have to check if {e}Rp(x)(e)↓. Whether
p
 {e}RG(x)(e)↑, is a ΠH(x)

1 question as shown in (2.1), so H(x)′ can answer
it. 2

Corollary 2.19. if j(x)↓, then RG(x)′ ≡T RG(j(x)).

Proof. We showed that RG(j(x)) ≤T RG(x)′ in corollary 2.7. Now we com-
pute RG(x)′ from RG(j(x)). Consider e ∈ ω. Find p ∈ G � j(x) such that p
decides {e}RG(x)(e)↓. By Lemma 2.16, G � j(x) ≤T RG(j(x)), and by Lemma
2.18, H(x)′ knows whether p decides {e}RG(x)(e)↓. Since H is a jump hierarchy,
H(x)′ ≤T H(j(x)) ≤T RG(j(x)). So, we can find such a p recursively in RG(j(x)).
We can also tell whether p forces {e}RG(x)(e)↓ or its negation; in the former case
we get that RG(x)′(e) = 1 and in the later that RG(x)′(e) = 0. 2

This finishes the proof of Theorem 2.2.

§3. Decidability results. As a corollary of Theorem 2.2, we prove that the
existential theory of the Turing degrees with ≤T , join and jump is decidable.

Proposition 3.2 is stronger than what we actually need to prove decidability,
but we shall use it again later. To prove it we need the following lemma.

Lemma 3.1. Given a recursive well founded partial ordering P of rank α, and
a recursive presentation, A, of α, the usual rank map, rk : P → A, is recursive
in 02α+2.

Sketch of the proof. We claim that there is a recursive function f such
that, for β < α, f(β) is a 02β+2-index for the function ϕβ(x) that answers
whether rk(x) ≥ β. The definition of f is by transfinite recursion using that
rk(x) ≥ β iff for all γ < β, there exists y ∈ P such that y < x & rk(y) ≥ γ. So,
{f(β)}02β+2

(x) = yes if and only if

∀γ < β ∃y ∈ P
(
y < x & {f(γ)}0

2γ+2
(y) = yes

)
. 2

Proposition 3.2. Every well founded partial ordering supports a jump hier-
archy.

10 ANTONIO MONTALBÁN

Proof. Let P = 〈P,≤P 〉 be a well founded partial ordering. Assume that P
is recursive. Otherwise relativize the proof to the degree of P.

Let rk(P) be the rank of P and β = 2 rk(P) + 2. Let {Ha}a∈O be the hy-
perarithmetic hierarchy, where O is the set of ordinal notations (see [Sac90]).
Fix an initial segment of O of length β + rk(P), and think of the ordinals below
β + rk(P) as elements of that segment of O. For x ∈ P , let rk(x) be the usual
rank of x in P. Now, for each x ∈ P define

K(x) = Hβ+rk(x)

Clearly P ≤T K(x) for all x ∈ P . We get that x <T y implies K(x)′ ≤T K(y)
because x <P y implies that rk(x) < rk(y). We get that

⊕
x≤P y

K(x) ≤T K(y)
because given 〈x,m〉 with x ≤P y we can compute rk(x) recursively in Hβ , and
then compute Hrk(x)(m). Therefore, K is a jump hierarchy over P. 2

Remark 3.3. Moreover, for every X ⊆ ω, every well founded partial order-
ing, P, supports a jump hierarchy, K, such that ∀x ∈ P (X ≤T K(x)). The
construction is the same as above, but now relativize to X ⊕ P.

Corollary 3.4. Every finite pjusl can be embedded into D.

Proof. Every finite pjusl is well founded, so it supports a jump hierarchy.
Therefore, by Theorem 2.2, it can be embedded into D. 2

Theorem 3.5. The ∃-theory of D = 〈D,≤T ,∨,′ 〉 is decidable.

Proof. Consider an existential sentence ϕ in the language of D. It is equiv-
alent to a disjunction of sentences of the form

∃x1...∃xn(ψ1 & ... & ψm),(3.1)

where each ψi has one of the following forms: xj1 ≤T xj2 , xj1 6≤T xj2 , xj1 6= xj2 ,
x′j1 = xj2 , or xj1 ∨ xj2 = xj3 . We have to decide whether one of these disjuncts
holds in D. So, suppose that ϕ is the formula in (3.1). We claim that D |= ϕ if
and only if ϕ holds in some pjusl with at most n elements. If D |= ϕ, then the
degrees x1, ...,xn which witness ϕ form the desired pjusl. If J |= ϕ, for some
pjusl J with at most n elements, then, since we can embed J into D, we have
that D |= ϕ. Clearly we can recursively check whether ϕ holds in some pjusl
with at most n elements. 2

§4. Jump upper semilattices which support Jump Hierarchies. Now
we show how to embed any countable jusl into one which supports a jump hier-
archy.

This section is divided into five subsections. First we show how to define a
Harrison Linear Ordering in such a way that we have recursive operations of
addition and multiplication. In subsection 4.2 we define, for each α < ωCK1 , a
pjusl Pα which supports a jump hierarchy, and we show that any pjusl with a
certain property can be embedded in Pα. In subsection 4.4 we show that every
recursive jusl has that property. But first we need to prove that every finitely
generated pjusl is well quasiordered (we define well quasiorderings in 4.9); we do
this in subsection 4.3. In the last subsection we put all the pieces together and
prove that every countable jusl embeds into D.

EMBEDDING JUMP UPPER SEMILATTICES INTO THE TURING DEGREES. 11

4.1. Pseudo-well orderings with Jump Hierarchies. In [Har68], Harri-
son proved that there is a recursive linear ordering of type ωCK1 ·(1+η), (i.e: ωCK1

followed by η copies of ωCK1 , where η is the order type of the rational numbers.)
which supports a jump hierarchy. Here we show that we can get such a linear
ordering also having recursive addition and multiplication. These operations
should have the same properties as ordinal addition and multiplication.

Definition 4.1. A chain of structures of length α is a sequence 〈Ai : i < α〉
of structures together with a set of embeddings {ϕij : Ai → Aj}i<j<α, such that
∀i < j < k < α(ϕjk ◦ ϕij = ϕik).

A recursive chain of length α (< ωCK1) is a chain where 〈Ai : i <O a〉 and
〈ϕij : i <O j <O a〉 are uniformly recursive, and a is an ordinal notation for α.

Lemma 4.2. Let 〈〈Ai : i <O a〉, 〈ϕij : i <O j <O a〉〉 be a recursive chain.
Its direct limit, Aa, and the set of embeddings ϕia : Ai → Aa, for i <O a, are
uniformly recursive. Furthermore, indices for Aa and 〈ϕia : Ai → Aa : i <O a〉
can be found recursively from an index for 〈〈Ai : i <O a〉, 〈ϕij : i <O j <O a〉〉.

(See [Hod93, page 50] for a general definition of direct limits.)
Sketch of the proof. One just has to observe that the usual construction

of direct limits is uniformly recursive. What one does is to consider the disjoint
union of the Ai:

B =
⋃
i<Oa

Ai × {i},

and define an equivalence relation in B:

(x, i) ∼ (y, j) ⇐⇒ y = ϕij(x)

for i ≤O j. If i >O j say that (x, i) ∼ (y, j) ⇐⇒ (y, j) ∼ (x, i). This equivalence
relation is clearly recursive. So B/∼ is recursive: for each equivalence class take
the element with least index as its representative. It is also easy to see that all
the operations on B/∼ and the embeddings ϕia are recursive too. 2

Lemma 4.3. For every α < ωCK1 there is a recursive well ordering, of or-
der type at least α, in which the operations of addition and multiplications are
recursive.

Sketch of the proof. For each a ∈ O we shall define a recursive chain, ca,
of length |a|. ca consists of recursive well orderings with addition and multi-
plication such that, for all i <O a, the ith well ordering in the chain has order
type at least |i|. We also want that if a <O b, ca is included in cb. We shall
use transfinite recursion. For |a| = 1, set ca to be a chain with only one element
consisting of ω with its usual addition and multiplication. If a = 3 · 5e and we
are given c{e}(n) for all n ∈ ω, define ca to be the union of all the c{e}(n). Now
suppose that a = 2b and we are given cb. If |b| is a limit ordinal, extend cb by
adding its direct limit at the end. We can do this uniformly by the previous
lemma. The last case is when a = 2b and b = 2d, for some d ∈ O. Let ld be the
last well ordering in the chain cb (ld = cb(d)). We shall construct a well ordering,
lb, with addition and multiplication, extending ld. Then we define ca by putting

12 ANTONIO MONTALBÁN

lb at the end of cb. Let β be a new symbol. (β represents the order type of ld.)
Define lb as a set of formal sums as follows:

lb = {
n∑
i=0

βixi : n < ω, xi ∈ ld, xn 6= 0}.

The order relation and the addition operation are defined in the obvious way.
Define multiplication as follows:

(
n∑
i=0

βixi) · (
m∑
j=0

βjyj) =
m∑
j=0

βn+jyi.

Is not hard to prove that lb is a well ordering and that the multiplication defined
this way is the usual ordinal multiplication. It is also clear that lb is recursive.
Embed ld into lb by mapping x to β0x. 2

Theorem 4.4. There is a structure L = 〈L,≤,+, ·〉 which supports a jump
hierarchy, H, such that: 〈L,≤〉 is a recursive linear ordering of order type ωCK1 ·
(1 + η); + and · are recursive and satisfy the axioms of ordinals addition and
multiplication; and for all x ∈ L, H(x) computes every hyperarithmetic set.

Sketch of the proof. We want to get 〈L,H〉 satisfying:

• 〈L,≤〉 is a recursive linear ordering;
• for all a ∈ O, there is an x such that the set of predecessors has order type
|a|;

• for all a ∈ O, there is no infinite descending sequence in L computable form
0a;

• + and · are recursive and satisfy the axioms of the inductive definition of
addition and multiplication of ordinals;

• H is a jump hierarchy, and, for all a ∈ O, 0a is recursive in H(x) for all
x ∈ L.

(We write 0a for the set corresponding to a in the hyperarithmetical hierarchy.
Sometimes we shall write 0α meaning 0a for some a, in some fixed path through
O, such that |a| = α.)

All these axioms can be expressed by a Π1
1 set, Γ, of computable infinitary

formulas as in [AK00]. By the Barwise-Kreisel compactness theorem, as stated
in [AK00, Theorem 8.3], if we prove that every ∆1

1 subset of Γ has a model,
then so does Γ. Any ∆1

1 subset, Λ, of Γ will mention only a ∆1
1 subset of O,

so there has to be a β < ωCK1 , which bounds the norm of all of these ordinal
notations (see [AK00, Proposition 5.20]). Then, by the previous lemma, we can
always get a recursive well ordering with addition and multiplication of length at
least β. The hyperarithmetical hierarchy, starting at 0γ , and going up to 0γ+β ,
would be a jump hierarchy on it, where γ = 2β + 2, as in Proposition 3.2. This
well ordering satisfies Λ. So we have that Γ has a model. Harrison proved in
[Har68], that every recursive linear ordering with no hyperarithmetic descending
sequences has order type either β or ωCK1 · (1 + η) + β for some β < ωCK1 . The
second set of conditions rules out the first case, and the fact that L is closed
under addition makes β = 0 the only possibility. 2

EMBEDDING JUMP UPPER SEMILATTICES INTO THE TURING DEGREES. 13

4.2. Partial upper semilattices with level function. Now, we shall con-
struct, for each α < ωCK1 , a pjusl Pα which supports a jump hierarchy. To define
a jump hierarchy on Pα, we assign to each element of Pα a member of L, where
L is defined in Theorem 4.4.

We work with the following kind of structures.

Definition 4.5. A partial jump upper semilattice with levels in L is a pjusl
J together with a map lev : J → L which preserves strict order. (i.e. x <J

y=⇒ lev(x) < lev(y).)

Fix α < ωCK1 . Let Kα be the set of finitely generated pjusl J with levels in L
which are arithmetic in 0α and such that ∀x ∈ J(j(x)↓).

Lemma 4.6. Kα has the Uniform Amalgamation Property. i.e: Given A, A1

and A2 ∈ Kα and embeddings ϕ1 : A→ A1 and ϕ2 : A→ A2, there are a C ∈ Kα
and embeddings ψ1 : A1 → C and ψ2 : A2 → C such that ψ1 ◦ ϕ1 = ψ2 ◦ ϕ2.
Moreover, indices for C, ψ1 and ψ2 can be found recursively from indices for A,
A1, A2, ϕ1 and ϕ2.

(An index for an embedding only has to code the embedding restricted to the
finitely many generators.)

Proof. Let Ā1 = A1 r ϕ1[A] and Ā2 = A2 r ϕ2[A]. Define the domain of C
to be the disjoint union of A, Ā1 and Ā2. Define the embeddings ψ1 and ψ2 in
the obvious way. Define the jump, join, level and the order relation in A∪ Ā1 as
induced by A1, and in A∪ Ā2 as induced by A2. Do not define the join between
elements of Ā1 and Ā2. (Here is where it is useful to work with pjusl and not
with jusl.) To make ≤ transitive, define, for x ∈ Ā1 and y ∈ Ā2,

x ≤ y ⇐⇒ ∃z ∈ A(x ≤ ϕ1(z) & ϕ2(z) ≤ y)

and

x ≥ y ⇐⇒ ∃z ∈ A(x ≥ ϕ1(z) & ϕ2(z) ≥ y).

It is not hard to verify that we obtain a partial ordering. We also have to
show that what we get is actually a pjusl. The properties for join and level
are easily verified too. Let us verify that if x ∈ Ā1, y ∈ Ā2, j(x) and j(y) are
defined and x ≤ y, then j(x) ≤ j(y). Since x ≤ y, there exists z ∈ A such that
x ≤ ϕ1(z) & ϕ2(z) ≤ y. Therefore j(x) ≤ ϕ1(j(z)) and ϕ2(j(z)) ≤ j(y). So
j(x) ≤ j(y). 2

Now we shall consider Pα, the Fräıssé limit of Kα (see [Hod93]). We construct
Pα is such a way that it is recursive in 0α+ω.

Construction of Pα. Enumerate all the tuples 〈A,A1, A2, ϕ1, ϕ2〉 such that
A, A1, A2 ∈ Kα and ϕ1 and ϕ2 are embeddings from A to A1 and to A2 re-
spectively. (Actually, enumerate the tuples of indices.) We can get such an
enumeration recursively in 0α+ω. We shall construct a sequence 〈Di : i < ω〉
together with embeddings fij : Di → Dj recursively in 0α+ω.

Let D0 = ∅. Now, suppose we have defined Di for all i < n. Take the
first tuple 〈A,A1, A2, ϕ1, ϕ2〉 from the list, not already taken, such that A1 is
equal to some Di, i < n. Using Lemma 4.6, as in the diagram below, construct

14 ANTONIO MONTALBÁN

Dn ∈ Kα, and embeddings fn−1,n : Dn−1 → Dn and ψ : A2 → Dn such that
fn−1,n ◦ fi,n−1 ◦ ϕ1 = ψ ◦ ϕ2. For j < n, let fj,n = fn,n−1 ◦ fj,n−1.

Di

fi,n−1
,,... Dn−1 fn−1,n

))
A

ϕ1 66mmmmmm fi,n−1◦ϕ1

11cccccccccccccccccccccc

ϕ2 ((QQQQQQ Dn

A2
ψ

11

Let Pα be the direct limit of the chain constructed. By Lemma 4.2 relativized
to 0α+ω, we can get Pα ≤T 0α+ω. 3

Lemma 4.7. Pα supports a Jump Hierarchy.

Proof. Pα is a pjusl with a level function to L and L supports a jump
hierarchy, H. So, for each x ∈ Pα, we can define

R(x) = H(lev(x)).

We claim that R is a jump hierarchy over Pα. Since Pα is hyperarithmetic, we
have that Pα ≤T R(x), for all x ∈ Pα. We also have that⊕

x≤y

R(x) ≤T R(y),

because, given x ≤ y, we can compute lev(x) recursively in R(y), and then,
compute H(lev(y)). The third thing that needs to be verified is that x < y
implies H(x)′ ≤T H(y). This is true because H is a jump hierarchy over L and
lev preserves strict order. 2

Lemma 4.8. Let J be a pjusl with levels in L such that there is a sequence

J0 ⊆ J1 ⊆ J2 ⊆ ⊆ J ,
with J =

⋃
i<ω Ji, and for all i, Ji ∈ Kα. Then J can be embedded in Pα.

Proof. We have constructed Pα as the direct limit of 〈Di : i < ω〉 with
embeddings fij . We shall get a subsequence {Dik}k<ω such that for each k there
is an embedding gk : Jk → Dik such that if k1 ≤ k2, then

fik1 ik2
◦ gk1 = gk2 �Jk1 .

This would imply that J , the direct limit of 〈Ji : i < ω〉, embeds into Pα.

Di0
//

fi0i1

((
... // Di1

//

fi1i2

))
... // Di2

// // Pα

J0
id0

//

g0
aaBBBBBBBB

J1
id1

//

g1

OO

J2
id2

//

g2
<<yyyyyyyy
......... // J

<<xxxxxxxxx

Let J−1 = ∅, i−1 = 0 and g−1 : ∅ → D0 be the empty map. Now suppose we
have defined in and gn : Jn → Din . Consider the tuple 〈Jn, Din ,Jn+1, gn, idn〉,
where idn is the inclusion map Jn ↪→ Jn+1. Eventually, say at step in+1, this
tuple is going to be considered in the construction of Pα. So, Din+1 is going

EMBEDDING JUMP UPPER SEMILATTICES INTO THE TURING DEGREES. 15

to be defined, together with a map gn+1 : Jn+1 → Din+1 , so that finin+1 ◦ gn =
gn+1 �Jn. 2

4.3. Well quasiorderings. Now we move into the direction of proving that
every recursive pjusl embeds in some Pα.

Definition 4.9. A well quasiordering is a set Q together a transitive and
reflexive relation ≤ such that for every sequence {xi}i∈ω, there are i < j with
xi ≤ xj .

Observation 4.10. 1. A partial ordering which is well quasiordered, is well
founded.

2. The image of a well quasiordering under an order preserving map is well
quasiordered too.

Proof. The first observation is trivial. For the second one consider: Q, a well
quasiordering; f : Q→ P , an order preserving map; and a sequence {xi}i<ω ⊆ P .
Let {yi}i<ω ⊆ Q be such that for all i, f(yi) = xi. There exist i < j with yi ≤ yj .
Then xi ≤ xj . 2

Definition 4.11. 1. Given a set F of variables, let TF be the set of terms
over the language with j, ∪, and variables from F .

2. For t ∈ TF , the Jump Rank of t is defined by recursion:

jrk(t) =


0 if t is a variable;
max(jrk(t1), jrk(t2)) if t = t1 ∪ t2;
jrk(t1) + 1 if t = j(t1).

3. The support of t, supp(t), is the set of variables that actually occur in t.
4. For t with supp(t) ⊆ F , we define the Jump Rank of t over F by recursion:

jrkF (t) =


−∞ if supp(t) ⊂ F ;
0 if t is a variable xi and F = {xi};
max(jrkF (t1), jrkF (t2), 0) if t = t1 ∪ t2 and supp(t) = F ;
jrk(t1) + 1 if t = j(t1).

5. For terms t1(x̄) and t2(x̄), say that t1 ≤ t2 if for every jusl U

U � ∀x̄
(
t1(x̄) ≤ t2(x̄)

)
.

6. We say that t1 is equivalent to t2, and write t1 ≡ t2, if t1 ≤ t2 and t2 ≤ t1.

We shall write jm(b) for

m︷ ︸︸ ︷
j(j(...j(x)..)) and

⋃
{b1, ..., bn} for b1 ∪ b2 ∪ ... ∪ bn.

Lemma 4.12. For every term t ∈ TF ;
1.

⋃
supp(t) ≤ t;

2. t ≤ jjrk(t)(
⋃
F);

3. if supp(t) = F then jjrkF (t)(
⋃
F) ≤ t.

Proof. The first two parts are straightforward by induction on t. The third
part can be proved by induction on jrkF (t) as follows. If jrkF (t) = 0 then
j0(

⋃
F) = (

⋃
F) ≤ t by the first part. Now suppose that jrkF (t) > 0. If t = j(t1),

then jjrkF (t)(
⋃
F) = j(jjrkF (t1)(

⋃
F)) ≤ j(t1) = t by inductive hypothesis. If

16 ANTONIO MONTALBÁN

t = t1 ∪ t2, then either jrkF (t1) or jrkF (t2) is equal to jrkF (t). Say the first one.
Then jjrkF (t)(

⋃
F) = jjrkF (t1)(

⋃
F) ≤ t1 ≤ t. 2

Lemma 4.13. For finite F , TF is a well quasiordering.

Proof. We use induction on |F |, so we can assume that TG is a well qua-
siordering for every G ⊂ F . (Note that the empty set is well quasiordered.) Now
consider a sequence {ti}i∈ω ⊆ TF . We want to show that there are i < j, such
that ti ≤ tj . Let m0 = jrk(t0). If for some i 6= 0, jrkF (ti) ≥ m0, we are done
because, by Lemma 4.12,

t0 ≤ jm0(
⋃
F) ≤ jjrkF (ti)(

⋃
F) ≤ ti.

So, assume that there is some m ∈ ω such that for all i, jrkF (ti) < m. Let
TF,m = {t ∈ TF : jrkF (t) < m}. We shall prove, by induction on m, that TF,m
is well quasiordered. This will imply that there are i < j as we want, and hence
that TF is a well quasiordering.

For m = 0 we have that

TF,0 =
⋃
{TG : G ⊂ F}.

It is not hard to see that a finite union of well quasiordering is a well qua-
siordering. So, since we are assuming that each TG is well quasiordered, TF,0
is well quasiordered. Now assume that TF,m is well quasiordered and consider
{ti}i∈ω ⊆ TF,m+1. Suppose, toward a contradiction, that for all i < j, ti � tj .
There cannot be infinitely many terms in TF,0 because of the base case we have
just proved. If we eliminate the terms in TF,0, we can assume that {ti}i∈ω is a
sequence where all the terms have support F . First observe that every ti in the
sequence can be written, up to equivalence, as⋃

j<ri
j(sij) ∪

⋃
Gi,

where Gi ⊆ F and sij ∈ TF,m. For each i > 0, since t0 � ti and
⋃
Gi ≤

⋃
F ≤ ti,

we have that for some j < r0, j(s0j) � ti. Therefore

∃j < r0∃∞i ∈ ω
(
j(s0j) � ti

)
.

Let j0 be one of those j’s. Let s0 = s0j0 , and I0 = {i ∈ ω : j(s0) � ti}. Now
consider i1, the first element in I0. For the same reason,

∃j < ri1∃∞i ∈ I0
(
j(si1j) � ti

)
.

Let j1 be one of those j’s. Let s1 = si1j1 , and I1 = {i ∈ I0 : j(s1) � ti}. Repeat
this procedure to get a sequence {si}i∈ω ⊆ TF,m such that

∀i < j
(
j(si) � j(sj)

)
.

But, by inductive hypothesis, there are i < j such that si ≤ sj . Which implies
that j(si) ≤ j(sj). Contradiction. 2

Corollary 4.14. Every finitely generated pjusl is well quasiordered.

Proof. Every finitely generated pjusl, J , is the image of a subset of TF ,
for some finite F , under an order preserving map. Therefore, since TF is well
quasiordered, so is J by observation 4.10. 2

EMBEDDING JUMP UPPER SEMILATTICES INTO THE TURING DEGREES. 17

4.4. The decomposition of J . Consider J = 〈J,≤J ,∪, j〉, a recursive pjusl
such that j is a total function. We want to show that we can define a level function
to L on it and a sequence

J0 ⊆ J1 ⊆ J2 ⊆ ⊆ J ,

with J =
⋃
i<ω Ji, such that for some α < ωCK1 , Ji ∈ Kα for all i ∈ ω.

Enumerate J as {a0, a1, ..., an, ...}. Let Jn = 〈ai : i < n〉J , the pjusl generated
by a0, ..., an−1. Let Jn be the domain of Jn. Note that for each n, Jn ≤T 0′.
Let � be a recursive linear ordering extending the ordering of J . In other
words, 〈J,�〉 is a recursive linear ordering and ≤J⊆�. A proof of the fact that
every recursive partial ordering has a recursive linear extension can be found in
[Dow98, Obs. 6.1].

Let �n be � restricted to Jn. Since 〈Jn,≤J 〉 is well quasiordered, �n is well
quasiordered too. Since �n is linear, it is actually a well ordering. Let γ be the
supremum of the order types of �n, for n < ω. We know that γ < ωCK1 because
〈�n: n < ω〉 is a an arithmetic sequence of well orderings. Think of γ as an
initial segment of L. The rank function of 〈Jn,≤J 〉, rk�n

: Jn → γ is recursive
in 02γ+2 by Lemma 3.1. Let α = 2γ + 2.

Lemma 4.15. There is a level function lev : J → L such that for each n,
lev � Jn is recursive in 0α.

Proof. To simplify the definitions, add to � an element, ∞, on top: Let
J̄n = Jn ∪ {∞} and for all x ∈ Jn set x � ∞. Together with lev we define a
sequence {σn}n∈ω ⊆ L and for each y ∈ Jn an element bny ∈ L. We require that
each σn 6∈ ωCK1 (we identify ωCK1 with the initial segment of L of order type
ωCK1), that

∀x ∈ Jn(x < y=⇒ lev(x) < bny),

and that

lev(y) ≥ bny + σn.

Construction of lev. The construction is done by recursion on n. For n =
0, we have that J0 = {∞}. Let b0∞ = 0 and let σ0 be anything in L r ωCK1 .
Define lev(∞) = σ0. Now suppose we have defined lev(y), and bny for all y ∈ Jn,
recursively in 0α and the finite sequence 〈σ0, ..., σn〉. Let σn+1 be such that
σn+1 6∈ ωCK1 and σn+1 · (α + 1) < σn. Such a σn+1 exists because the set
{β ∈ L : β · (α + 1) < σn} is recursive and contains ωCK1 , but since ωCK1 is not
recursive, there is some σn+1 in that set which is not in ωCK1 . For x ∈ Jn+1 rJn,
define:

βx = rk�
n+1

(x) ∈ ωCK1 ⊂ L;
yx = µy ∈ Jn(x ≺ y);

lev(x) = bnyx
+ σn+1 · (βx + 1);

bn+1
x = bnyx

+ σn+1 · βx.

For y ∈ Jn, let bn+1
y = bny + σn+1 · α. 3

Since rk�
n+1

(x) can be found recursively in 0α, we can find βx recursively in 0α.
Also note that y = µy ∈ Jn(x ≺ y) can be found recursively in 0′′, because such

18 ANTONIO MONTALBÁN

a y always exists and 〈Jn,�〉 ≤T 0′. Is easy to verify, by induction on n, that
the construction does what we want. 2

4.5. Putting the pieces together.

Proposition 4.16. Let J be a countable pjusl such that its jump operation
is total. There exists a countable pjusl P which extends J and supports a jump
hierarchy R.

Proof. Assume that J is recursive. Otherwise we can relativize the proof.
Let α be as defined in the beginning of subsection 4.4 and let P = Pα. By
Lemma 4.15, Ji ∈ Kα for all i ∈ ω, so, from Lemma 4.8 we get that J embeds
into Pα. By Lemma 4.7, Pα supports a jump hierarchy. 2

Theorem 4.17. Every countable jump upper semilattice can be embedded into
D.

Proof. Immediate from the previous proposition and Theorem 2.2. 2

§5. Adding 0 to the Language. In this section we add 0 to the structure
and we ask the same kind of questions we asked for jump upper semilattices. We
are concerned with the following kind of structures.

Definition 5.1. A partial jump upper semilattice with 0 is a structure J =
〈J,≤J ,∪, j, 0〉 such that 〈J,≤J ,∪, j〉 is a pjusl, 0 is the least element of 〈J,≤J 〉,
and for all n ∈ ω, jn(0) is defined. A jump upper semilattice with 0 is a pjusl
with 0 where join and jump are total, and a jump partial ordering with 0 is one
where jump is total but join is undefined.

In this section D represents 〈D,≤T ,∨, ′, 0〉.
5.1. A negative answer. The direct generalization of Theorem 4.17 to jusls

with 0 is false.

Theorem 5.2. Not every quantifier free 1-type of jusl with 0 is realizable in
D.

Proof. We shall prove that there are continuum many quantifier free 1-types
of jusl with 0 which contain a formula of the form x ≤ jn(0). But there are only
countably many arithmetic Turing degrees. Therefore, not all of these types can
be realized in D.

Given a set A ⊆ ω, we construct, pA(x), a quantifier free 1-type of jusl with
0. Put in pA(x) all the formulas

jn(x) ≥J jn(0), jn(x) |J jn+1(0), jn(x) ≤J jn+2(0),

for all n ∈ ω. Also, for each n ∈ A, add the formula

j
(
jn(x) ∪ jn+1(0)

)
= jn+1(x) ∪ jn+2(0),

and for n 6∈ A, the formula

j
(
jn(x) ∪ jn+1(0)

)
= jn+3(0).

Of course, we add to pA(x) all the formulas which can be deduced form the ones
already in pA(x).

EMBEDDING JUMP UPPER SEMILATTICES INTO THE TURING DEGREES. 19

j4(0) j3(x)

j3(0) ∪ j2(x)

WWWWW ggggg

j3(0)
ggggg

KS

j2(x)
WWWWW

KS

j2(0) ∪ j(x)

WWWWWW gggggg

KS

j2(0)
gggg

KS

j(x)
WWWWWW

KS

j(0) ∪ x
WWWWWWW

gggggggg

_g GGGGGGGGGGG

GGGGGGGGGGG

j(0)
gggggggg

KS

x

WWWWWWWWW

KS

0

ddddddddddddddddddddddddd
KS

In the picture above the reader can see how a realization of pA(x) would look like,
and convince himself that pA(x) is consistent with the axioms of jusl with 0. (In
the picture, the double arrows (⇒) represent the jump operator. In the example
drawn, 0 6∈ A but 1 ∈ A.) It is also easy to see that for A 6= B, pA 6= pB . 2

Remark 5.3. If p(x) is the type of an arithmetic degree x ∈ D, then necessarily
p(x) ≤T 0ω. Because given an index for a set in x, all the quantifier free formulas
of jusl with 0 can be decided uniformly in 0ω.

Since realizing quantifier free n-types of jusl is equivalent to embedding jusl
with n generators, we get the following corollary.

Corollary 5.4. Not every countable jusl with 0 is embeddable into D.

5.2. A positive answer. Now we consider jpo with 0. The situation here
changes because there are only countably many quantifier free 1-types of jpo
with 0 containing a formula of the form x ≤ jn(0). Moreover, all of these types
are recursive.

We need a stronger version of Theorem 2.2.

Definition 5.5. Given a jpo P, we say that H : P → ωω is almost a jump
hierarchy over P if for all x ∈ P
• P � j(x) ≤T H(x), where P �x is the restriction of P to {y ∈ P : y ≤P x}.
•

⊕
y∈P � xH(y) ≤T H(x);

• H(x)′ ≤T H(j(x)).

Theorem 5.6. Suppose that J is a countable jpo that supports an almost
jump hierarchy H. Then there is an embedding from J into D presented by
R : J → ωω such that

∀x, y ∈ J
(
H(x) ≤T R(y) =⇒H(x) ≤T H(y)

)
.(5.1)

Proof. We construct R in the same way as in Theorem 2.2. We have to prove
that an almost jump hierarchy is enough to guarantee that R is an embedding,
and that we also get (5.1). To prove that R represents an embedding, we have to
verify that the proof in section 2 works in the same way as there. We only used
that J ≤T H(x) for all x ∈ J in observation 2.15 and Lemma 2.17. Observe
that in both cases we only needed that J � j(x) ≤T H(x). We used that x <J

y=⇒H(x)′ ≤T H(y) in corollary 2.19, but we only used that H(x)′ ≤T H(j(x)).

20 ANTONIO MONTALBÁN

Let us prove now that (5.1) holds. Suppose that H(x) = {e}R(y). Then,
there is some p ∈ IP such that p
 {e}R(y) = R(x)[0](= H(x)). So, for every
q ≤ p and m ∈ ω such that {e}Rq(y)(m)↓, we have that {e}Rq(y)(m) = H(x)(m).
We also know that for every m there is some q ≤ p such that {e}Rq(y)(m)↓.
Now, given m ∈ ω, we can find q̄ ∈ IP p,y such that {e}Rq̄(y)(m)↓, recursively in
H(y), because IP p,y ≤T H(y). Then H(x)(m) = {e}Rq̄(y)(m). This shows that
H(x) ≤T H(y). 2

Definition 5.7. Given a jpo with 0 J , the archimedean part of J is

Ja = {x ∈ J : ∃n ∈ ω
(
x ≤J jn(0)

)
}.

We say that J is archimedean if J = Ja. Observe that Ja is closed under jump.
So, let Ja be the restriction to Ja of J as a jpo.

We say that a type of jpo with 0, p(x1, ..., xn) is archimedean if for some m ∈ ω
it contains the formula “x1 ≤ jm(0) & ... & xn ≤ jm(0)”.

Theorem 5.8. Let J = 〈J,≤J , j, 0〉 be a finitely generated jpo with 0 such
that every pair x, y ∈ Ja has a least upper bound. Then, any embedding of Ja
into D extends to an embedding of J into D (not necessarily preserving join but
preserving 0).

Proof. Suppose that we have an embedding of Ja presented by R : Ja → ωω.
We start by defining a particular almost jump hierarchy, K, over J . We need to
begin with a couple of observations. First observe that, by corollary 4.14, since
J is finitely generated, it is well founded. So, by Remark 3.3, there is a jump
hierarchy, H, over J such that for all x ∈ J , H(x) ≥T R ⊕ (J)′. Second, say
that x� 0 if ∀n(x ≥J jn(0)). Now observe that for every x ∈ J either x� 0 or
there is a xa ∈ Ja such that

∀y ∈ Ja(y ≤J x ⇐⇒ y ≤J xa).

This is because J is finitely generated: Let ā = {a1, ..., an−1} be a set of gen-
erators of J , let F = {x1, ..., xn1}, and suppose that x 6� 0. Then, there is
some m such that jm(0) �T x. So, each y ≤J x has to be of the form jk(ai)
for some i < n and k < m. Therefore, there are only finitely many y ∈ Ja with
y ≤J x. Let xa be the least upper bound of {y ∈ Ja : y ≤J x}, which exists by
hypothesis.

Now we define K : J → ωω as follows

K(x) =

{
R(xa) if x 6� 0,
H(x) if x� 0.

We claim that K is almost a jump hierarchy over J . For each x ∈ J we have to
check the conditions in Definition 5.5. For x 6� 0 we have that J � j(x) ≤T K(x)
because J � j(x) is finite; we have that

⊕
y∈J � xK(y) ≤T K(x) because J �x is

finite and for all y ≤J x, ya ≤J xa; and we have that K(x)′ ≤T K(j(x)) because
j(xa) ≤J (j(x))a. For x � 0, we have that J ≤T K(x) and that K(x)′ ≤T
K(j(x)) because H is a jump hierarchy over J . To prove that K(y) ≤T K(x)
uniformly in y observe that using J ′ we can decide whether y � 0, and if y 6� 0
we can find ya. Then since R and

⊕
y≤J x

H(y) are recursive H(x) = K(x), we
get that K(y) ≤T K(x) uniformly in y.

EMBEDDING JUMP UPPER SEMILATTICES INTO THE TURING DEGREES. 21

Now, by Theorem 5.6, there is an embedding J → D presented by some
R1 : J → ωω such that

∀x y ∈ J
(
K(x) ≤T R1(y) =⇒K(x) ≤T K(y)

)
.(5.2)

Extend R to J by defining R(x) = R1(x) for all x ∈ J r Ja. R preserves the
jump because it does it for x ∈ Ja and it does it for x ∈ J r Ja. All we have
to prove, to show that R represents an embedding of J into D, is that for all
x ∈ Ja and y ∈ J r Ja we have that

x ≤J y ⇐⇒ R(x) ≤T R(y)

If y � 0 then x ≤J y and R(x) ≤T R(y). So, suppose that y 6� 0. First assume
that x ≤J y. Then xa = x ≤J ya. Therefore

R(x) = R(ya) ≤T K(ya) ≤T R1(y) = R(y).

Now suppose that R(x) ≤T R(y). Since x ∈ Ja, R(x) = K(x), and since y 6∈ Ja,
R(y) = R1(y). So, K(x) ≤T R1(y). Then, by (5.2), K(x) ≤T K(y). Hence, we
have that R(x) ≤T R(ya). But we know that R restricted to Ja is an embedding,
so x ≤J ya ≤J y. 2

Corollary 5.9. Every quantifier free 1-type of jpo with 0 is realized in D.

Proof. We start by defining the notion of jump trace introduced in [HS91].
A consistent jump trace is a pair of sequences (h0, h1, h2, ...; ..., l2, l1, l0) such
that for all k ∈ ω hk ≤ hk+1 ≤ lk+1 ≤ lk ≤ lk+1 + 1. The jump trace of an
arithmetic degree x is (h0, h1, ...; ...l1, l0) where hi is the greatest h such that
x(i) ≥T 0(i+h), and li is the least l such that x(i) ≤T 0(i+l) is in p(x). Given
p(x), an archimedean type of jpo with 0 we can associate to it the jump trace
(h0, h1, ...; ...l1, l0) where hi is the greatest h such that “ji(x) ≥ ji+h(0)” is in
p(x), and li is the least l such that “ji(x) ≤ ji+l(0)” is in p(x). It is easy to see
that an arithmetic degree x realizes p(x) if and only if x and p(x) have the same
jump trace. Hinman proved in [Hin99], finishing the cases left by Hinman and
Slaman in [HS91], that every consistent jump trace is realizable in D. Hence
every archimedean quantifier free 1-type of jpo with 0 is realizable in D.

Now let p(x) be a quantifier free 1-type of jpo with 0 and suppose that no
formula of the form “x ≤ jm(0)” is in p(x). Consider a jpo with 0, J , with one
generator a, such that J |= p(a). By our assumption on p(x), a 6∈ Ja, and hence
Ja = {0, j(0), j2(0), ...}. Obviously, Ja embeds into D, and every pair of elements
in Ja has a least upper bound. So, by Theorem 5.8, the embedding of Ja into
D extends to J . Therefore, p(x) is realizable in D. 2

Lemma 5.10. Every finitely generated archimedean jpo with 0, P = 〈P,≤P
, j, 0〉, can be embedded into a finitely generated archimedean jpo with 0, J , such
that every pair of elements has a least upper bound.

Proof. The idea is to consider the usl with 0 generated by P and define the
jump operator on it by imposing that j(x ∪ y) = j(x) ∪ j(y). Let J ′ = {F ⊂ P :
F finite & F 6= ∅} and define an order on J ′ as follows:

F ≤′ G ⇐⇒ ∀x ∈ F ∃y ∈ G(x ≤P y)

22 ANTONIO MONTALBÁN

Observe that ≤′ is transitive and reflexive. Say that F is equivalent to G, F ≡ G,
if F ≤′ G & G ≤′ F , and write [F] for the equivalence class of F . Let J = J ′/ ≡,
define [F] ≤ [G] ⇐⇒ F ≤′ G, and [F]∨ [G] = [F ∪G]. It is easy to show that J
is an usl with 0 and that the map that sends x ∈ P into [{x}] is an embedding
of P into J . Define a jump operation on J as follows:

j([F]) = [{j(x) : x ∈ F} ∪ {0}]
One can easily check that j is well defined, that it is monotone and strictly
increasing and that J is archimedean.

Now we need to prove that J is finitely generated as a jpo with 0. Let
{a1, ..., an} be a set of generators of P. Let m be such that all the generators of
P are below jm(0). We claim that the set

A = {[F] : F ⊆ {ji(aj) : i = 0, ...,m− 1; j = 1, ..., n}}
generates J . Take any [G] ∈ J . G is equivalent to some G1 = {x1, ..., xk} such
that ∀i 6= j(xi 6≤P xj). Each xi is of the form jri(asi

) for some ri and for some
generator asi . Let r = min{r1, ..., rk}, suppose, without lost of generality, that
r = r1. Then

[G] = jr([F]) where F = {jri−r(asi
) : i = 1, ..., k}.

We have to that for all i = 1, ..., k, ri − r < m. Suppose that ri − r ≥ m,
then jri−r(asi) ≥P jm(0) ≥P as1 . Therefore xi = jri(asi) ≥ jr(as1) = x1,
contradicting our assumption on G1 = {x1, ..., xk}. 2

Corollary 5.11. If every finitely generated archimedean jpo with 0 can be
embedded into D, then every finitely generated jpo with 0 can be embedded into D.
Equivalently: If every archimedean quantifier free type of jpo with 0 is realizable
in D, then every quantifier free type of jpo with 0 is realizable in D.

Proof. Let P be a finitely generated jpo with 0. Let J̄ be an extension of Pa
as in the previous lemma. Let J be the jpo with 0 obtained by amalgamating
P and J̄ as in Lemma 4.6. Note that J is still finitely generated, and that its
archimedean part is J̄ , in which every pair of elements has a least upper bound.
By hypothesis Ja = J̄ can be embedded into D. Then, by Theorem 5.6, J can
be embedded into D. Hence P can be embedded too. 2

§6. Uncountable jump upper semilattices. So far we have studied count-
able pjusls. Now, given κ, with ℵ0 ≤ κ ≤ 2ℵ0 , we address the following question:
Is every jusl with the size κ and the c.p.p. embeddable in D? In the first sub-
section we answer this question negatively for κ = 2ℵ0 . In the second subsection
we answer this question positively for κ such that MA(κ) holds.

6.1. A negative answer. We construct a jpo of size 2ℵ0 which cannot be
embedded into the degrees.

Definition 6.1. Given a strictly increasing function f : ω → ω, we define a
jpo Pf = 〈Pf ,≤, j〉 as follows:
• Pf = {ai : i ∈ ω} ∪ {bi : i ∈ ω} ∪ {ci : i ∈ ω}.
• j(ai) = ai+1, j(bi) = bi+1 and j(ci) = ci+1 for all i ∈ ω.
• ai < aj iff i < j, bi < bj iff i < j, and ci < cj iff i < j.

EMBEDDING JUMP UPPER SEMILATTICES INTO THE TURING DEGREES. 23

• ai < cj and bi < cj for all i, j.
• ai ≤ bj iff f(j) ≥ i.
• for all i, j ∈ ω, bi 6< aj , ci 6< aj and ci 6< bj .
In the figure below we draw an example where f(0) = 0, f(1) = 1, f(2) = 3,...

(The double arrows (⇒) represent the jump operator.)

...

c1

KS

c0

KS

...

hhhhhhhhhhhh

...

LLLLLLLLLLLLL

b2

KS

a3

\\\\\\\\\\\\\\\\\\\\\\\\

KS

a2

KS

b1

KS

a1

KS
\\\\\\\\\\\\\\\\\\\\\\\\

b0

KS

a0

KS
\\\\\\\\\\\\\\\\\\\\\\\\

It is easy to see that, for every strictly increasing f , Pf is a jpo.

Lemma 6.2. Let f : ω → ω be strictly increasing, and let ψ be an embedding
of Pf into D. Then ψ(c3) ≥T f .

Proof. Let A be a member of ψ(a0), B be a member of ψ(b0) and C be a
member of ψ(c0). Since for all i ∈ ω, A(i) and B(i) are recursive in C, there are
functions g and h, recursive in C(3) (actually recursive in C(2) too), such that

A(i) = {g(i)}C and B(i) = {h(i)}C .

Therefore, we can decide whether B(j) ≥T A(i) recursively in C(3), uniformly in
i and j. So, we can compute f from C(3). 2

Definition 6.3. Let d be a new symbol and J be the jpo with generator
d (i.e. J = {d, j(d), j2(d), ...}), and let F be the set of all strictly increasing
functions from ω into itself. Define

P = J ⊕
⊕
f∈F

Pf .

In other words: the domain of P is the disjoint union of J and all the Pf with
f ∈ F ; the jump operation is defined in the obvious way; and the ≤ relation in
P is the disjoint union of the ≤ relations of each jpo.

Proposition 6.4. P cannot be embedded into D.

24 ANTONIO MONTALBÁN

Proof. Suppose that there is an embedding ψ : P → D. In the degree d =
ψ(d) there is some f ∈ F . Let c3

f be the image under ψ of the element c3 of Pf
(call that element c3f). Then, by the previous lemma, d = deg(f) ≤ c3

f . This
contradicts the fact that ψ is an embedding since d and c3f are incomparable. 2

6.2. A positive answer. Now, we prove that if MA(κ) holds, then every jusl
with the c.p.p. and size κ can be embedded into D. The idea is the if we have
a pjusl of size κ, with the c.p.p. and supporting an almost jump hierarchy, we
can carry out the forcing construction of Section 2 as long as we can get generic
enough filters. MA(κ) give us the existence of such generic filters.

The hard part is to prove that every pjusl with the c.p.p. extends to another
one, also with the c.p.p., which supports an almost jump hierarchy (ajh) and
has the same cardinality. We start by proving some facts we will use about end
extensions and amalgamations of pjusls. (We say that a partial order P is an
end extension of Q if Q ⊆ P and Q is closed downward in P.)

In this section, the jump operation of every pjusl is total.

Definition 6.5. Given pjusls A, A1 and A2, and embeddings ϕ1 : A → A1

and ϕ2 : A→ A2, let A1 ⊕A,ϕ1,ϕ2
A2 be the structure defined in Lemma 4.6. We

write A1⊕A
A2 if ϕ1 and ϕ2 are clear from the context, and we write A1 ⊕ A2

when A = ∅.
In Lemma 4.6 we also constructed two embeddings, ψ1 : A1 → A1⊕A

A2 and
ψ1 : A1 → A1⊕A

A2, such that ψ1 ◦ ϕ1 = ψ2 ◦ ϕ2. Observe that if ϕ1 and ϕ2 are
inclusions, we can think of ψ1 and ψ2 as inclusions too.

Lemma 6.6. Let A, A1, A2, ϕ1 and ϕ2 be as in the definition above. Then:
1. Given a pjusl B and two homomorphisms (of pjusl) χ1 : A1 → B and
χ2 : A2 → B such that χ1 ◦ ϕ1 = χ2 ◦ ϕ2, there is a unique homomorphism
χ : A1⊕A

A2 → B such that the following diagram commutes.

A1
χ1

++WWWWWWWWWWWWWWWWWWW
ψ1

OOO

''OOO

A

ϕ1
::uuuuuu

ϕ2

$$IIIIII A1⊕A
A2 χ // B

A2

χ2

33ggggggggggggggggggg
ψ2ooo

77ooo

2. If A1 is an end extension of A, then A1⊕A
A2 is an end extension of A2.

3. If A1 is an end extension of A1 r A, then A1⊕A
A2 is an end extension of

A1 rA.
4. If A1 and A2, both have the c.p.p., then so does A1⊕A

A2.

Lemma 6.7. If 〈Aξ : ξ < α〉 is a chain of pjusl with the c.p.p. such that for
all β < γ < α, Aγ is an end extension of Aβ, then A =

⋃
ξ<αAξ is a pjusl which

is an end extension of each Aξ and has the c.p.p.

The proofs of these lemmas are straightforward.

Lemma 6.8. Let J1 and J2 be two countable pjusls, such that J2 is an end
extension of J1. Let H and K be ajhs over J1 and J2 r J1 respectively, such
that ∀x ∈ J2 r J1(J1 ⊕ H ≤T K(x)). Define R : J2 → ωω by R(x) = H(x) if
x ∈ J1 and R(x) = K(x) if x ∈ J2 r J1. Then R is an ajh over J2.

EMBEDDING JUMP UPPER SEMILATTICES INTO THE TURING DEGREES. 25

Proof. Just check the conditions of Definition 5.5. 2

Lemma 6.9. Let Q and J be two countable pjusls, such that J is an end
extension of Q. Let H be an almost Jump Hierarchy over Q. Then, there is
a pjusl P extending J which is an end extension of Q and supports an almost
jump hierarchy extending H.

Proof. Let P̄ be a pjusl extending J and supporting an almost jump hierar-
chy K such that ∀x ∈ P̄(K(x) ≥T H⊕J). (A relativized version of Proposition
4.16 would give us such a P̄.) Let P = P̄⊕JrQJ . Note that J r Q is a pjusl
and is closed under jump because J is an end extension of Q. Also observe that,
since J is an end extension of Q = J r (J r Q), P is an end extension of Q.
Now define R : P → ωω by R(x) = H(x) if x ∈ Q and R(x) = K(x) if x ∈ P̄.
By lemma 6.8, R is an ajh over P extending H. 2

Lemma 6.10. Let Q and J be two pjusls, such that J is an end extension of
Q and let κ = |J |. Let H be an almost Jump Hierarchy over Q. Then, there is
a pjusl P extending J which is an end extension of Q, has size κ, and supports
an ajh extending H.

Proof. We use induction on κ. When κ = ℵ0, the result is given by the
previous lemma. Now suppose that κ > ℵ0 and that the lemma is true for all
cardinals smaller that κ. Let {aξ : ξ < κ} be a well ordering of the elements of
J , let Jγ be the downward closure of the pjusl generated by {aξ : ξ < γ}, and let
Qγ = Q∩Jγ . Note that |Jγ | = |γ|+ℵ0. Now, we construct a sequence {Pγ}γ≤κ
as in the figure below (where A

� � / B indicates that B is an end extension of
A). We do it by induction on γ, and we want the sequence to have the following
properties.
• Pγ supports an ajh, Kγ .
• if β < γ then Pγ is an end extension of Pβ , and Kβ ⊆ Kγ .
• Pγ extends Jγ .
• Pγ is an end extension of Qγ and Kγ extends H �Qγ .
• |Pγ | ≤ |γ|.

P0
� � / P1

� � /Pγ � � / Pγ+1
� � / P

J0
� � /

@@�������
J1

� � /

>>~~~~~~~~
........ ...Jγ � � /

==zzzzzzzz
Jγ+1

� � /

<<yyyyyyyy
......... J

??��������

Q0
� � /?�

O

5�

�������

H�������

Q1
� � /?�

O

4�

�������

G�������

........ ...Qγ � � /?�

O

3�

�������

F�������

Qγ+1
� � /?�

O

3�

�������

E�������

......... Q
?�

O

4�

G���������������

Suppose that J0 = Q0 = ∅ and let P0 be empty too. Now assume we have
defined Pγ and we want to define Pγ+1. (We do it as in the diagram below.) Let
Hγ = Kγ ∪H �Qγ+1; it is an ajh over Pγ⊕Qγ

Qγ+1. Let Pγ+1 be an extension
of Pγ⊕Jγ

Jγ+1, such that Pγ+1 is an end extension of Pγ⊕Qγ
Qγ+1 and supports

an ajh, Kγ , extending Hγ . We know such a Pγ+1 exists because |Pγ⊕Jγ
Jγ+1| ≤

|γ| < κ. Moreover we can get Pγ+1 of size ≤ |γ|. Note that since both Pγ and

26 ANTONIO MONTALBÁN

Qγ+1 are end extensions of Qγ , Pγ⊕Qγ
Qγ+1 is an end extension of both Pγ and

Qγ+1. Now, since Pγ+1 is an end extension of Pγ⊕Qγ
Qγ+1, it is also an end

extension of both Pγ and Qγ+1.

Pγ � � /� uPPOO

%
MMLLK

Pγ⊕Jγ
Jγ+1 // Pγ+1

Jγ � � /

>>||
Jγ+1

66mmmm

Pγ⊕Qγ
Qγ+1

?�

O

, �

:

Qγ � � /
� ?

OO

� 6

�������

II���

Qγ+1

) 	
6mmmm� ?

OO

When γ is a limit ordinal let Pγ =
⋃
ξ<γ Pξ and Kγ =

⋃
ξ<γ Kξ. It is easy to

check that {Pγ}γ≤κ has the properties mentioned above and that P = Pκ is as
wanted. 2

Proposition 6.11. Every pjusl with the c.p.p. can be extended to one of the
same cardinality which also has the c.p.p. and supports an ajh.

Proof. Apply the previous lemma with Q = ∅. 2

Now we use Martin’s Axiom to prove that some uncountable jusls can be
embedded into D.

Definition 6.12. MA(κ) is the statement: Whenever 〈IP ,≤〉 is a non-empty
c.c.c. partial order, and F is a family of ≤ κ dense subsets of IP , then there
is a filter G in IP such that ∀D ∈ F(G ∩ D 6= ∅). We say that a p.o. has the
countable chain condition (c.c.c.) if every antichain is at most countable.

It is consistent with ZFC that 2ℵ0 > ℵ1 and MA(λ) for all λ < 2ℵ0 (see
[Jec03, Theorem 16.13]).

Proposition 6.13. If MA(κ) holds, then every jusl with the c.p.p. and of size
≤ κ can be embedded into D.

Proof. Consider a jusl Q with the c.p.p. and of size ≤ κ. By Proposition
6.11, there is a pjusl J , extending Q, which supports an ajh H, has cardinality
≤ κ and has the c.p.p. We claim that the construction done in Section 2 works
for J too. Therefore, we would get that J , and hence Q, can be embedded
into D. Note that we do not have a jump hierarchy here, but an almost jump
hierarchy. As mentioned in Theorem 5.6, this is not a problem.

Let IP be the partial order defined in Subsection 2.1. IP is a set of pairs of
finite partial functions from J×ω to ω. Actually we can view IP as a set of finite
partial functions from J×ω×2 to ω. Such a partial ordering always has the c.c.c.
(see [Kun80, Lemma VII.5.4]). Now consider the set of all first order formulas in
the language with signature {0, S,+, ·, <}∪{Rp(x)(·), Skp(x)(·) : p ∈ IP , x ∈ J }.
For every such a formula we can define what it means that p ∈ IP forces it (see
[SW]). We know that given a formula ϕ, {p : p
 ϕ ∨ p
 ¬ϕ} is dense in IP ,
and, since IP and J have cardinality ≤ κ, there are at most κ such formulas.
Hence, because of MA(κ), there is a filter G in IP such that every such formula
is decided by some element of G. This generic filter G satisfies all the properties
that we needed in Section 2. Therefore, in particular, it gives us an embedding
from J into D. 2

EMBEDDING JUMP UPPER SEMILATTICES INTO THE TURING DEGREES. 27

Corollary 6.14. Whether every jpo (or jusl) with the c.p.p. and size ℵ1 is
embeddable into D is independent of ZFC.

Proof. On the one hand, we get from 6.4 that, if CH holds, not every jpo of
size ℵ1 = 2ℵ0 with the c.p.p. is embeddable in D. On the other hand, if MA(ℵ1)
holds, we just proved that every jusl with the c.p.p. and size ℵ1 is embeddable
into D. 2

REFERENCES

[AS86] U. Abraham and R.A. Shore, Initial segments of the degrees of size ℵ1, Israel
Journal of Mathematics, vol. 53 (1986), pp. 1–51.

[AK00] C.J. Ash and J. Knight, Computable structures and the hyperarithmetical
hierarchy, Elsevier Science, 2000.

[Dow98] R.G. Downey, Computability theory and linear orderings, Handbook of recursive
mathematics, vol. 2, North Holland, 1998, pp. 823–976.

[Har68] J. Harrison, Recursive pseudo-well-orderings, Transactions of the American
Mathematical Society, vol. 131 (1968), pp. 526–543.

[Hin99] P.G. Hinman, Jump traces with large gaps, Recursion theory and complexity
(M. M. Arslanov and S. Lempp, editors), 1999, pp. 71–80.

[HS91] P.G. Hinman and T.A. Slaman, Jump embeddings in the Turing degrees, this Jour-
nal, vol. 56 (1991), pp. 563–591.

[Hod93] W. Hodges, Model theory, Cambridge Univeristy Press, 1993.
[Jec03] T. Jech, Set theory, third millennium ed., Springer, 2003.

[JS93] C.G. Jockusch Jr and T.A. Slaman, On the Σ2 theory of the upper semilattice of

the Turing degrees, this Journal, vol. 58 (1993), pp. 193–204.
[KP54] S.C. Kleene and E.L. Post, The upper semi-lattice of the degrees of recursive

unsolvability, Annals of Mathematics, vol. 59 (1954), pp. 379–407.

[Kun80] K. Kunen, Set theory. an introduction to independence proofs, North Holland,
1980.

[Lac68] A.H. Lachlan, Distributive initial segments of the degrees of unsolvability, Z.
Math. Logik Grundlag Math., vol. 14 (1968), pp. 457–472.

[LL96] S. Lempp and M. Lerman, The decidability of the existential theory of the poset of

the recursively enumerable degrees with jump relations, Advances in Mathematics, vol. 120
(1996), pp. 1–142.

[Ler83] M. Lerman, Degrees of unsolvability, Springer-Verlag, 1983.

[Sac61] G.E. Sacks, On suborderings of degrees of recursive unsolvability, Zeitschrift für
Mathematische Logik und Grundlagen der Mathematik, vol. 7 (1961), pp. 46–56.

[Sac90] , Higher recursion theory, Springer-Verlag, 1990.

[SS] R.A. Shore and T.A. Slaman, The ∀∃ theory of D(≤,∨,′) is undecidable, In prepa-
ration.

[SW] T.A. Slaman and W.H. Woodin, Definability in degree structures, Monograph in
preparation.

DEPARTMENT OF MATHEMATICS

CORNELL UNIVERSITY

ITHACA, NY 14853, USA

E-mail : antonio@math.cornell.edu

	1. Introduction.
	Outline.

	2. The Main construction
	2.1. The forcing notion.
	2.2. Preservation of nonorder.
	2.3. RG preserves the jump.

	3. Decidability results.
	4. Jump upper semilattices which support Jump Hierarchies.
	4.1. Pseudo-well orderings with Jump Hierarchies.
	4.2. Partial upper semilattices with level function.
	4.3. Well quasiorderings.
	4.4. The decomposition of J.
	4.5. Putting the pieces together.

	5. Adding 0 to the Language
	5.1. A negative answer.
	5.2. A positive answer.

	6. Uncountable jump upper semilattices
	6.1. A negative answer.
	6.2. A positive answer

