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Abstract. We introduce the notions of a complete set of computably infinitary Π0
n relations

on a structure, of the jump of a structure, and of admitting nth jump inversion.

Introduction

This paper is part of the study of the interactions between structural properties of a struc-
ture and computational properties of its presentations. We concentrate on the Turing jumps
of the presentations of a structure, and the main notion defined in this paper is the one of the
jump of a structure. Even if the definitions and theorems of this paper are all new, many of
the ideas were already in the air, but they were not concretely formulated.

We start by defining what it means for a set of relations in a structure to be a complete set of
computably infinitary Π0

n relations. The idea is that a set of relations is computably infinitary
Π0
n complete if it captures the whole Π0

n structural information of the structure. In the second
section we look at classes of structures which have a finite complete set of computably infinitary
Π0
n relations. In the first section, we also define the nth jump of a structure to be the structure

together with a complete set of computably infinitary Π0
n relations. In the last section we look

at the degree spectrum of the jump of a structure. We also define the notion of a structure A
admitting nth jump inversion and prove it is equivalent to saying whenever A has an X-lown

copy for some X, then it has an X-computable copy.
Throughout this paper we use L to denote a computable first order language. We use Πc

n to
denote the set of computably infinitary Π0

n L-formulas (see [AK00, Ch 7] for background on
this language), and we use Πc,Z

n to denote the class of Z-computably infinitary Π0
n L-formulas.

1. Main Definitions

Definition 1.1. Let A be an L-structure. Let {P0, P1, ...} be a finite or infinite set of uni-
formly Πc

n relations on A. That is, there is a c.e. list of Πc
n-formulas defining the relations Pi

on A. We say that {P0, P1, ...} is a complete set of Πc
n relations on A if every Πc

n L-formula
ψ(x̄) is equivalent to a Σc,0(n)

1 (L ∪ {P0, ...})-formula, and there is a computable procedure
to find this equivalent formula. In other words, {P0, P1, ...} is a complete set of Πc

n rela-
tions on A if for every Πc

n L-formula ψ(x̄) we can uniformly produce a 0(n)-computable
list ϕ0(x̄), ϕ1(x̄), ϕ2(x̄), ... of finitary existential L-formulas that may mention the relations
P0, P1, ... such that

A |= ψ(x̄) ⇐⇒
∨
i

ϕi(x̄).

Observe that if {P0, P1, ...} is a complete set of Πc
n relations on A then every Σc

n+1 L-formula

is also equivalent to a Σc,0(n)

1 (L ∪ {P0, ..., Pk})-formula.
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Definition 1.2. If {P0, P1, ...} is a complete set of Πc
n relations on A, we say that (A, P0, P1, ...)

is an nth jump of A and write
A(n) = (A, P0, P1, ...).

Note that being the nth jump of a structure is a property of isomorphism types of structures
and not of presentations of structures.

The second thing to notice is that every structure always has an nth jump: Just let
{P0, P1, ...} be a computable list of all the Πc

n relations on A.

Observation 1.3. If A has a copy ≤T X, then A(n) has a copy ≤T X(n).

Even though a structure might have many nth jumps, the following lemma show that, from
a complexity viewpoint, all these jumps are the same.

Lemma 1.4. Let P0, P1, ... and R0, R1, ... be complete sets of Πc
n relations on A. For every

Y ≥T 0(n) we have that

(A, R0, R1, ...) has copy ≤T Y ⇐⇒ (A, P0, P1, ...) has copy ≤T Y.

Proof. Fix a presentation of A and assume that Y can compute A and all the relations Ri
uniformly. We will show that Y uniformly computes all the relations Pi. Since each Pi is
defined by a Πc

n formula, and this formula is equivalent to a Σc,0(n)

1 (L∪{R0, ...})-formula, we
have that Pi is c.e. in Y ⊕ 0(n) ≡T Y . The complement of Pi is Σc

n, and in particular Σc
n+1.

Hence it is also equivalent to a Σc,0(n)

1 (L ∪ {R0, ...})-formula and is also c.e. in Y . So Pi is
computable in Y , uniformly in i. �

Recall that for non-trivial structures (using Knight’s theorem)

degSp(A) = {X ∈ D : A has a copy ≤T X},

where D is the set of Turing degrees. So, the lemma above can be restated as

degSp(A, R0, R1, ...) ∩ D(≥T 0(n)) = degSp(A, P0, P1, ...) ∩ D(≥T 0(n))

(where D(≥T 0(n)) is the set of Turing degrees above 0(n)). Therefore, we have that the degree
spectrum of A(n) on the degrees ≥T 0(n) is independent of the possible choices of A(n).

2. Examples

We now turn into looking at examples of jumps of structures. We start with linear orderings.

Lemma 2.1. Let A = (A,<) be a linear ordering and let

SuccA = {(a, b) ∈ A2 :6 ∃c (a < c < b)}.

Then
A′ = (A,<, SuccA).

Sketch of the proof. We need to show that SuccA is Πc
1-complete. We will show that every Σc

1

formula is equivalent to a finitary universal formula that uses the predicate Succ, and that
0′ can uniformly find this formula. By taking complements, we will then get that every Πc

1

formula is equivalent to a Σc,0′

1 (L ∪ {Succ})-formula.
Suppose that A has a first and a last element called −∞ and ∞; the general case is very

similar. First, we note that every finitary existential sentence ψ is equivalent to a sentence
that says that there are least n many different elements in A. Let ψn(x, y) be the formula
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that says that there are at least n many different elements in between x and y. Observe that
ψn(x, y) is equivalent to a finitary universal formula over the Successor predicate:

ψn(x, y) ⇐⇒
∧
j<n

6 ∃z1, ..., zj

(
x = z1 ≤ ... ≤ zj = y ∧ (

j−1∧
i=1

(Succ(zi, zi+1))

)
.

Second, if we have a formula with free variables ψ(x1, ..., xk), we can write ψ as a disjunc-
tion over all the permutations (τ1, ..., τk) of (1, ..., k) of the formulas

(∧
j<k xτj < xτj+1

)
∧

ψ(x1, ..., xk). Third, for every finitary existential formula ψ(x1, ..., xk), we have that x1 <
x2 < ... < xk ∧ ψ(x1, ..., xk) is equivalent to a finite disjunction of formulas of the form

x1 < x2 < ... < xk ∧ ψn0(−∞, xτ1) ∧ ψn1(xτ1 , xτ2) ∧ ... ∧ ψnk(xτk ,∞),

for some n0, ..., nk ∈ ω. Therefore, we have that any Σc
1 formula ψ(x1, ..., xk) is equivalent to

the disjunction over all the permutations (τ1, ..., τk) of (1, ..., k) of formulas of the form

xτ1 < ... < xτk ∧

∨
j

(
ψ
nj0

(−∞, xτ1) ∧ ψ
nj1

(xτ1 , xτ2) ∧ ... ∧ ψ
njk

(xτk ,∞)
) .

Fourth, it can be shown that in the infinite disjunction in the formula above all but finitely
many of the disjuncts are redundant. Furthermore, 0′ can find these finitely many disjuncts.

�

Notice that in all the linear orderings the same relation SuccA that is Πc
1 complete. This

motivates the following definition.

Definition 2.2. Let K be a class of L-structures. A c.e. set ϕ0, ϕ1, ... of Πc
n formulas is a

complete set of Πc
n formulas for K, if for each structure A ∈ K we have that {ϕA0 , ϕA1 , ...} is a

complete set of Πc
n formulas on A.

The Boolean algebra predicates considered by Downey, Jockusch [DJ94], Thurber [Thu95],
Knight and Stob [KS00] are exactly the ones needed to define the first four jumps of a Boolean
algebra.

Lemma 2.3 (Harris, Montalbán [HM]). Let B be a Boolean algebra.
• B′ = (B, atomB),
• B′′ = (B, atomB, infB, atomlessB).
• B′′′ = (B, atomB, infB, atomlessB, atomicB, 1-atomB, atominfB).
• B(4) = (B, atomB, infB, atomlessB, atomicB, 1-atomB, atominfB,∼-infB,

Int(ω + η)B, infatomiclessB, 1-atomlessB, nomaxatomlessB).
Furthermore, for every n there is a finite set of Πc

n formulas which are Πc
n complete for the

class of Boolean algebras. (Definitions of the relations above can be found in [KS00] and
[HM].)

We note that not all the predicates in the four items above are Πc
n for the corresponding

n, but they are Boolean combinations of Πc
n predicates. There is no problem relaxing our

definition of nth jump to allow the predicates to be Boolean combinations of Πc
n predicates so

long they still generate all other Πc
n predicates.

Proof. Harris and the author [HM] proved that the unary predicates Rσ for σ ∈ BFn are Πc
n

complete for the class of Boolean algebras. They showed that for n ≤ 4, the relations in the
four items mentioned above are Boolean combinations of Rσ for σ ∈ BFn and vice versa. �
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The main lemmas in Downey, Jockusch [DJ94], Thurber [Thu95], and Knight, Stob [KS00]
can now be stated as follows

Lemma 2.4. Let X be any set, and B a Boolean algebra.
(1) [DJ94] B has a copy ≤T X if and only if B′ has a copy ≤T X ′
(2) [Thu95] B′ has a copy ≤T X if and only if B′′ has a copy ≤T X ′
(3) [KS00] B′′ has a copy ≤T X if and only if B′′′ has a copy ≤T X ′
(4) [KS00] B′′′ has a copy ≤T X if and only if B(4) has a copy ≤T X ′

Corollary 2.5 (Knight and Stob [KS00]). Suppose Y (4) ≤T X(4). Every Y -computable
Boolean algebra has a X-computable copy.

Proof. Suppose B has a copy computable in Y . Then, by Observation 1.3, B(4) has a copy
computable in Y (4) ≤T X(4). Applying the four items of the previous lemma one at the time
starting from the last one, we get that B has a X-computable copy. �

3. Jump inversions

The following theorem is a sort of jump inversion theorem for structures. The proof is
just an applications of the ideas about generic copies structures developed by Ash, Knight,
Mennasse and Slaman [AKMS89] and Chisholm [Chi90]. Essentially we prove that the jump
A′ of a structure A can compute a 1-generic copy of A.

Theorem 3.1. If Y ≥T 0′ and A′ has a copy ≤T Y , then for some X with X ′ ≤T Y , A has
a copy computable in X.

Proof. We will build a copy B of A with domain B = {b0, b1, ...}. Let D(B) ∈ 2ω be the
diagram of B. So, for some list of atomic formulas ψi with variables among x0, x1, .... we have
that D(B) = 1 if and only if B |= ψi where xj is interpreted as bj . Assume that ψi only
uses variables among x0, ..., xi. Therefore, to know the first n bits of D(B) we only need to
use the atomic relations among b0, ..., bn. For each σ ∈ 2n, let ψσ(x0, ..., xn) be the formula∧
i:σ(i)=1 ψi ∧

∧
i:σ(i)=0 ¬ψi. So, we have that B |= ψσ(b0, ..., bn) ⇐⇒ σ ⊆ D(B).

We will build a bijection F : B → A and then define B by pulling back the structure of
A, and we will let X = D(B). We need to define F computably in Y and we will also make
sure that Y computes the Turing jump of D(B). At each stage s we define a finite one-to-one
partial map ps : B → A with domain {b0, ..., bns}, and then we will let F =

⋃
s ps. Given a

finite one-to-one partial map p that maps b0, ..., bn to a0, ..., an, let D(p) be the σ ∈ 2n such
that A |= ψσ(a0, ..., an). Note that D(B) =

⋃
nD(pn).

Construction:
• Let p0 map b0 to a0.
• At stage s + 1 = 2e extend ps to ps+1 in any way so that be is in the domain of ps+1

and ae is in the image.
• At stage s+1 = 2e+1 we want to decide the jump of D(B). Suppose ps maps b0, ..., bns

to a0, ..., ans . Using Y , decide whether there exists q ⊇ ps such that {e}D(q)(e) ↓. Note
that Y can decide this because, since it computes A′, it knows whether

A |=
∨

σ⊇ps,{e}σ(e)↓

∃ȳ ψσ(a0, ...., ans , ȳ).

If the answer is positive, Y can search for witnesses σ and ȳ and use them to define
ps+1 adding ȳ to the range of ps. In this case Y knows that e ∈ D(B)′. Otherwise, we
let ps+1 = ps and Y knows that e 6∈ D(B)′.

We have build B so that D(B)′ ≤T Y as wanted. �
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Corollary 3.2. For every structure A,

degSp(A′) ∩ D(≥T 0′) = {X ′ : X ∈ degSp(A)}.

Proof. That {X ′ : X ∈ degSp(A)} ⊆ degSp(A′)∩D(≥T 0′) follows from Observation 1.3. That
degSp(A′) ∩ D(≥T 0′) ⊆ {X ′ : X ∈ degSp(A)} follows from the previous theorem. �

Now we consider a stronger version of jump inversion.

Definition 3.3. We say that A admits nth jump inversion if for every set X, we have that

A(n) has copy ≤T X(n) ⇐⇒ A has copy ≤T X.

Observation 3.4. If A admits jump inversion, then

degSp(A) = {X : X ′ ∈ degSp(A′)}.

Structures which admit nth jump inversion have, in some sense, already been considered in
the literature before. Lemma 2.3 above shows that Boolean algebras admit 4th jump inversion.
In [HM], Harris and the author asked the following question (stated in a different way): does
every Boolean algebra admit nth jump inversion? It follows from Theorem 3.5 below that
this question is equivalent to the well-known question of whether for every X, every X-lown

Boolean algebra has an X-computable copy. For linear orderings, the following results are
known. Downey [DK92] proved that every linear ordering of the form (Q + 2 + Q) · A admits
jump inversion. Ash [Ash91] showed that linear orderings of the form ωn ·A admit 2nth-jump
inversion. Kach and the author [KM] then used these results to prove that all the linear
orderings with finitely many descending cuts admit nth jump inversion for every n. Graphs
which admit αth jump inversion have been used [GHK+05] and [CFG+] to show that there
exists ∆0

α-categorical structures which are not relatively ∆0
α-categorical, lifting earlier results

of Goncharov and others on computably categorical structures.

Theorem 3.5. Let A be an L-structure. The following are equivalent.
(1) A admits nth jump inversion;
(2) For every sets X,Y with X(n) ≡T Y (n), we have that

A has copy ≤T X ⇐⇒ A has copy ≤T Y.

Proof. To prove that (1) implies (2), we have that if A has a copy computable in X, then A(n)

has a copy computable in X(n) ≡T Y (n), and hence by (1) A has a copy computable in Y .
For the other direction, suppose that A(n) has a Y (n)-computable copy. Then, using n

iterations of Theorem 3.1, for some X with X(n) ≡T Y (n), A has a copy computable in X.
But, then, by (2), A has a Y -computable copy. �

4. Questions

(1) What are other examples of structures with finite sets of complete Πc
n relations?

(2) What are other examples of structures that admit jump inversion?
(3) Is there a structural characterization of the structures that admit jump inversion?
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[Chi90] John Chisholm. Effective model theory vs. recursive model theory. J. Symbolic Logic, 55(3):1168–
1191, 1990.

[DJ94] Rod Downey and Carl G. Jockusch. Every low Boolean algebra is isomorphic to a recursive one.
Proc. Amer. Math. Soc., 122(3):871–880, 1994.

[DK92] Rodney Downey and Julia F. Knight. Orderings with αth jump degree 0(α). Proc. Amer. Math.
Soc., 114(2):545–552, 1992.

[GHK+05] Sergey Goncharov, Valentina Harizanov, Julia Knight, Charles McCoy, Russell Miller, and Reed
Solomon. Enumerations in computable structure theory. Ann. Pure Appl. Logic, 136(3):219–246,
2005.

[HM] Kenneth Harris and Antonio Montalbán. On the n-back-and-forth types of Boolean algebras. Sub-
mitted for publication.

[KM] A. Kach and A. Montalbán. Linear orders with finitely many descending cuts. in preparation.
[KS00] Julia F. Knight and Michael Stob. Computable Boolean algebras. J. Symbolic Logic, 65(4):1605–

1623, 2000.
[Thu95] John J. Thurber. Every low2 Boolean algebra has a recursive copy. Proc. Amer. Math. Soc.,

123(12):3859–3866, 1995.

Department of Mathematics, University of Chicago, 5734 S. University ave., Chicago, IL 60637,
USA

E-mail address: antonio@math.uchicago.edu

URL: www.math.uchicago.edu/∼antonio

http://www.math.uchicago.edu/~antonio/index.html

	Introduction
	1. Main Definitions
	2. Examples
	3. Jump inversions
	4. Questions
	References

