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Abstract. We say that a linear ordering L is extendible if every partial or-

dering that does not embed L can be extended to a linear ordering which
does not embed L either. Jullien’s theorem is a complete classification of the
countable extendible linear orderings. Fräıssé’s conjecture, which is actually a
theorem, is the statement that says that the class of countable linear ordering,
quasiordered by the relation of embeddablity, contains no infinite descending
chain and no infinite antichain. In this paper we study the strength of these
two theorems from the viewpoint of Reverse Mathematics and Effective Math-
ematics. As a result of our analysis we get that they are equivalent over the
basic system of RCA0+Σ1

1-IND.
We also prove that Fräıssé’s conjecture is equivalent, over RCA0, to two

other interesting statements. One that says that the class of well founded

labeled trees, with labels from {+,−}, and with a very natural order relation,
is well quasiordered. The other statement says that every linear ordering
which does not contain a copy of the rationals is equimorphic to a finite sum

of indecomposable linear orderings.

While studying the proof theoretic strength of Jullien’s theorem, we prove
the extendibility of many linear orderings, including ω2 and η, using just

ATR0+Σ1
1-IND. Moreover, for all these linear orderings, L, we prove that any

partial ordering, P, which does not embed L has a linearization, hyperarith-
metic (or equivalently ∆1

1) in P ⊕ L, which does not embed L.

1. Introduction

We compare the strength of two known theorems about linear orderings. We will
conclude that, in some sense that we specify below, these two theorems are equally
hard to prove.

The two theorems. On the one hand, we have Fräıssé’s conjecture. A binary
relation ≤

P
on a set P is a quasiordering if it is reflexive and transitive. A qua-

siordering is a well quasiordering if, for every sequence {xn}n∈IN of elements of P ,
there exists i < j such that xi ≤P

xj . An equivalent definition of well quasiorder-
ing, that might be easier to visualize, is that ≤

P
contains no infinite descending

chains and no infinite antichain. The proof of the equivalence follows from Ram-
sey’s theorem. FRA is the statement that says that the countable linear orderings
form a well quasiordering under the relation of embeddablity. Roland Fräıssé con-
jectured in [Fra48] that there are no sequences of countable linear orderings which
are strictly descending under embeddablity. Although this statement is slightly

This research is going to be part of my Ph.D. thesis [Mon05]. I want to thank my thesis
adviser, Richard A. Shore, for introducing me to the problem and for many helpful and inspiring

discussions.
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different from FRA, FRA became known as Fräıssé’s conjecture. Moreover, FRA
is still known as Fräıssé’s conjecture even though it is not a conjecture anymore.
Richard Laver proved FRA in [Lav71] using Nash-Williams complicated notion of
better quasiordering [NW68].

On the other hand, we have Jullien’s Theorem and the study of the extendibility
linear orderings. A linearization of a partial ordering P = 〈P,≤

P
〉 is a linear

ordering 〈P,≤
L
〉 such that ∀x, y ∈ P (x ≤

P
⇒ x ≤

L
y〉). A linear ordering L is

extendible∗ if every countable partial ordering, P, which does not embed L has a
linearization which does not embed L either. For example, the extendibility of ω∗

(the linear ordering of the negative integers) is a well known result and it can be
translated as every well founded partial ordering has a well ordered linearization.
(We give a proof of this in Lemma 6.2.) But for instance, 2, the linear ordering with
two elements, is not extendible. Other linear orderings which are not extendible
are the ones of the form 〈→,←〉. We say that L is of the form 〈→,←〉 if L can be
written as a sum of two linear orderings, A and B, such that A embeds in every
final segment of itself and B embeds in every initial segment of itself; for example
L = ω + ω∗. The extendibility of η, the order type of the rational numbers,
was proved by Bonnet and Pouzet in [BP69] (see also [BP82, p. 140]). Linear
orderings which do not contain a copy of η are called scattered. A characterization of
exactly which linear orderings are extendible has been given by Jullien in his Ph.D.
thesis [Jul69]. There, he proved that every scattered linear ordering has a unique
minimal decomposition, and then he gave a characterization of the extendible linear
orderings which depends on the minimal decomposition of the linear ordering (see
Definition 3.8 and Statement 5.8). Here, we will study Jullien’s result and also
an equivalent formulation that is simpler to state because it does not use minimal
decompositions. This new equivalent formulation, that we call JUL, says that a
linear ordering is not extendible if and only if contains a linear ordering of the form
either 2 or 〈→,←〉 in an essential way (see Statement 5.2).

Reverse Mathematics. What we would like to know is exactly which set ex-
istence axioms are needed to prove these two theorems. The questions of what
axioms are necessary to do mathematics is of great importance in Foundations of
Mathematics and is the main question behind Friedman and Simpson’s program
of Reverse Mathematics. Old known examples along this line of investigations are
Euclid’s question of whether the fifth postulate was necessary to do geometry and
the question of the necessity of the Axiom of Choice to do mathematics. To analyze
this question formally it is necessary to fix a logic system. Reverse Mathematics
deals with subsystems of Z2, the system of second-order arithmetic. Second-order
Arithmetic, even though it is a lot weaker than set theory, is rich enough to be able
to express an important fragment of classical mathematics. This fragment includes
number theory, calculus, countable algebra, real and complex analysis, differential
equations and combinatorics among others. Almost all of mathematics that can be
modeled with, or coded by, countable objects can be done in Z2.

∗ This property is sometimes called weakly extendability and extendibility refers to the same

property but considering all partial orderings P, and not only the countable ones. A character-
ization of these linear orderings has been given by Bonnet [BP82]. Since we are only interested
in countable objects, we omit the word “weakly”. Other names given to this property in the
literature are enforceable and Szpilrajn.
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It happens often that the analysis of theorems from the viewpoint of reverse
math gives a deeper understanding of the theorems and sometimes leads to new
proofs. This is definitely the case in this paper.

The idea of Reverse Mathematics is as follows. We start by fixing a basic system
of axioms. The most commonly used system is RCA0 which closely related to
Computable Mathematics. When this program started, RCA, which is slightly
stronger than RCA0, was often used as the basic system. In RCA, as in RCA0, the
only sets we can assume exist are the ones that we can describe via an effective
algorithm. Now, given a theorem of “ordinary” mathematics, the question is what
axioms do we need to add to the basic system to prove this theorem. Moreover, we
want the least set of axioms needed. It is often the case in Reverse Mathematics
that we can prove that a certain set of axioms is needed to prove a theorem by
proving the axioms from the theorem using some basic system. Because of this
idea this program is called Reverse Mathematics. When we have that a theorem
can be proved from a certain system of axioms and that the axioms can be proved
from the theorem using for example RCA, we say that the theorem and the system
are equivalent over RCA. Many different system of axioms have been defined and
studied. But a very interesting fact is that most of the theorems that have been
analyzed, have been proved equivalent over RCA0 to one of five systems. These five
systems are RCA0, WKL0, ACA0, ATR0 and Π1

1-CA0, listed in increasing order of
strength. The basic reference for this subject is [Sim99].

The language of second order arithmetic is the usual language of first order
arithmetic (which contains non-logical symbols 0, 1, +, × and ≤) augmented with
set variables and a membership relation ∈. (We use the letters x, y, z, n,m, ... for
number variables and capital letters X,Y, Z,A, ... for set variables.) The axioms of
Z2, are divided in three groups. First we have the Basic axioms which say that the
natural numbers form an ordered semiring. Then we have the Induction axioms.
Given a formula ϕ(x) of second-order arithmetic we have the axiom:

(IND(ϕ)) ϕ(0) & ∀x(ϕ(x)⇒ ϕ(x+ 1))⇒ ∀xϕ(x).

Last, we have the Comprehension axioms. These axioms are set existence axioms
in the sense that they say that sets with certain properties exist. Again, we have
one for each formula ϕ(x):

(CA(ϕ)) ∃X∀x(x ∈ X ⇔ ϕ(x)).

The formula ϕ above may have first or second order, free variable other than x. In
that case, (IND(ϕ)) and (CA(ϕ)) are the universal closure of the formulas shown
above. Subsystems of Z2 are obtained by restricting the induction and compre-
hension axioms to certain classes of formulas. The basic system RCA0 consist of
the basic axioms, and the schemes of Σ0

1-induction and ∆0
1-comprehension. Σ0

1-
induction is the scheme of axioms that contains a sentence (IND(ϕ)) for each Σ0

1

formula ϕ(x). The Recursive Comprehension Axiom scheme or ∆0
1-comprehension

consist of the axioms of the form

∀x(ϕ(x)⇔ ¬ψ(x))⇒ ∃X∀x(x ∈ X ⇔ ϕ(x)).

where ϕ and ψ are Σ0
1 formulas. (A formula ψ is Σ0

0 if it contains no set quantifiers
and all the first order quantifiers are bounded, that is, of the form either (∀y < t)
or (∃y < t). A formula ϕ is Σ0

1 if it is of the form ∃zψ(z), where ψ is a Σ0
0 formula.)

Another important system is ACA0. Its axioms are the ones of RCA0 plus the
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Arithmetic Comprehension Axiom scheme, which consist of the sentences (CA(ϕ))
for arithmetic formulas ϕ(x). (A formula is arithmetic if it contains no second order
quantifiers.) The scheme of arithmetic comprehension is equivalent to the sentence
that says that for every set X, there exists a set X ′ which is the Turing jump of X.
For other classes, Γ, of formulas, like Π1

1 for example, the system Γ-CA0 is defined
analogously. A system that will be important in this paper is ATR0. It consist of
RCA0 and the axiom scheme of Arithmetic Transfinite Recursion. The scheme of
Arithmetic Transfinite Recursion is a little technical so we omit the details. What
it says is that arithmetic comprehension can be iterated along any ordinal, which
is equivalent to say that the Turing jump can be iterated along any ordinal. For
example, ATR0 is equivalent to the fact that any two ordinals are comparable.

All the systems we have described have restricted induction. The subindex 0
in the notation of a system means that the induction scheme it contains is Σ0

1-
induction. If we drop the subindex 0, and for example get RCA or ATR, is because
we are adding the Full induction scheme to the system. The Full induction scheme
consists of the sentences (IND(ϕ)), for all formulas ϕ(x). A subindex ∗, as in ATR∗,
indicates that the system contains the scheme of Σ1

1-induction. (Σ1
1-induction, also

called Σ1
1-IND, is defined analogously to Σ0

1-induction. A formula ϕ is Σ1
1 if it is of

the form ∃Xψ(X), where ψ is an arithmetic formula.)

Fräısé’s conjecture. The theory of well quasiorderings has been of interest to
people studying reverse math because it contains results that seem to be very
difficult to prove in comparison with results from other areas of mathematics. Most
of the proof seem to require Π1

2-CA0, which is more that what is usually needed.
However, none of these theorems have been proved to be equivalent to Π1

2-CA0 and
for most of them the exact proof theoretic strength is unknown. A very interesting
example is Kruskal’s theorem [Kru60] which says that the class of finite trees is
well quasiordered under embeddablity (preserving greatest lower bounds). Harvey
Friedman proved that Kruskal’s theorem can not be proved in ATR0. (See [Sim85]
for a proof of Friedman’s result and [RW93] for an analysis of the exact proof
theoretic strength of Kruskal’s theorem.) The reader can find a survey on the
theory of well quasiorderings studied from the viewpoint of reverse mathematics in
[Mar].

The exact proof theoretic strength of FRA is also unknown. It is known that
Laver’s proof of FRA can be carried out in Π1

2-CA0, and that since FRA is a true Π1
2

statement, it cannot imply Π1
1-CA0. (Because every true Π1

2 sentence holds in every
β-model, but Π1

1-CA0 does not.) Shore [Sho93] proved that the fact that the class
of well orderings is well quasiordered under embeddablity implies ATR0, getting as
a corollary that FRA implies ATR0. But we still do not know whether FRA could be
proved using just ATR0 (not even Π1

1-CA0), as has been conjectured by Peter Clote
[Clo90], Stephen Simpson [Sim99, Remark X.3.31] and Alberto Marcone [Mar].

Along with FRA, we study two other statements equivalent to it over RCA0. One,
that we call WQO(ST), says that the class of signed trees is well quasiordered. A
signed tree is a well founded tree which has each node labeled with either a + or
a −. Given signed trees T and Ť , we say that T 4 Ť if there is a homomorphism
from T to Ť (see Definition 2.1). A useful property of signed trees is that if there
exists a homomorphism between two recursive signed trees, then there is one that
is hyperarithmetic (Lemma 2.5 says even more than this). This helps us reduce
the quantifier complexity of certain formulas talking about them when working in
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ATR0. It might also be useful when trying to prove FRA in ATR0. We are interested
in signed trees because they can be used to represent certain linear orderings that
we will call h-indecomposable. We will show that, under certain assumptions, every
indecomposable linear ordering is equimorphic to an h-indecomposable one. We are
also interested in signed trees because they give us a better understanding of the
embeddablity relation on linear orderings. For example, in a forthcoming paper
[Mon] we use signed trees to prove that every hyperarithmetic linear ordering is
equimorphic to a recursive one.

The other statement we prove equivalent to FRA is the Finite decomposability
of linear orderings, that we call FINDEC. A version of FINDEC was proved by
Laver in [Lav71]. It says that every scattered linear ordering can be decomposed,
up to equimorphism, as a sum of h-indecomposable linear orderings. (A partial
ordering is scattered if it does not contain a copy of the rational numbers. Two
linear orderings are equimorphic if each one can be embedded into the other.) The
representation of the scattered linear orderings that FINDEC gives us will allow us
to prove properties about them as, for example, extendibility. We will also look
at minimal decompositions of scattered linear orderings. A minimal decomposition
is a finite decomposition of minimal length. The interesting feature of minimal
decomposition is that they are unique up to equimorphism. We will prove that
the existence of minimal decompositions for every scattered linear ordering is also
equivalent to FRA.

Jullien’s Theorem. In the case of extendibility of linear orderings, people have
been interested not only in its reverse mathematical strength, but also in the ef-
fective content of certain theorems. For example, Szpilrajn proved in [Szp30] that
every partial ordering has a linearization. This can be done in an effective way;
that is, for every partial ordering we can effectively construct a linearization of it
(see [Dow98, Observation 6.1]). The effectiveness of the extendibility of ω∗ has also
been studied: Rosenstein and Kierstead proved that every recursive well founded
partial ordering has a recursive well founded linearization; and Rosenstein and Stat-
man proved that there is a recursive partial ordering without recursive descending
sequences which has no recursive linearization without recursive descending se-
quences. (For proofs of these results and other related ones see [Ros84] and see
[Ros82] for more background.) The proof theoretic strength of the fact that ω∗ is
extendible was studied by Rod Downey, Denis Hirschfeldt, Steffen Lempp and Reed
Solomon in [DHLS03]. They showed that the extendibility of ω∗ can be proved in
ACA0, that it implies WKL0, and that it is not implied by WKL0. It is not known
whether it is equivalent to ACA0, or it is strictly in between WKL0 and ACA0. In
that same paper they studied the extendibility of ζ, the order type of the integers,
and of η, the order type of the rationals. They prove that the extendibility of ζ is
equivalent to ATR0 over RCA0. For η, they adapted Bonnet and Pouzet’s proof of
its extendibility to work in Π1

2-CA0 and then they give a modification of their proof,
due to Howard Becker, that uses only Π1

1-CA0. Joseph Miller [Mil] proved that the
extendibility of η implies WKL0 and that over Σ1

1-AC0, it implies ATR0. We prove
in this paper that the extendibility of η is provable in ATR∗, which is strictly weaker
than Π1

1-CA0, using a completely different proof. Our proof is based on a general
analysis of the extendibility of h-indecomposable linear orderings and on the fact
that if a partial ordering does not embed η, there is some h-indecomposable linear
ordering that is does not embed either.
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Rod Downey and R. B. Remmel asked about the effective content of the Bonnet-
Jullien result that here we call Jullien’s theorem in [DR00, Question 4.1] and also in
[Dow98, Question 6.1]. In [DR00] they observe that Jullien’s proof requires Π1

2-CA0,
and they mention that it would be remarkable if Jullien’s theorem was equivalent
to Π1

2-CA0. It will follow from our results that this is not the case. (Because it is
implied by RCA∗+FRA which does not even imply Π1

1-CA0.)
As we said above, Jullien’s theorem, as stated in his thesis, says that a scat-

tered linear ordering is extendible if and only if it has a minimal decomposition
of a certain kind. The first problem that we have here is that the existence of
minimal decompositions is proof theoretically too strong (it implies FINDEC, which
implies FRA). Therefore, the statement that we call JUL(min-dec), and asserts that
a linear ordering which has a minimal decomposition is extendible if and only if a
certain property of the decomposition holds, does not completely characterize the
extendible linear orderings. However, we do study the proof theoretic strength of
JUL(min-dec), and we prove that it is equivalent to ATR∗ over RCA∗. This proof is
divided in to parts. In one, we prove that every h-indecomposable linear ordering
is extendible. Moreover, we prove that for all h-indecomposable linear orderings,
L, any partial ordering, P, which does not embed L has a linearization, hyperarith-
metic in P ⊕ L, which does not embed L. In the other part, we use this result
to prove that every linear ordering, L, which is a finite sum of h-indecomposable
ones satisfying a certain property is extendible. We also get that the lineariza-
tions can be taken to be hyperarithmetic in L and the partial ordering. The fact
that we are getting hyperarithmetic linearizations not only is interesting in its own
right from the viewpoint of effective mathematics, but also it is useful to reduce
the complexity of some formulas we need to prove by induction. We will use the
fact that existential quantification over the hyperarithmetic sets is, in certain cases,
equivalent to universal second order quantification. This will allow us to transform
some complicated formulas into Π1

1 equivalents and then prove them by Σ1
1-IND.

The extendibility of η will follow from the extendibility of h-indecomposable linear
orderings and the fact that if a partial ordering does not embed η, there is some
h-indecomposable linear ordering which it does not embed either.

Because of the problem about the minimal decomposition we mentioned earlier
we study the equivalent formulation, JUL, of Jullien’s theorem. We will show that
one of the directions of JUL can be proved in RCA0; it is the other direction that is
proof theoretically strong. It will also not be hard to show that JUL follows from
JUL(min-dec) and the existence of minimal decompositions for every scattered linear
ordering. Using this, we show that JUL follows from FRA and Σ1

1-IND. We will also
prove that JUL implies FRA over RCA0, getting that JUL and FRA are equivalent
over RCA∗.

We have to note that we are not proving the equivalence of FRA and JUL over
RCA0. Instead we prove it over RCA∗, which in addition to RCA0 has Σ1

1-IND.
RCA∗ is still a very weak system and, as RCA0 and RCA, is closely related to to
Computable mathematics. From our work, one can still get that the amount of set
existence axioms needed to prove JUL and FRA is the same.

Simpson claimed in [Sim99, pag. 176] that, over RCA0, Friedman’s system, ATR0,
is the weakest set of axioms which permits the development of a decent theory of
countable ordinals. Similarly, we should conclude from our work that, over RCA∗,
FRA (which could still be equivalent to ATR∗) is the weakest set of axioms which



ON FRAÏSSÉ’S CONJECTURE AND JULLIEN’S THEOREM. 7

permits the development of a decent theory of countable linear orderings modulo
equimorphisms.

1.1. Basic Definitions. We use IN for the set of all the natural numbers and ω
for the linear ordering ω = 〈IN,≤

IN
〉. Some authors use ω for the standard first

order model of the natural numbers. Since we are not dealing with models at all,
this will not cause confusion.

Even though our language only let us talk about natural numbers, we can encode
pairs and finite sequences of natural numbers as natural numbers. We have a
recursive pairing function 〈·, ·〉, and recursive projection functions (·)0 and (·)1
such that (〈x, y〉)0 = x and (〈x, y〉)1 = y. The same for triplets of elements,
〈x, y, z〉, and strings 〈x0, ..., xn−1〉 of any finite length. Given a set X, we denote
by SeqX the set of strings of elements of X. We use Seq for SeqIN and Seq2

for Seq{0,1}, the set of binary stings. For a string σ = 〈x0, ..., xn−1〉 we define
|σ| = n, σ(i) = xi, last(σ) = xn−1, σ− = 〈x0, ..., xn−2〉, σ_x = 〈x0, ..., xn−1, x〉,
σ_〈y0, ..., ym−1〉 = 〈x0, ..., xn−1, y0, ..., ym−1〉 and σ �m = 〈x0, ..., xm−1〉.

Orderings. A binary relation ≤
P

on a set P is a quasiordering if it is reflexive and
transitive. It is a partial ordering if it is also antisymmetric, and a linear ordering if
it is also total (i.e: ∀x, y ∈ P (y ≤

P
x∨x ≤

P
y)). If a partial ordering is called P, we

will usually use the letter P for its domain and ≤
P

for its relation. An embedding
from a partial ordering P = 〈P,≤

P
〉 to another partial ordering Q = 〈Q,≤

Q
〉 is a

one-to-one map f : P → Q such that ∀x, y ∈ P (x <
P
y ⇔ f(x) <

Q
f(y)). If this is

the case, we write f : P ↪→ Q. When such an f exists, we say that P embeds in Q,
and write P 4 Q. Two linear orderings L1 and L2 are equimorphic if L1 4 L2 and
L2 4 L1. We write L1 ∼ L2 when L1 and L2 are equimorphic. An equimorphism
between L1 and L2 is a pair 〈f1, f2〉, where f1 : L1 ↪→ L2 and f2 : L2 ↪→ L1. If the
embeddings f1 and f2 are inverses of each other, we have an isomorphism, we say
that L1 and L2 are isomorphic and we write L1

∼= L2. A linearization of a partial
ordering 〈P,≤

P
〉 is a relation ≤

Q
on P such that 〈P,≤

Q
〉 is a linear ordering and

≤
Q

extends ≤
P

in the sense that ∀x, y ∈ P (x ≤
P
y ⇒ x ≤

Q
y).

Some examples of linear orderings are: 1, the linear ordering with one element;
m, the linear ordering with m many elements; ω, the order type of the natural
numbers; ζ, the order type of the integers; η, the order type of the rationals; and
ωCK

1 , the first non-recursive ordinal. A partial ordering which does not embed η is
said to be scattered.

We have some operations on the class of orderings. The reverse partial ordering
of P = 〈P,≤

P
〉 is P∗ = 〈P,≥

P
〉. The product, P × Q, of two partial orderings

P and Q is obtained by substituting a copy of P for each element of Q. That
is: P × Q = 〈P × Q,≤

P×Q
〉 where 〈x, y〉 ≤

P×Q
〈x′, y′〉 iff y <

Q
y′ or y = y′ and

x ≤
P
x′. The sum,

∑
i∈P Pi, of a set of partial orderings {Pi}i∈P indexed by

another partial ordering P, is constructed by substituting a copy of Pi for each
element i ∈ P . So, for example, P × Q =

∑
i∈Q P. When P = m, we sometimes

write P0 + ... + Pm−1,
∑

i<m Pi or
∑m−1

i=0 Pi instead of
∑

i∈m Pi. When P = ω,
we sometimes write

∑∞
i=k Pi or

∑
i∈ω,i≥k Pi instead of

∑
i∈ω Pi+k. The direct sum,⊕

i∈I Pi, of a set of partial orderings {Pi}i∈I indexed by a set I, is constructed
by taking the disjoint union of the Pi and letting elements from different Pi’s be
incomparable. So

⊕
i∈I Pi =

∑
i∈I Pi, where I is the partial ordering with domain

I where all the elements are incomparable.
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Given a linear ordering L = 〈L,≤
L
〉, we can order SeqL in various ways. The

first ordering we have is the one given by inclusion. For two strings, σ and τ ,
we use the word incompatible when they are incomparable under inclusion, and
write σ|τ . The most common linear ordering on SeqL is the lexicographic ordering,
≤SeqL

: Given σ0, σ1 ∈ SeqL, we let σ0 ≤SeqL
σ1 iff either σ0 ⊆ σ1 or σ0|σ1 and

x0 ≤L
x1, where x0 and x1 are such that for some τ , τ_x0 ⊆ σ0, τ_x1 ⊆ σ1, and

x0 6= x1. On Seq2 we also have the Left-to-right ordering, ≤
LR

. It coincides with
the lexicographic ordering on incompatible stings. When σ ⊂ τ we let σ ≤

LR
τ if

τ(|σ|) = 1 and σ ≥
LR

τ if τ(|σ|) = 0. Observe that 〈Seq2,≤LR
〉 has order type η.

Given a partial ordering P = 〈P,≤
P
〉, and x ∈ P , we let P(<x) = {y ∈ P : y <

P

x} and P(<x) = 〈P(<x),≤P
〉. Analogously we define P(>x), P(≤x), and P(≥x). We

let (x, y)P be the interval {z : x <
P
z <

P
y}.

A linear ordering, L, is indecomposable if whenever L = A+ B, either L 4 B or
L 4 A. L is indecomposable to the right (left) if whenever L = A + B and B 6= ∅
(A 6= ∅), L 4 B (L 4 A). Sometimes, instead of saying that L is indecomposable
to the right (left), we say that L is → (is ←).

Lemma 1.1. (RCA0) If A+A 4 A, then η 4 A.

Proof. Assume A + A 4 A. Observe that then A + 1 + A 4 A + A + A 4
A + A 4 A. So we have two embeddings f0, f1 : A ↪→ A and an a ∈ A such that
∀x, y ∈ A(f0(x) <A

a <
A
f1(y)). Now, given σ ∈ Seq2 define

f(σ) = fσ(0)(fσ(1)(...(fσ(|σ|−1)(a))...)).

f is an embedding of 〈Seq2,≤LR
〉 ∼= η into A. �

Lemma 1.2. (RCA0) If A is scattered, indecomposable to the right, and different
from 1, then 1 +A ∼ A but A+ 1 64 A.

Proof. For the first part decompose A as B + C with B and C non-empty. Then
1 4 B and A 4 C.

For the second part, if A + 1 4 A, we have that for some a ∈ A, A 4 A(<a).
Since A 4 A(≥a), we have that A+A 4 A. By the previous lemma, this contradicts
the assumption that A is scattered. �

2. Signed trees and h-indecomposable linear orderings

In this section we introduce signed trees and h-indecomposable linear orderings.
An h-indecomposable (or hereditarily indecomposable) linear ordering is an indecom-
posable linear ordering that is built up recursively from simpler h-indecomposable
linear orderings (Definition 2.6). We are interested in them because, since we have
a nice way of representing them, it is easier to prove properties about them. It can
be proved (in classical mathematics) that every indecomposable scattered linear
ordering is equimorphic to an h-indecomposable one (Lemma 3.3). Therefore, since
we are only interested in the class of linear orderings up to equimorphism, we are
not loosing generality by only considering the h-indecomposable linear orderings.
To represent h-indecomposable linear ordering we use signed trees. Signed trees are
easy to deal with (see for example Lemma 2.5) and they encode the whole structure
of the h-indecomposable linear orderings.
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2.1. Signed trees.

Definition 2.1. A signed tree is pair 〈T, sT 〉, where T is a well founded subtree
of Seq and sT is a map, called a sign function, from T to {+,−}. We will usually
write T instead of 〈T, sT 〉. A homomorphism from a signed tree T to another signed
tree Ť is map f : T → Ť such that

• for all σ ⊂ τ ∈ T we have that f(σ) ⊂ f(τ) and
• for all σ ∈ T , sŤ (f(σ)) = sT (σ).

In the class of signed trees, we define a binary relation 4. We let T 4 Ť if there
exists a homomorphism f : T → Ť .

We will also consider the empty tree with the empty sign function 〈∅, ∅〉 as a
signed tree. We will denote it by ∅.

Remark 2.2. For f to be a homomorphism, we do not require that σ|τ implies
f(σ)|f(τ).

Notation 2.3. For σ ∈ T , we let Tσ = {τ : σ_τ ∈ T} and sTσ (τ) = sT (σ_τ).

Statement 2.4. Let WQO(ST) be the statement that says that the class of signed
trees is well quasiordered under 4: For every sequence 〈Ti〉i∈IN of signed trees there
are i < j such that Ti 4 Tj.

It will follow from Proposition 2.13 that WQO(ST) follows from Fräısé’s conjec-
ture, and therefore it is provable in classical mathematics. We will prove in the
next section that FRA and WQO(ST) are actually equivalent over RCA0. WQO(ST)
seems to be a statement that is easier to deal with than Fräısé’s conjecture, and it
might be useful for the study of the latter one.

The following lemma is an important property about signed trees that we will
use later.

Lemma 2.5. (ATR0) Given recursive signed trees T and Ť we can decide whether
T 4 Ť recursively in 02α+2 where α is the rank of T . Moreover, if T 4 Ť , then we
can find a homomorphism recursively in 02α+2.

Proof. T 4 Ť if and only if there is a σ ∈ Ť such that sT (∅) = sŤ (σ) and for each
n there is an m such that T〈n〉 4 Ťσ_m. Then, by effective transfinite recursion
we can construct a Σ0

2α+2-computable formula which says T 4 Ť . (See [AK00,
Chapter 7] for a definition of Σ0

α-computable formulas.) More specifically, given
τ ∈ T , τ ′ ∈ Ť , define a formula ϕτ,τ ′ by effective transfinite recursion as follows:

ϕτ,τ ′ ≡ ∃σ ∈ Ť (τ ′ ⊆ σ & sT (τ) = sŤ (σ) & ∀n(τ_n ∈ T ⇒ ∃m(ϕτ_n,σ_m))).

By transfinite induction we can prove that ϕτ,τ ′ is a Σ0
2 rk(Tτ )+2-computable formula.

Then, 02α+2 can compute the truth value of these formulas. We claim that T 4 Ť
if and only if ϕ∅,∅ holds. It f : T → Ť is a homomorphism, then we can prove by
transfinite induction that for every τ ∈ T , ϕτ,f(τ) holds, and then that ϕ∅,∅ holds
too. On the other hand, we can prove, also by transfinite induction, that if ϕτ,τ ′

holds, there is a homomorphism fτ : Tτ → Ťτ ′ recursive in 02 rk(Tτ )+2. To define
the homomorphism we have to search for a σ ∈ Ťτ ′ , and then for each n find an
mn and a homomorphism fn : Tτ_n ↪→ Ťσ_mn

; 02 rk(Tτ )+2 can do this uniformly.
Then let fτ (∅) = σ and fτ (n_π) = σ_m_

n fn(π). �
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2.2. H-indecomposable linear orderings. We associate to each signed tree T , a
linear ordering lin(T ). The idea is the following: If T = {∅}, then we let lin(T ) = ω
or lin(T ) = ω∗ depending on whether sT (∅) = + or sT (∅) = −. Now suppose
T ) {∅}. For i ∈ IN , let Ti be the tree {σ : i_σ ∈ T}, and consider the signed
function over Ti defined by sTi

(σ) = sT (i_σ). If sT (∅) = +, we want lin(T ) to be
an ω sum of copies of T0, T1,..., where each Ti appears infinitely often in the sum.
So, we let

lin(T ) =
∑
n∈ω

lin(T(n)0).

If sT (∅) = −, we let
lin(T ) =

∑
n∈ω∗

lin(T(n)0).

Now we give the formal definition of lin(T ). It is not hard two see that the two
definitions coincide.

Definition 2.6. To each signed tree T we assign a linear ordering lin(T ) = 〈L,≤
T
〉.

Given σ ∈ Seq, let (σ)0 = 〈(σ(0))0, (σ(1))0, ..., (σ(|σ| − 1))0〉. Let T̂ = {σ ∈ Seq :
(σ)0 ∈ T}. Let L be the set of strings σ_m ∈ Seq such that σ is an end node of
T̂ and m ∈ IN . Let σ_

1 m1 and σ_
2 m2 be distinct elements in L, let τ ∈ T̂ and

n1 6= n2 ∈ IN be such that τ_n1 ⊆ σ_
1 m1 and τ_n2 ⊆ σ_

2 m2. We define

σ_
1 m1 <T

σ_
2 m2 ⇔

{
n1 < n2 & sT ((τ)0) = + or
n1 > n2 & sT ((τ)0) = −.

lin of the empty signed tree is defined to be 1.
We say that a linear ordering, L, is h-indecomposable if it is of the form lin(T )

for some signed tree T . L is h-indecomposable to the right if sT (∅) = + and
h-indecomposable to the left otherwise.

Remark 2.7. One should observe that the definition of lin(T ) depends on the
pairing function used, which is something that, usually, one would like to avoid.
But, in this paper, we are only interested in linear orderings up to equimorphisms.
It is not hard to see that if we use another paring function, as long as it satisfies
that

∀i∃∞n(i = (n)0),
we will get an equimorphic linear ordering.

Example 2.8. We show how the function lin behaves on small signed trees. We
represent the signed trees with a picture, where the root is on top and on every node
we put a + or − depending on the value of sT on it.

lin(+) = ω; lin

 −

−

−

 = ...+ (...+ ω∗ + ω∗) + (...+ ω∗ + ω∗);

lin
(

+

−

)
= ω∗ + ω∗ + ω∗ + ...; lin

(
+

}} AA
− +

)
∼ ω + ω∗ + ω + ω∗...

In the rest of this section we will prove that h-indecomposable linear orderings
are indecomposable and scattered, and that the quasi-ordering 4 on signed trees
coincides with the quasi-ordering 4 on h-indecomposable linear orderings. In the
last subsection of this section we will prove that WQO(ST) implies ATR0. In a first



ON FRAÏSSÉ’S CONJECTURE AND JULLIEN’S THEOREM. 11

reading of the paper, the reader could assume these results and move on to the
next section.

Lemma 2.9. (RCA0) Every h-indecomposable linear ordering, L, is indecompos-
able. Moreover, if L is h-indecomposable to the right (left), for every x ∈ L we can
find an embedding f : L ↪→ L(>x), (f : L ↪→ L(<x)), uniformly recursively in x and
L.

Proof. 1 is both, h-indecomposable and indecomposable. So suppose that L is
h-indecomposable to the right. Think of the domain of L as {〈m, y〉 : y ∈ Lm},
where, if L = lin(T ), then Lm = lin(T(m)0). Say x = 〈m̄, y〉, y ∈ Lm̄. Consider
an increasing function h : IN → IN such that ∀n(h(n) > m̄ & (h(n))0 = (n)0).
(For example h(0) = 〈0, m̄ + 1〉 and h(n) = 〈(n)0, h(n − 1)〉.) Define f(〈m, y〉) =
〈h(m), y〉. It is not hard to see that f : L ↪→ L(>x). �

A version of the converse of this lemma will be proved in 3.3 using stronger
assumptions.

Lemma 2.10. (RCA0) Every h-indecomposable linear ordering is scattered.

Proof. Suppose that we have an embedding f : Q ↪→ L, where L = lin(T ) is h-
indecomposable. Given σ ∈ T , let Lσ = lin(Tσ). By recursion on n, we define an

and bn ∈ Q and σn ∈ T , such that an <Q bn, and f(an) and f(bn) belong to the
same copy of Lσn in L. Let σ0 = ∅ and a0 and b0 be any two different elements of
Q. Suppose we have already defined an and bn ∈ Q and σn ∈ T . So, we have that

f((an, bn)Q) ⊆ Lσn
=

∑
m∈ω(or ω∗)

Lσ_
n (m)0 .

Since (an, bn)Q does not embed in either ω or ω∗, there have to be some m ∈
IN , and some an+1 and bn+1 ∈ Q, with an ≤Q an+1 <Q bn+1 ≤Q bn, such that
f(an+1), f(bn+1) ∈ Lσ_

n (m)0 . Note that we can find m, an+1 and bn+1 recursively.
Let σn+1 = σ_

n (m)0. We have just defined partial recursively sequences 〈σn〉n,
〈an〉n and 〈bn〉n, and proved by induction that f(an) and f(bn) belong to the same
copy of Lσn

and that for every n, σn, an and bn are defined. We can also show
by induction that ∀n < m(σn ( σm). Therefore, we have constructed a an infinite
path in T , contradicting the fact that it is well founded. �

Before proving that the quasi-ordering 4 on signed trees coincides with the
ordering 4 on h-indecomposable linear orderings we need to prove the following
lemma.

Lemma 2.11. (RCA0) If L is h-indecomposable to the right and L 4
∑

i∈α∗ Ai,
where α is well ordered, then for some i ∈ α, L 4 Ai.

(ACA0) Moreover, given recursive indices for L, 〈Ai : i ∈ α〉, and the embedding
f : L ↪→

∑
i∈α∗ Ai we can find an i and a recursive index for an embedding g : L ↪→

Ai, uniformly recursively in 0′.

Proof. Consider f : L ↪→
∑

i∈α∗ Ai. Write L as
∑

m∈ω Lm, and for each m let xm

be a member of Lm (say the least one in the order of the natural numbers). Note
that the sequence 〈xm〉m∈IN is co-final in L. For each m, let am ∈ α∗ be such
that f(xm) ∈ Aam

. The sequence 〈am〉m∈IN is decreasing in α (increasing in α∗).
Since α is well ordered, there is some m0 such that ∀m ≥ m0(f(xm) ∈ Aam0

). Let
i = am0 . (Observe that if 0′ exists, it can find i.) Therefore f maps

∑∞
j=m0+1 Lj
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into Ai. Then, we can construct g by composing f with an embedding of L into∑∞
j=m+1 Lj , that we have by Lemma 2.9. �

Corollary 2.12. (RCA0) If L is h-indecomposable to the right and L + 1 4∑
i∈ω Ai, then for some i ∈ ω, L 4 Ai.
(ACA0) Moreover, given recursive indices for L, 〈Ai : i ∈ ω〉, and the embedding

f : L + 1 ↪→
∑

i∈ω Ai we can find an i and a recursive index for an embedding
g : L ↪→ Ai, uniformly recursively in 0′.

Proof. If we have an embedding of L + 1 into
∑

i∈ω Ai, we have an embedding of
L into

∑
i<nAi for some n. Since the linear ordering n ∼= n∗ is well ordered, the

corollary follows from the previous lemma. �

Proposition 2.13. (ACA0) Let T and Ť be signed trees. Then

T 4 Ť ⇔ lin(T ) 4 lin(Ť ).

Proof. If either T or Ť is empty, then the result is trivial. So suppose neither is
empty. First assume that f is a homomorphism witnessing T 4 Ť . Without lost of
generality, we can assume that T , Ť and f are recursive. Because if they are not,
we can relativize the proof. We use effective transfinite recursion to construct an
embedding g : lin(T )→ lin(Ť ). Since for each n, T〈n〉 has rank less than T , we can
assume that for each n, we have uniformly defined an embedding gn : lin(T〈n〉) →
lin(Ťf(〈n〉)). For each n, let an ∈ IN be such that f(∅)_an ⊆ f(〈n〉). We can easily
modify each gn and assume that gn : lin(T〈n〉)→ lin(Ťf(∅)_an

). Let h : IN → IN be
an increasing function such that ∀n((h(n))0 = a(n)0 . (For example, let h(n+ 1) =
〈a(n)0 , h(n)〉.) We know that sT (∅) = sŤ (f(∅)). Assume, without lost of generality,
that sT (∅) = +. Now, use the embeddings gn to construct an embedding

lin(T ) =
∑
n∈ω

lin(T〈(n)0〉) 4
∑
n∈ω

lin(Ťf(∅)_(h(n))0),

and then use the obvious embeddings∑
n∈ω

lin(Ťf(∅)_(h(n))0) 4
∑
n∈ω

lin(Ťf(∅)_(n)0) = lin(Ťf(∅)) 4 lin(Ť ).

For the other direction, consider g : lin(T ) ↪→ lin(Ť ). Again, we can assume
that T , Ť and g are recursive. We will define σ ∈ Ť such that sŤ (σ) = sT (∅)
and assign to each n ∈ IN an mn ∈ IN and a recursive index for an embedding
gn : lin(T〈n〉) ↪→ lin(Ťσ_mn

). We do it uniformly recursively in 0′ so that we can
use 0′-effective transfinite recursion to define f as follows: ¿From the embeddings
gn, we can get homomorphisms fn : T〈n〉 → Ťσ_mn

. Then, define f(∅) = σ and
f(〈n〉_τ) = σ_m_

n fn(τ).
We start by defining σ and ḡ : lin(T ) ↪→ lin(Ťσ). For this purpose, we define a

sequence σ̄0, ḡ0, σ̄1, ḡ1,..., σ̄n, ḡn by recursion. Let σ̄0 = ∅, and ḡ0 = g. Suppose
now, we have already defined σ̄j and ḡj . If sT (∅) = sŤ (σ̄j), let n = j, σ = σ̄j and
ḡ = ḡj . Otherwise, suppose that sT (∅) = + and sŤ (σ̄j) = −. (The other case is
analogous.) Then, by Lemma 2.11, we can find i ∈ IN and ḡj+1 : L ↪→ Lσ̄_

j (i)0 . Let
σ̄j+1 = σ̄_

j (i)0 ∈ T . Since T is well founded, this process cannot go for ever. So,
at some point we have to find a j with sT (∅) = sŤ (σj) and define σ and ḡ.
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Suppose that sT (∅) = sŤ (σ) = +. (The other case is analogous.) For every
n ∈ IN we have

lin(T〈n〉) + 1 4 lin(T ) 4 lin(Ťσ) =
∑
m∈ω

lin(Ťf(σ)_(m)0).

So, by Corollary 2.12, for some mn, we have a recursive index for an embedding,
gn, of lin(T〈n〉) into lin(Ťf(σ)_(mn)0). 0′ can find these uniformly. �

2.3. WQO(ST) implies ATR0. Shore proved in [Sho93] that the fact that the class
of well orderings is well quasiordered under embeddablity implies ATR0. We will
use Shore’s result to prove the following proposition.

Proposition 2.14. (RCA0) WQO(ST) implies ATR0.

The Proposition will follow from the following three lemmas.

Lemma 2.15. (ACA0) WQO(ST) implies ATR0.

Proof. We work in ACA0 and assume WQO(ST). We will prove that for every se-
quence 〈αi〉i∈IN of ordinals, there are i < j such that αi embeds in αj . By Shore’s
result, this implies ATR0. For each i we construct a tree Ti as follows: Let Ti be the
tree of descending sequences 〈a0, ..., an〉 with entries in αi. Consider Ti as a signed
tree using the constant function equal to + as the sign function sTi . By WQO(ST),
there are i < j such that Ti 4 Tj . We claim that this implies that αi embeds in
αj . Let f be a homomorphism Ti → Tj . We define g : αi → αj as follows: Given
a ∈ αi, let

g(a) = min{b ∈ αj : ∃σ ∈ Ti(a = last(σ) & b = last(f(σ)))}
where last(τ) is the last entry of τ . Note that ACA0 can prove the existence of
g. We have to show that a0 < a1 ∈ αi implies g(a0) < g(a1). Let σ ∈ Ti

be such that last(σ) = a1 and last(f(σ)) = g(a1). Consider τ = σ_a0 ∈ Ti

and let b0 = last(f(τ)). Necessarily f(τ) ⊃ f(σ), and hence, b0 is smaller than
last(f(σ)) = g(a1). So g(a0) ≤ b0 < g(a1). �

Now we have to prove that WQO(ST) implies ACA0 over RCA0. We first prove
that WQO(ST) implies ACA0 over RCA2, and then prove that WQO(ST) implies
RCA2. RCA2 is the system that consist of RCA0 together with the axiom scheme
of Σ0

2-induction.

Lemma 2.16. (RCA2) WQO(ST) implies ACA0.

Proof. We will prove that WQO(ST) implies that K = 0′ exists. Then, by rela-
tivizing the proof, as usual, we can get that for all set X, X ′ exists, and hence
ACA0.

Let T be the tree of sequences 〈s0, ..., sn〉 ∈ Seq such that {s0 < ... < sn} is the
set of stages that look true at stage sn for the enumeration of K. We say that a
stage t looks true at stage s for the enumeration of K if for all u between t and s,
ku ≥ kt, where {ku}u∈IN is an enumeration of K. t is a true stage if it looks true at
every s ≥ t. Note that if T has a path, it is unique and is the set of the true stages
of the enumeration of K. So, from that path we would be able to compute 0′. Also
note that using Σ0

2-induction we can prove that for every m there is an sm which is
a true stage for the enumeration of K and for which there are m many true stages
before sm. (Σ0

2-induction is needed because a statement that says that there exits
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a stage that is a true stage which satisfies some recursive predicate is Σ0
2.) Assume,

toward a contradiction, that 0′ does not exists as a set. Then we would have that
T is well founded. For each n ∈ IN , let Tn be the signed tree 〈T, sTn〉 where

sTn
(σ) =

{
+ if σ ∈ T & |σ| 6= n
− if σ ∈ T & |σ| = n.

Now use WQO(ST) to get n < m such that Tn 4 Tm. Let f be an homomorphism
from Tn into Tm. Let s be a true stage such that there are n− 1 many true stages
before s. Let σ be the corresponding tuple ∈ T . (i.e.: σ = 〈s0, ..., sn−1〉, where
{s0 < ... < sn−1 = s} is the set of stages that look true at s.) Since sTn(σ) = −,
we have to have that sTm(f(σ)) = −, and hence |f(σ)| = m > n.

We claim that f(σ) ⊃ σ. Let t be the last element of f(σ). If t > s, then, since s
is a true stage, we would have that σ ⊆ f(σ). Then σ ⊂ f(σ) because |σ| < |f(σ)|.
Suppose then, that t < s, and σ is incomparable with f(σ). There are at most
s− t− 1 many τ ∈ T extending f(σ). Consider the s+ (s− t)th true stage and the
corresponding sequence in T . We can construct a sequence {σi}i<s−t of nodes of
T , such that

σ ⊂ σ1 ⊂ σ2 ⊂ ... ⊂ σs−t−1.

Then, for every i < j < s− t we have to have that f(σ) ⊂ f(σi) ⊂ f(σj). But there
are not s−t different nodes on T above f(σ). This contradiction to the Pigeon-Hole
Principle proves our claim.

Now we can prove by induction that for every n, fn(σ) ⊂ fn+1(σ). Therefore,
using f , we can compute the infinite path of T and hence 0′ too. �

Lemma 2.17. (RCA0) WQO(ST) implies RCA2.

Proof. Let ψ(x) = ∃u∀vφ(x, u, v) be a Σ0
2 formula. To verify the instance of the

induction scheme for ψ, it suffices to prove that, for each n ∈ IN , there exists a
set Z = {x < n : ψ(x)}. Because we can then employ the induction axiom with
Z as a parameter, and get induction for ψ up to any n. For each j < n there is a
uj ≤ ω such that, if ψ(j), uj is the first witness for ∃u∀vφ(j, u, v), and if ¬ψ(j),
uj = ω. (Each uj exists by bounded Σ0

1-comprehension. See [Sim99, Definition
II.3.8 and Theorem II.3.9] for the technical definition and proof of this principle in
RCA0. Note that we are not claiming the existence of the tuple 〈uj : j < n〉.)

We will construct a sequence 〈Ti〉i∈IN of signed trees and then apply WQO(ST) to
it. Each Ti will have n branches Ti,j , j = 0, ..., n−1. Given k ∈ IN and ∗ ∈ {+,−},
let L(k, ∗) bet the signed tree which is linearly ordered, has size k and all its nodes
have sign ∗. Given l ∈ ω+1, let Sl be the signed tree which has a root signed + and
for each i < l there is a branch of the form L(i,+). To construct Tp,j attach a copy
of Suj−p after the end node of L(j,−) and then attach a copy of L(n− j,−) after
each end node of Suj−p. (If p > uj let uj − p = 0 and if uj = ω, let uj − p = ω.)
See pictures of L(k, ∗), Suj−p and Tp,j below. It is not hard to see how to construct
Tp,j recursively.
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By WQO(ST), there exists p < q such that Tp 4 Tq. Then, for every j0 < n there

is a j1 < n such that Tp,j0 4 Tq,j1 . We claim that necessarily j0 = j1. Every path
though Tp,j0 consists of n− j0 nodes signed −, then some nodes signed + and then
j0 nodes signed −. Every path though Tp,j1 consists of n− j1 nodes signed −, then
some nodes signed + and then j1 nodes signed −. The n nodes signed − in a path
though Tp,j0 have to be mapped into the n nodes signed − in a path though Tp,j1 ,
and the nodes signed + have to be mapped to nodes signed +. Therefore, it has to
be the case that j0 = j1. We have also proved that necessarily Suj0−p 4 Suj1−q

The second observation is that if ψ(j) and Tp,j 4 Tq,j , then uj ≤ p. This is
because, to have that Suj−p 4 Suj−q, we need to have that uj − p ≤ uj − q = 0.

So we have that ψ(j) ⇔ (∃u ≤ p)∀vψ(j, u, v). Therefore, Z can be proved to
exists in RCA0 by bounded Σ0

1 comprehension. �

3. Finite decomposability

Definition 3.1. A finite decomposition of a linear ordering, L, is a finite tuple
signed trees 〈T0, ..., Tn〉, such that

L ∼
n∑

i=0

lin(Ti).

If Fi = lin(Ti), we may abuse notation and say that the tuple of h-indecomposable
linear orderings 〈F0, ...,Fn〉 is a finite decomposition of L. In this case we will
implicitly assume that the sequence 〈T0, ..., Tn〉 is also given.

Statement 3.2. Let FINDEC be the statement that says that every scattered linear
ordering has a finite decomposition.

FINDEC gives us a nice representation of scattered linear orderings up to equimor-
phism. This representation will be very useful in the proof of Jullien’s Theorem. A
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proof of FINDEC can be extracted from [Jul69] using Fräıssé’s conjecture and Π1
1-

DC0 (which is equivalent to Σ1
2-DC0 and to ∆1

2-CA0 plus Σ1
2-induction [Sim99, The-

orem VII.6.9.2], and strictly stronger than, for example, Π1
1-CA plus Σ1

2-induction).
In this section we prove that FINDEC is equivalent to WQO(ST)and in the next
section that it is equivalent to Fräıssé’s conjecture. We also analyze finite decom-
positions of minimal length. We show in ATR0that, if finite decompositions exists,
then minimal decompositions also exists and are unique modulo equimorphisms.

The next lemma uses FINDEC to show that h-indecomposability is the same as
indecomposability, modulo equimorphism.

Lemma 3.3. (RCA0) FINDEC implies that every scattered indecomposable linear
ordering is equimorphic to an h-indecomposable linear ordering.

Proof. Let L be scattered and indecomposable, say to the right. By FINDEC,
L ∼

∑n
i=0 Fi, where each Fi is h-indecomposable. Since L is indecomposable to

the right, L 4 Fn. Obviously Fn 4 L, therefore L ∼ Fn which is h-indecomposable.
�

3.1. FINDEC and WQO(ST). We prove that FINDEC is equivalent to WQO(ST)
over RCA0.

Lemma 3.4. (RCA0) WQO(ST) implies FINDEC.

Proof. Clote proved that ATR0 implies that every scattered linear ordering, L, can
be embedded in Zα for some ordinal α [Clo89, Theorem 16]. (Zα is defined by
effective transfinite induction as follows: Z0 = 1, Zα+1 = Zα × Z and Zlimm αm =∑

m∈ω Zαm × ω∗ +
∑

m∈ω∗ Zαm × ω.) The least α such that L embeds in a finite
sum of Zαs is the rank of L. The rank can be defined in ATR0 as in [Clo89]. Recall
that WQO(ST) implies ATR0, so we can use ATR0 here. By arithmetic transfinite
induction we prove that for every ordinal α the following holds: Every recursive
linear ordering L of rank α, for which there is a recursive embedding L 4 Zα ×m
for some m ∈ IN , is equimorphic to a finite sum,

∑n
i=0 Fi, of h-indecomposable

linear orderings such that
• each Fi has of rank ≤ α,
• each Fi is recursive in 02(α+1)2 , and
• the equimorphism is recursive in 02(α+1)2 .

To do this using only arithmetic transfinite induction (which we have in ATR0, even
in ACA0; see [Sim99, Lemma V.2.1]) we need to fix a big ordinal α0 and prove that
the statement above holds for every α < α0 by induction on α. Note that ATR0

implies that 02α2
0 exists as a set. This is why the sentence that we are proving

by transfinite induction is just arithmetic. To get finite decomposability for every
scattered linear ordering L, the proof has to work for every ordinal α0 and relative
to every set X.

We can write L as a finite sum of ω or ω∗ sums of linear orderings of rank less
than α. Clearly, it suffices to consider the case that L is equal to one of these sums,∑

i∈ω Li. By inductive hypothesis, for each i there is a equimorphism recursive in
02α2

between Li and a finite sum of h-indecomposable linear orderings of rank < α

recursive in 02α2
. So now, we have that L ∼

∑
i∈ω Gi, where each Gi = lin(Ti) is h-

indecomposable. Recursively in 02α2+2 we can find these equimorphisms uniformly,
and hence the equimorphism L ∼

∑
i∈ω Gi. By Lemma 2.5, recursively uniformly
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in 02α2+2α, we can tell, for each i and j, whether Gi 4 Gj or not. Moreover, if
Gi 4 Gj , we can find the embedding. By WQO(ST) and Proposition 2.13, it cannot
happen that

∀k∃i, j ≥ k∀l > j(Gi 64 Gl).
Otherwise we could define a subsequence 〈Gki

〉i∈IN such that ∀i < j(Gi 64 Gj). Let
k0 be such that ∀i, j ≥ k0∃l > j(Gi 4 Gl). Let T = {i_σ : σ ∈ Ti+k0}, sT (∅) = +
and sT (i_σ) = sTi+k0

(σ). We claim that

L ∼
k0−1∑
i=0

Gi + lin(T ).

We have to construct an equimorphism between
∞∑

i=k0

Gi and lin(T ) =
∑
m∈ω

G(m)0+k0 .

The equimorphism can be easily constructed given the pairs 〈i, j〉 such that Gi 4 Gj

and the embeddings fij : Gi ↪→ Gj , which we have recursively in 02α2+2α. Note that
2(α+1)2 ≥ 2α(α+1) = 2α2 +2α. Then 〈T0, ..., Tk0−1, T 〉 is a finite decomposition
of L. �

The proof of the other direction is divided in two steps.

Lemma 3.5. (ACA0) FINDEC implies WQO(ST).

Proof. Suppose WQO(ST) is false. Then, using Proposition 2.13, there is a sequence
〈Li〉i∈IN of h-indecomposable linear orderings such that for all i < j, Li 64 Lj . By
taking an infinite subsequence, we can assume that all the Li are h-indecomposable
in the same direction. Let us assume they are all h-indecomposable to the right.
Let L =

∑
i∈ω Li. We claim that L is scattered but it can not be decomposed

as a finite sum of h-indecomposables and therefore that FINDEC does not hold.
By Lemma 2.10, each Li is scattered, so L is scattered too. Suppose, toward a
contradiction, that L ∼

∑n
j=0 Fj , where each Fj is h-indecomposable.

First we show that for some k ∈ IN , Fn ∼
∑∞

i=k Li. Let f and g be an embed-
dings, f : L ↪→

∑n
j=0 Fj and g :

∑n
j=0 Fj ↪→ L. Let h : L ↪→ L be the composition

of g and f . We claim that for every k ∈ IN , the image of
∑∞

i=k Li under h is
included in

∑∞
i=k Li. The proof of the claim is a straightforward induction using

that each Li is indecomposable to the right and hence cannot be embedded into a
proper initial segment of it. Now, let k0 be such that f−1(Fn) = Gk0 +

∑∞
i=k0+1 Li,

where Gk0 is a non-empty final segment of Lk0 , and let k1 be the greatest k such
that g(Fn) ⊆

∑∞
i=k Li. Since then h(Gk0 +

∑∞
i=k0+1 Li) ∩ Lk1 6= ∅, by the claim

above, k0 ≤ k1. Therefore
∞∑

i=k0

Li 4 Gk0 +
∞∑

i=k0+1

Li 4 Fn 4
∞∑

i=k1

Li 4
∞∑

i=k0

Li.

So, Fn ∼
∑∞

i=k0
Li. Let k = k0.

Since Fn is indecomposable, either Fn 4 Lk or Fn 4
∑∞

i=k+1 Li. The former
case is not possible because we would have that Lk + 1 4 Lk, which contradicts
Lemma 1.2. In the latter case we would have that Lk + 1 4

∑∞
i=k+1 Li. Then, by

Corollary 2.12, Lk 4 Lm for some m ≥ k+ 1, contradicting our initial assumption.
�
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Lemma 3.6. (RCA0) FINDEC implies ACA0.

Proof. We will prove that FINDEC implies that K = 0′ exists. Then, by relativizing
the proof, as usual, we can get that for all set X, X ′ exists, and hence ACA0.

Let {k0, k1, ...} be a recursive enumeration of K. For each s ∈ IN let Ks =
{k0, ..., ks} and σs = Ks � ks + 1. Consider the following ordering of IN .

s <
B
t⇔ σs <KB

σt,

where <
KB

is the Kleene-Brouwer ordering of Seq2. (σ <
KB

τ iff σ ⊇ τ or σ|τ
and σ ≤Seqω

τ .) Let B = 〈IN,≤
B
〉. For each s we have that either for some t > s,

kt < ks, in which case we have that ∀t′ ≥ t(s <
B
t′), or that for every t > s, kt > ks

(in other words, s is a true stage), in which case we have that ∀t′ > s(t′ <
B
s). In

the former case we say that s is in the left side of B, and in the latter case that s
is in the right side. Just for the sake of giving some intuition about the shape of
B, we observe that ACA0 proves that B has order type ω+ ω∗. RCA0 cannot prove
this fact. Furthermore, if we had an order preserving map from ω∗ into B, then we
could compute infinitely many true stages and hence K.

FINDEC implies that B is equimorphic to a finite sum of h-indecomposable linear
orderings. Since B is infinite, at least one of the summands has to be infinite.
Because of the fact that every element has finitely many elements either to the
right or to the left, we are left with three possible decomposition of B:

1 + 1 + ...1 + ω + 1 + ...+ 1;
1 + 1 + ...1 + ω ∗+1 + ...+ 1;

1 + 1 + ...1 + ω + ω ∗+1 + ...+ 1.

We can eliminate the first possibility by proving that there is no embedding B 4
1 + 1 + ...1 + ω + 1 + ...+ 1. To do this all we have to show is that every element
in the right side has to be mapped to one of the 1s at the left of the copy of ω,
and then that there are infinitely many elements in the right side of B, or in other
words, infinitely many true stages. (The second possibility can be eliminated too.
But we do not need to do it.) Therefore, we have a map from ω∗ to B as we needed
to compute K. �

Corollary 3.7. WQO(ST) and FINDEC are equivalent over RCA0.

Proof. Use the previous three lemmas. �

3.2. Minimal decomposition. Finite decompositions of a linear ordering are not
unique. For example, 〈ω2〉 and 〈ω,1, ω2〉 are two finite decompositions of ω2. This
is why we are interested in considering minimal finite decompositions of linear
orderings.

Jullien proved that every scattered linear ordering has a minimal decomposi-
tion, and, in a certain sense, a unique one [Jul69]. His definitions of finite and
minimal decompositions were, although essentially the same, a bit different from
ours. Because of this, our proof of uniqueness is simpler than his. The existence of
minimal decompositions follows easily from the existence of finite decompositions
and Σ1

2-induction. To prove it using just ATR0, a little work is required.

Definition 3.8. A minimal decomposition of a linear ordering is a finite decom-
position of minimal length.
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Lemma 3.9. (RCA2) If 〈F0, ...,Fn〉 and 〈F̌0, ..., F̌m〉 are finite decomposition of L,
then there exists a set X ⊆ {0, ...,m} of size at most n+1 such that

∑
i∈X F̌i ∼ L.

Moreover, there exists an embedding

g :
n∑

i=0

Fi ↪→
∑
i∈X

F̌i.

such that for each i ≤ n, there is a j ∈ X, such that the image of Fi under g is
contained in F̌j.

Proof. Let f be an embedding f :
∑n

i=0 Fi ↪→
∑m

i=0 F̌i. As in the proof of Lemma
2.11, for each i ≤ n, there is an xi ∈ Fi and a ji ≤ m such that F̌ji

contains
the the image under f of Fi(≥xi) if Fi is →, and of Fi(≤xi) if Fi is ←. (If Fi

is 1, let xi be the the only element of Fi.) The sequence 〈x0, ..., xn〉 exists by
Σ0

2-induction. Let X = {ji : i ≤ n}. Now, using Lemma 2.9 we can construct
embeddings gi : Fi ↪→ F̌ji , uniformly in i, such that the image of gi is contained
in the image of Fi under f . Then, putting all the gis together, we can construct
g :

∑n
i=0 Fi ↪→

∑
i∈X F̌i. So, we have that

L 4
n∑

i=0

Fi 4
∑
i∈X

F̌i 4 L.

�

Proposition 3.10. (ATR0) If a linear ordering L has a finite decomposition, then
it has a minimal decomposition. Moreover, this minimal decomposition is unique
up to equimorphism.

Proof. The uniqueness of the minimal decomposition follows from the previous
lemma: If 〈F0, ...,Fn〉 and 〈F̌0, ..., F̌n〉 are minimal decomposition of L, then the X
given by the previous lemma has to be the whole set {0, ..., n}. Then, necessarily
ji = i for all i ≤ n, and hence Fi 4 F̌i. Analogously we get F̌i 4 Fi for each i, and
therefore Fi ∼ F̌i.

Now, let 〈F0, ...,Fn〉 be a finite decomposition of L. We will prove that L has a
minimal decomposition. We consider the least m such that there is a subset X of
{0, ..., n} of size m+ 1 such that

n∑
i=0

Fi 4
∑
i∈X

Fi.

The existence of such an m requires induction. We will prove that the formula∑n
i=0 Fi 4

∑
i∈X Fi is Σ0

1 over some parameters that, using ATR0, we can prove
exist. Let 〈T0, ..., Tn〉 be a sequence of signed trees such that lin(Ti) = Fi. Let
α be the maximum of the ranks of the Tis plus 1. We claim that we can decide
whether

∑n
i=0 Fi 4

∑
i∈X Fi recursively in Z(2α+2), where Z is some set that

computes 〈T0, ..., Tn〉. Let {j0 < ... < jm} = X. If
∑n

i=0 Fi 4
∑

i∈X Fi, then,
by the previous lemma, there exists an embedding g such that for each i ≤ n,
there is a j ∈ X, such that the image under g of each Fi is contained in Fj . So∑n

i=0 Fi 4
∑

i∈X Fi is equivalent to

∨
0=i0≤...≤im≤n

 ∧
k≤m

Fik
+ Fik+1 + ...+ Fik+1−1 4 Fjk

 .
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Observe that in general, if C is →, then A + B 4 C if and only if A + 1 4 C and
B 4 C. Also observe that A+1 4 C if and only if A×ω 4 C. So, now, the question
“Fik

+Fik+1 + ...+Fik+1−1 4 Fjk
?”, supposing Fjk

is→, becomes a conjunction of
formulas of the forms Fi 4 Fj and Fi×ω 4 Fj . Since, by Lemma 2.5, Z(2α+2) can
answer all these questions, it can tell whether

∑n
i=0 Fi 4

∑
i∈X Fi. This proves

our claim.
Now, by Σ0

1-induction, there is an m and an X as required above. We claim that
〈Fi : i ∈ X〉 is a minimal decomposition of L. Suppose, toward a contradiction,
that 〈F̌0, ..., F̌l〉 is a finite decomposition of L of length l + 1 < m + 1. But then,
by the Lemma above, there is some Y ⊂ X such that

∑
i∈Y Fi is equimorphic to

L, contradicting the minimality of m. �

Since FINDEC implies ATR0, we obtain the following equivalence.

Corollary 3.11. The following are equivalent over RCA0:
(1) FINDEC.
(2) Every scattered linear ordering has a minimal decomposition.

4. Fräıssé’s conjecture

Statement 4.1. Fräıssé’s conjecture, FRA, is the statement that says that the class
of linear orderings is well quasiordered under embeddablity.

As we said in the introduction, the exact proof theoretic strength of FRA is
unknown. All we know it that it is provable in Π1

2-CA0, that it implies ATR0 (Shore
[Sho93]) but that it does not imply Π1

1-CA0. We prove in this section that it is
equivalent to the two statements studied above.

Theorem 4.2. The following are equivalent over RCA0:
(1) WQO(ST)
(2) FINDEC
(3) FRA

Proof. We have already proved that WQO(ST) and FINDEC are equivalent. Ob-
viously FRA implies that the class of h-indecomposable linear orderings is well
quasiordered. It follow from Proposition 2.13, and the fact that FRA implies ACA0,
that FRA implies WQO(ST).

Now we show that WQO(ST) implies FRA. Recall that WQO(ST) implies ATR0,
so we can use ATR0 here. Consider a sequence 〈Li : i ∈ IN〉 of linear orderings. For
some set X and ordinal α, we have that these linear orderings are all recursive in
X and have rank less than α. (The rank of a scattered linear ordering is defined at
the beginning of the proof of Lemma 3.4.) By relativization, assume X is recursive.

The idea is like the one in the proof of [Fra00, 7.5.4], but we have to be a little
bit more careful. We prove that, for every ordinal α, the set of recursive linear
orderings of rank less that α is well quasiordered. We use Higman’s theorem which
is provable in ACA0; see, for example, [Mar]. Higman’s theorem says that if P is
well quasiordered, then 〈SeqP ,4P 〉 is well quasiordered too, where σ 4P τ if there
is a strictly increasing f : {0, ..., |σ|−1} → {0, ..., |τ |−1} such that ∀i < |σ|(σ(i) ≤

P

τ(f(i))).
LetHα be the set of h-indecomposable linear orderings of rank less than α, which

are recursive in 02α2
. It follows from WQO(ST) that Hα is well quasiordered, and
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then, by Higman’s theorem, that 〈SeqHα
,4Hα

〉 is well quasiordered too. For each
i, let Si = 〈F0, ...,Fn〉 ∈ SeqHα

be such that Li =
∑n

j=0 Fj . (Si exists by Lemma
3.4 and its proof.) Then, for some i < j, Si 4Hα

Sj . Hence Li 4 Lj . �

The following lemma gives us another statement equivalent to FRA. We will use
it later.

Lemma 4.3. The following are equivalent over ACA0:
(1) FRA.
(2) There is no infinite strictly descending sequence of linear orderings which

are h-indecomposable to the right.

Proof. Clearly FRA implies (2). Let us prove that (2) implies WQO(ST), and hence
FRA. Suppose, toward a contradiction, that 〈Ti〉i∈IN is a sequence of signed trees
such that for all i < j, Ti 64 Tj . For each n, define a signed tree Sn = {i_σ : σ ∈
Ti, i ≥ n} and sSn(∅) = + and sSn(i_σ) = sTi(σ). We claim that for all n < m,
Sn � Sm. Take n < m. Clearly Sn < Sm. If Sn 4 Sm, then for some j ≥ m,
Tn 4 Tj , contradicting our assumption on 〈Ti〉i∈IN . Therefore 〈lin(Sn)〉n∈IN is a
strictly descending sequence of linear orderings h-indecomposable to the right. �

5. Jullien’s theorem

In his doctoral dissertation [Jul69] Jullien characterized all the extendible linear
orderings. We want to analyze the proof theoretic strength of Jullien’s theorem.
The first problem we have is that, as formulated in [Jul69], Jullien’s theorem does
not make sense if FINDEC does not hold. We formulate Jullien’s theorem in two
different ways which do not need FINDEC to make sense.

Definition 5.1. A segment B of a linear ordering L = A + B + C is essential if
whenever we have L 4 A+B′ + C for some linear ordering B′, it has to be the case
that B 4 B′.

Statement 5.2. JUL is the statement: A scattered linear ordering L is extendible
if and only if it does not have an essential segment B of either of the following
forms:

• B = R+Q where R is indecomposable to the right and Q is indecomposable
to the left, or
• B = 2.

This version of Jullien’s theorem is different from the ones that appear in the
literature. We find it more natural than Jullien’s formulation and it does not require
the notion of minimal decompositions. We will describe Jullien’s formulation of his
theorem in subsection 5.3. The fact that the two formulations are equivalent follows
from an analysis of the essential segments of a linear ordering with a given minimal
decomposition. See, for example, Lemma 5.9 below.

Notation 5.3. We say that a linear ordering B has the form 〈→,←〉 if B = R+Q
where R is indecomposable to the right and Q is indecomposable to the left.

5.1. Proof of the easy direction. We start by proving, using just RCA0, that if
L has an essential segment of the form either 2 or 〈→,←〉, then it is not extendible.

Lemma 5.4. (RCA0) If L has an essential segment which is not extendible, then
L is not extendible.
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Proof. Write L as A+ B + C where B is an essential, not extendible segment of L.
There is some partial ordering P such that B 64 P, but B embeds in any linearization
of P. Let Q = A+ P + C. First note that L 64 Q: This is because any embedding
L 4 Q, induces an embedding of L into A+ B′ + C, where B′ is a chain in P, and
hence B 64 B′, contradicting the essentially of B. On the other hand, L embeds in
any linearization of Q, because a linearization of Q is of the form A+D+C, where
D is a linearization of P, and B embeds in any linearization of P. �

The proof of the following lemma is exactly the one in [Jul69, Lemma V.2.2].
Since Jullien’s thesis [Jul69] was never published, we include the proof here.

Lemma 5.5. (RCA0) The following linear orderings are not extendible.
• 2,
• any linear ordering of the form 〈→,←〉.

Proof. To see that 2 is not extendible consider the poset which consist of two
incomparable elements.

For the other case, let A = B+C be such that B is→ and C is←. We will define
a partial ordering P such that A 64 P, but A embeds in every linearization of P.

First, suppose that B 64 C and C 64 B. Let D = C+B and {d, e} be two elements
not in D. We first define a set P :

P = ({d} ∪D ∪ {e})×D.

Now we define and ordering ≤
P

on P .

〈w, x〉 ≤
P
〈y, z〉 ⇔

 w = d & x ≤
D
z, or

y = e & x ≤
D
z, or

w ≤
D
y & x = z.

See picture of P below. (In the picture, an element of P is greater than another if
it is above, or to the right, of it.)

OO

B

C

��

OO

B

C

��

oo
C B

//

...
...

oo
C B

//

...
...

d

...
...

e

We claim that A 64 P, but A embeds in every linearization of P. Every maximal
chain in P is either of the form C + B, of the form C1 + C + B + C0 + B where
C1 +C0 = C, or of the form C+B0 +C+B+B1 where B0 +B1 = B. In any case, any
chain of P can be embedded into a linear ordering of the form C+B0+C+B+C0+B,
where B0 is a proper initial segment of B and C0 a proper final segment of C. ¿From
these six summands, B only embeds in the ones isomorphic to B and C in the ones
isomorphic to C. Therefore, if we had an embedding of A into C+B0+C+B+C0+B,
we should have that a final segment of B is mapped into one of the copies of B and
that an initial segment of C into one of the copies of C, which is impossible. Now
let Q = 〈P,≤

Q
〉 be a linearization of P. If for every x, y ∈ D, 〈d, x〉 ≤

Q
〈e, y〉, then
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{d}×B ∪{e}×C is a subset of Q of type A. Otherwise, there exists x, y ∈ D such
that 〈d, x〉 ≥

Q
〈e, y〉, then B × {y} ∪ C × {x} is a subset of Q of type A. In any

case, A 4 Q.
The second case is that B 4 C but C 64 B.

P = ({d} ∪ C)×B,

where d is a new element. Now we define and ordering ≤
P

on P .

〈w, x〉 ≤
P
〈y, z〉 ⇔

{
w = d & x ≤

D
z, or

w ≤
C
y & x = z.

See picture of P below. (In the picture, again, an element of P is grater than
another if it is above of to the right of it.)

...
...

C
oo

...
...

C
oo

B

OO

...
...

We claim that A 64 P but A embeds in every linearization of P. Every chain
in P is can be embedded in B0 + C, where B0 is an initial segment of B. If f is
an embedding A ↪→ B0 + C, then, since B 64 B0, there is some x ∈ B such that
f(x) ∈ C. But then, we have an embedding of 1 + C into C contradicting Lemma
1.2. So A = B + C 64 B0 + C. Now let Q = 〈P,≤

Q
〉 be a linearization of P. If for

every x, z ∈ B and y ∈ C, 〈d, x〉 ≤
Q
〈y, z〉, then {d} ×B ∪C × {x} for some x ∈ B

is a subset of Q of type A. Otherwise, there exists x, z ∈ B and y ∈ C such that
〈d, x〉 ≥

Q
〈y, z〉. Then B+C embeds into 〈C(<y)×{z}∪C×{x},≤Q

〉. In any case,
A 4 Q.

The case where B 64 C and C 4 B is analogous. It cannot be the case that B 4 C
and C 4 B, because we would have B + 1 4 C + 1 4 C 4 B, contradicting Lemma
1.2. �

Corollary 5.6. The implication from left to right in JUL is provable in RCA0.

Proof. Immediate from the previous two lemmas. �

5.2. Consequences of JUL. Now we show that FRA is necessary to prove the
right to left direction of JUL.

Lemma 5.7. (RCA0) JUL implies FRA.

Proof. First we prove that JUL implies ATR0. For this observe that ζ, the linear
ordering of the integers does not have essential intervals of the form 2, or 〈→,←〉.
Then, by JUL, ζ has to be extendible. Downey, Hirschfeldt, Lempp and Solomon
proved in [DHLS03] that the extendibility of ζ implies ATR0.

Suppose that FRA does not hold. Then, by Lemma 4.3, there is a sequence
〈Li〉i∈IN of linear orderings which are h-indecomposable to the right such that for
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all i < j, Li � Lj . Assume that each Li has a first element 0Li
; otherwise add a

first element to Li. Let

L = L0 + L1 + · · ·+ Ln + · · · ,

and, for each n ∈ IN , define

An = L0 + · · ·+ Ln−1 + Ln+1 + · · · .

Let P =
⊕

n∈IN An. (See the diagram of P below. In the picture, an element of P
is grater than another if it is above it.)

A0 A1 A2 A3
...

...

•

L2

•

L2

•

L2

...

•

L1

•

L1

•

L1

...

•

L0

•

L0

•

L0

We think of the domain of L as {〈i, x〉 : x ∈ Li, i ∈ IN}, the domain of An as
{〈i, x〉 : x ∈ Li, i ∈ IN, i 6= n} and the domain of P as {〈n, i, x〉 : x ∈ Li, i, n ∈
IN, i 6= n}.

The first claim is that L 64 P. Suppose that there is an embedding f : L ↪→ P.
Then, for some n, f is an embedding L 4 {n} × An. Think of f as en embedding
into An. We prove, by induction on i < n, that for every x ∈ Li, 〈i, x〉 <An

f(〈i + 1, 0Li+1〉). Suppose it is true for i − 1, but that f(〈i + 1, 0Li+1〉) ≤An 〈i, x〉
for some x ∈ Li. So,

f({i} × Li ∪ {〈i+ 1, 0Li+1〉}) ⊆ {i} × Li.

But, since Li is h-indecomposable to the right, Li + 1 64 Li. Contradiction. This
implies that

f({n} × Ln ∪ {〈n+ 1, 0Ln+1〉}) ⊆
∑

j≥n+1

Lj ,

which, by Corollary 2.12, implies that for some j > n, Ln 4 Lj , contradicting our
assumptions.

The second claim is that L embeds in every linearization of P. Let ≤
Q

be a
linearization of ≤

P
and Q = 〈P,≤

Q
〉. We consider three possible cases. First,

suppose that for every n > 0 and every x ∈ Ln−1, 〈n, n− 1, x〉 ≤
Q
〈n+ 1, n, 0Ln

〉.
Then, f(〈i, x〉) = 〈i + 1, i, x〉 is an embedding of L into Q. Second, if for some n,
for every y ∈ Ln, 〈n+ 1, n, y〉 ≤

Q
〈n, n+ 1, 0Ln+1〉, then

f(〈i, y〉) =
{
〈n+ 1, i, y〉 if i ≤ n
〈n, i, y〉 if i > n

is an embedding of L into Q. Last, suppose that neither of the above is the case.
Then, for some n > 0 and x ∈ Ln−1, 〈n, n− 1, x〉 ≥

Q
〈n+ 1, n, 0Ln

〉, and for some
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y ∈ Ln 〈n+ 1, n, y〉 ≥
Q
〈n, n+ 1, 0Ln+1). Therefore, for all z ∈ Ln−1, z ≥Ln−1

x,

〈n+ 1, n, 0Ln〉 ≤Q
〈n, n− 1, z〉 ≤

Q
〈n+ 1, n, y〉

Let hn be an embedding of Ln into Ln−1(>x) and hn+1 be an embedding of Ln+1

into Ln(>y). Now, define f : L → Q as follows

f(〈i, z〉) =


〈n+ 1, i, z〉 if i < n
〈n, n− 1, hn(z)〉 if i = n
〈n+ 1, n, hn+1(z)〉 if i = n+ 1
〈n+ 1, i, z〉 if i > n+ 1.

The reader can check that f is an embedding of L into Q.
The third claim, needed to get a contradiction to JUL, is that L does not have

an essential segment which is either 2, or of the form 〈→,←〉. If A is segment of L
of order type 2, then A ⊂ {i} × Li for some i. But, since for all x ∈ Li,

L ∼ L0 + · · ·+ Li−1 + Li(>x) + Li+1 + · · · ,

A cannot be essential. Now suppose that L = A+B+ C +D, where B is indecom-
posable to the right and C is indecomposable to the left and B + C is an essential
segment. Let i be least such that C ∩ Li 6= ∅. C cannot contain a final segment
of Li, because otherwise Li + 1 4 C + 1 4 C 4 Li. So C is contained in a proper
initial segment of Li. Let j be maximal such that B ∩ Lj 6= ∅. j could be either
i or i − 1. B cannot contain a final segment of Lj−1, because if it did we would
have Lj−1 4 B 4 Lj . So B ⊆ Lj . If j = i, then B + C is contained in a proper
initial segment of Li, and therefore L 4 A + D. If j = i − 1, B is a final segment
of Lj , and hence B ∼ Lj and C is a proper initial segment of Li. So, we have
that L 4 A + B + D Then, since B + C is essential, B + C 4 B, and therefore
Lj + 1 4 B + C 4 B 4 Lj . This contradicts Lemma 1.2. �

5.3. Minimal decomposition and the proof of Jullien’s theorem. Our next
goal is to prove JUL in the system RCA∗+FRA.

What Jullien did in [Jul69] is to prove that every scattered linear ordering has a
unique minimal decomposition, and then characterize the extendible linear order-
ings by putting conditions on their minimal decompositions:

Statement 5.8. JUL(min-dec) is the statement that says that if 〈F0, ...,Fn〉 is
a minimal decomposition of L, then L is extendible if and only if there is no i
such that either Fi = Fi+1 = 1 or Fi is indecomposable to the right and Fi+1 is
indecomposable to the left.

The problem with this statement is that, without knowing that minimal decom-
positions always exists, JUL(min-dec) is not enough to classify all the extendible
linear orderings, as Jullien did. So, from the viewpoint of reverse math, this is not
a satisfactory formulation of Jullien’s classification of the extendible linear order-
ings. We could say that Jullien’s theorem, as stated in [Jul69], is the conjunction
of JUL(min-dec) and the sentence that says that every scattered linear ordering
has a minimal decomposition (which is equivalent to FRA; see Corollary 3.11 and
Theorem 4.2).

We will prove that JUL(min-dec) is equivalent to ATR∗ over RCA∗. Then, use
this result to prove that that FRA implies JUL.
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Lemma 5.9. (RCA0) If 〈Fi : i ≤ n〉 is a minimal decomposition of L, and either
Fi = Fi+1 = 1 or Fi is h-indecomposable to the right and Fi+1 is h-indecomposable
to the left, then Fi + Fi+1 is an essential segment of L.

Proof. Suppose, toward a contradiction, that f is an embedding,

f : L ↪→ (F0 + · · ·+ Fi−1) +A+ (Fi+2 + · · ·+ Fn),

and Fi + Fi+1 64 A. If Fi = Fi+1 = 1, then A has to be either ∅ or 1, so
F0 + · · ·+ Fi−1 +A+ Fi+2 + · · ·+ Fn is a decomposition of L with less less than
n + 1 terms. This contradicts the minimality of the decomposition of L. Now
suppose that Fi is h-indecomposable to the right and Fi+1 is h-indecomposable to
the left. If there exist x ∈ Fi and y ∈ Fi+1 such that both f(x) and f(y) belong to
A, then

Fi + Fi+1 4 Fi(>x) + Fi+1(<y) 4 A.
So, either ∀x ∈ Fi(f(x) 6∈ A) or ∀x ∈ Fi+1(f(x) 6∈ A). Suppose the former is
the case. The other case is analogous. If, there is some x ∈ Fi such that f(x) ∈
Fi+2+· · ·+Fn, then, since Fi ∼ Fi(>x), we have that Fi+· · ·+Fn 4 Fi+2+· · ·+Fn.
Hence

L ∼ F1 + · · ·+ Fi−1 + Fi+2 + · · · Fn,

contradicting the minimality of 〈Fi : i ≤ n〉. So, for every x ∈ Fi, f(x) ∈ F0 + · · ·+
Fi−1. Then

L ∼ F1 + · · ·+ Fi−1 + Fi+1 + · · · Fn,

contradicting, again, the minimality of 〈Fi : i ≤ n〉. �

Corollary 5.10. The direction from left to right of JUL(min-dec) is provable in
RCA0.

Proof. Use the previous lemma and Corollary 5.6. �

Now we want to prove the other direction of JUL(min-dec) using ATR∗. We
will use that ATR∗ proves that L and 1 + L + 1 are extendible when L is h-
indecomposable, and not 1, which we will prove in the next section. Moreover, in
the next section, in Proposition 6.18, we will prove that every partial ordering, P,
which does not embed 1 + L + 1, has a linearization which is hyperarithmetic in
L and P, and does not embed 1 + L + 1. We could get JUL(min-dec), using ATR
and the results of the next section, using a proof similar to Jullien’s. But, since we
want to use ATR∗, we have to make some modifications.

One important fact that we use to lower the complexity of certain formulas is
the following.

Lemma 5.11. [Sim99, Theorem VIII.3.20] For any Σ1
1 formula ϕ(X,Y ), we can

find a Σ1
1 formula ϕ′(X) such that ATR0 proves

ϕ′(X)⇔ ∀Y (Y hyperarithmetic in X ⇒ ϕ(X,Y )).

The plan of the proof is as follows. First, we prove that every scattered linear
ordering of the right form has a finite decomposition of a certain kind:

Lemma 5.12. (ATR0) Let 〈F0, ...,Fn〉 be a minimal decomposition of a linear
ordering L, such that Fi + Fi+1 is neither 2 nor 〈→,←〉 for any i < n. Then, L
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has a finite decomposition of one of the following forms:

〈1, F̌0,1, F̌1,1, ...,1, F̌m,1〉,
〈F̌0,1, F̌1,1, ...,1, F̌m,1〉,
〈1, F̌0,1, F̌1,1, ...,1, F̌m〉, or

〈F̌0,1, F̌1,1, ...,1, F̌m〉,
where each F̌i is h-indecomposable, either to the left or to the right, but not 1.

Next, we use this decomposition of L to reduce the problem of the extendibility
of L to the extendibility of 1 + F̌i + 1 for each i:

Lemma 5.13. (ATR∗) Suppose that L has a finite decomposition of the form
〈1,F0,1,F1,1, ...,Fm,1〉, where each Fi is h-indecomposable but not 1. Consider
a partial ordering P = 〈P,≤

P
〉 such that L 64 P. Then there exists a partition

〈Pi : i ≤ m〉 of P such that
• if x ∈ Pi, y ∈ Pj and x ≤

P
y, then i ≤ j, and

• for all i ≤ m, 1 + Fi + 1 64 Pi, where Pi = 〈Pi,≤P
〉.

Then, we will use the results in the next section to linearize each Pi and get a
linear ordering which does not embed 1 + Fi + 1. We will show that Σ1

1-IND is
enough to get all these linearization simultaneously and construct a linearization
of P which does not embed L.

Proof of Lemma 5.12. All we need to observe is that if Fi is ←, then Fi ∼ Fi + 1,
and if Fi is →, then Fi ∼ 1+Fi. Therefore, if none of the Fi +Fi+1 is of the form
〈→,←〉 or 2, then Fi +Fi+1 ∼ Fi + 1 +Fi+1. Apply this to insert 1s in the finite
decomposition 〈F0, ...,Fn〉 to get the desired decomposition. �

Proof of Lemma 5.13. We prove by induction on i ≤ m that there exists a partition
〈P0, ..., Pi−1, P̄i〉 of P , hyperarithmetic in P, such that

• for j, k < i, if x ∈ Pj , y ∈ Pk and x ≤
P
y, then j ≤ k,

• for j < i, if x ∈ Pj , y ∈ P̄i then y 6≤
P
x,

• for all j < i, 1 + Fj + 1 64 Pj = 〈Pj ,≤P
〉, and

• 1 + Fi + 1 + ...+ 1 + Fm + 1 64 〈P̄i,≤P
〉.

The case i = m will give us the Lemma. By Lemma 5.11, the formula we are
proving by induction is equivalent to a Π1

1 one. (Π1
1-induction is equivalent to Σ1

1-
IND [Sim99, Lemma VIII.4.9].) The base case i = 0 is trivial; just take the trivial
partition 〈P 〉. Now suppose we have 〈P0, ..., Pi−1, P̄i〉 satisfying the conditions
above. Let φ+(x) be the Σ1

1-formula that says that

x ∈ P̄i and 1 + Fi + 1 4 P̄i(≤x)

and φ−(x) be the Σ1
1-formula that says that

x ∈ P̄i and 1 + Fi+1 + ...+ Fm + 1 4 P(≥x).

Since 1 + Fi + 1 + ...+ 1 + Fm + 1 64 P̄i, there is no x such that φ+(x) & φ−(x).
Then, by Σ1

1-separation (which is equivalent to ATR0; see [Sim99, Theorem V.5.1]),
there is a set Q ⊆ P̄i such that

∀x(φ−(x)⇒ x ∈ Q & φ+(x)⇒ x ∈ P̄i rQ).

Moreover, Q can be taken hyperarithmetic in P. (Let f be a recursive map that
assigns to each x a recursive linear ordering such that ¬φ+(x) iff f(x) is a well
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ordering [Sim99, Proof of Lemma VII.3.4]. By the Σ1
1 bounding principle [Sim99,

Lemma V.6.2], there is an ordinal α such that for all x with φ−(x), f(x) ≤ α.
Now, let Q be the set of x’s such that α has an initial segment isomorphic to f(x).
Q is hyperarithmetic (see the proof of [Sim99, Lemma VII.3.19]).) Let Pi be the
downward closure of Q in P̄i. (i.e.: Pi = {x ∈ P̄i : ∃y ∈ Q(x ≤

P
y)}.) Since for

no x ∈ Q, 1 + Fi + 1 4 P(≤x), we have that that 1 + Fi + 1 64 Pi. Analogously
1 + Fi+1 + ...+ Fm + 1 64 P̄i r Pi. Let P̄i+1 = P̄i r Pi. It is not hard to see that
〈P0, ..., Pi, P̄i+1〉 satisfies the conditions above. �

Theorem 5.14. JUL(min-dec) is equivalent to ATR∗ over RCA∗.

Proof. Assume JUL(min-dec). Since ω∗ + ω is a minimal decomposition of ζ, we
have that ζ is extendible. It is proved in [DHLS03, Theorem 3] that the extendibility
of ζ implies ATR0 over RCA0.

Let us prove JUL(min-dec) from ATR∗. The direction from left to right was
proved in Corollary 5.10. We now prove the other direction. Let 〈F̌i : i ≤ n〉 be
a minimal decomposition of L such that for no i, F̌i = F̌i+1 = 1 or F̌i + F̌i+1

is 〈→,←〉. Let P be a partial ordering which does not embed L. By Lemma
5.12, L has a finite decomposition of one of four possible forms. Suppose L has a
decomposition of the form 〈1,F0,1,F1,1, ...,Fm,1〉. The other cases are similar to
this one. Then, consider a partition, {Pi : i ≤ m}, of P as in Lemma 5.13.

Now, by induction on i ≤ m, we prove that there exists a sequence 〈Q0, ...,Qi〉,
hyperarithmetic in P and L, such that for each j ≤ i, Qi = 〈Pi,≤Q

〉 is a lin-
earization of Pi which does not embed 1 +Fi + 1. The formula we are proving by
induction is equivalent to a Π1

1 one by Lemma 5.11, so we can do this using Σ1
1-IND.

The base case and induction step follow immediately from Proposition 6.18.
Define Q =

∑
i≤mQi, and think of the domain of Q as P . So, Q is a linearization

of P. We claim that Q does not embed L. Suppose, toward a contradiction, that
we have an embedding f : 1+F0 + ...+Fm +1 ↪→ Q. Let x0 ≤Q

x1 ≤Q
... ≤

Q
xm+1

be the image under f of the 1s in 1 + F0 + ... + Fm + 1. For each i ≤ m + 1 let
ji ≤ m be such that xi ∈ Pji

. Note that for every i ≤ m, ji ≤ ji+1. We claim that
for some i, ji = ji+1 = i. It can be easily proved by induction on i that, if the
claim is not true, then for every i, ji ≥ i. We then get a contradiction when we
let i = m + 1. So, there exists some i such that xi, xi+1 ∈ Pi. But then, f maps
1 + Fi + 1 into Qi, contradicting the definition of the Qis. �

Corollary 5.15. JUL is equivalent to FRA over RCA∗.

Proof. We have proved, in Lemma 5.7, that JUL implies FRA. Now assume FRA
holds, and hence FINDEC too. Recall that FRA implies ATR0, so from the theorem
above, we have JUL(min-dec). Let L a scattered linear ordering which does not have
any essential segment of the form 2 or 〈→,←〉. Using FINDEC and Proposition 3.10,
we get that L, has a minimal decomposition 〈Fi : i ≤ n〉. ¿From Lemma 5.9, we
get that for no i, Fi +Fi+1 is of the form 2 or 〈→,←〉. Using JUL(min-dec) we get
that L is extendible. �

6. Extendibility of h-indecomposable linear orderings

This section is devoted to proving the following theorem in ATR∗.

Theorem 6.1. (ATR∗) Every h-indecomposable linear ordering is extendible.
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Every result in this section is going to be proved in ATR∗. So, unless otherwise
stated, we will be working in ATR∗.

ATR∗ it is not strong enough to prove the existence of ωCK
1 . But it can prove

the existence of a linear ordering which contains ωCK
1 . Let ξ be a recursive linear

ordering such that every hyperarithmetic well ordering embeds into ξ as an initial
segment. We write x ∈ ωCK

1 as an abbreviation for x ∈ ξ and ξ(<x) is well ordered.
The existence of such a ξ in ATR0 follows from [Sim99, Lemma VIII.3.14 and
Theorem VIII.3.15].

6.1. Extendibility of ω∗ and (ω2)∗. Before we prove the extendibility of an arbi-
trary h-indecomposable linear ordering, we provide two examples. These examples
will illustrate some key ideas used in the general case.

Theorem 6.2. ω∗ is extendible.

A stronger version of this theorem is proved in [DHLS03]. They prove that ω∗ is
extendible in ACA0. Our proof, even though it uses ATR0, is easier to understand
and incorporates an idea that we will generalize later.

Proof. Consider a recursive partial ordering P which does not embed ω∗, or equiv-
alently, which is well founded. If P is not recursive, relativize. Consider the rank
function, rkP , on P. Let α ∈ ωCK

1 be the rank of P. Define a linearization, ≤
Q
,

of P as follows: let x ≤
Q
y iff rkP(x) < rkP(y) or rkP(x) = rkP(y) and x ≤

IN
y

(where ≤
IN

is the ordering of the natural numbers; recall that the domain of P is
a subset of IN). Observe now that ω∗ 64 〈P,≤

Q
〉. �

Using Proposition 6.7, we get as a corollary of the previous theorem that 1+ω∗

is extendible too. We will use this in the next theorem.

Theorem 6.3. (ATR0) (ω2)∗ is extendible.

In ATR0, this is a new result. The key idea is the use of the trees Tx,ω2∗ defined
below. It allows us to prove this theorem in ATR0, and is going to be very useful
in the more general case.

We write ω2∗ for (ω2)∗.

Proof. Consider a partial ordering P which does not embed ω2∗. Assume P is
recursive; otherwise relativize. Let TP,ω2∗ be the set of all σ = 〈π0, ..., πn−1〉 such
that:

• for every i < n, πi is a (n− i)-tuple from P;
• for every i < n and j < k < |πi|, πi(j) >P

πi(k);
• for every i, i′ < n, j < |πi| and j′ < |πi′ |, if i < i′ then πi(j) >P

πi′(j′).
We claim that TP,ω2∗ is well founded. Indeed, a path f though TP,ω2∗ codes a
sequence 〈f0, f1, ...〉 such that each fi is a descending sequence in P and for all x, y
and i < j, fi(x) >P

fj(y). Therefore, f codes a embedding ω2∗ ↪→ P. Let α ∈ ωCK
1

be the rank of TP,ω2∗ . Now, for each x ∈ P let Tx,ω2∗ be the subtree of TP,ω2∗ which
consist of the σ = 〈π0, ..., πn−1〉 such that ∀i < n∀j < n− i(πi(j) ≤P

x). So Tx,ω2∗

is TP(≤x),ω2∗ Let rx be the rank of Tx,ω2∗ , and for each γ < α, let

Qγ = {x ∈ P : rx = γ}.
We claim that for each γ, 1 + ω∗ 64 Qγ . Suppose, toward a contradiction, that
there exists an f : ω∗ ↪→ Qγ and an x ∈ Qγ such that for all n ∈ ω∗, x ≤

P
f(n).
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Let y = f(0) ∈ P . We will prove that rx < ry contradicting the fact that both x
and y are in Qγ . In order to prove this, we use f to construct an embedding, g, of
Tx,ω2∗ into Ty,ω2∗ such that g(∅) ) ∅. Given σ = 〈π0, ..., πn−1〉 ∈ Tx,ω2∗ , let g(σ) =
〈f �n + 1, π0, ..., πn−1〉 ∈ Ty,ω2∗ . Clearly g is an embedding and g(∅) = 〈〈f(0)〉〉.
Therefore, the rank of 〈〈f(0)〉〉 in Ty,ω2∗ is grater than or equal the rank of Tx,ω2∗ ,
and hence ry > rx. This proves our claim.

Now we want to linearize each Qγ so that 1 + ω∗ does not embed in the lin-
earization. To do this consider

⊕
γ<αQγ and observe that 1 + ω∗ does not embed

in it. Therefore, it has a linearization that does not embed 1 + ω∗. For each γ, let
≤

Qγ
be the restriction of this linearization to Qγ . Now define a linearization ≤

Q
of

P as follows: let x ≤
Q
y iff rx < ry or rx = ry and x ≤

Qrx
y. Note that this is the

same as defining
〈P,≤

Q
〉 =

∑
γ<α

〈Qγ ,≤Qγ
〉.

Observe that there cannot be an embedding of ω2∗ into 〈P,≤
Q
〉 because we would

have an embedding of ω2∗ into some 〈Qγ ,≤Qγ
〉 when not even 1 + ω∗ embeds in

〈Qγ ,≤Qγ
〉. �

6.2. Extendibility of 1 + L + 1. Let L be an h-indecomposable linear ordering.
We study here the relation between the extendibility of L and the extendibility
of 1 + L + 1. Assume that L is h-indecomposable to the left. Note that then,
1 + L+ 1 ∼ 1 + L.

The general ideas in this subsection come from [Jul69, Lemma V.2.4].

Lemma 6.4. If 1 + L+ 1 is extendible, then so is L.

Proof. Let P be a partial ordering such that L 64 P. Let Q = 1 + P + 1. Then
1+L+1 64 Q, hence Q has a linearization R = 〈Q,≤

R
〉, such that 1+L+1 64 R.

The restriction of ≤
R

to P is a linearization of P which does not embed L. �

Now consider a poset P such that 1+L+1 64 P and assume that L is extendible.
We will show how to linearize P, so that 1+L+1 does not embed in the linearization.
We will partition P into infinitely many pieces {Pm : m ∈ ω} such that for each m,
L 64 Pm. The idea is that then we can use the extendibility of L to linearize each
Pm and get a linearization of P as the one required.

Definition 6.5. If P has a least element a, let P0 = P r{a}, P1 = {a} and Pn = ∅
for n > 1. Suppose now that P has no least element and that we have already defined
Pi for i < n. Let an be the least, in the order of the natural numbers, element of
P r (

⋃
i<n Pi). (We are assuming that the domain of P is a subset of the natural

numbers.) Now, let Pn = {x ∈ P r (
⋃

i<n Pi) : x >
P
an}.

Lemma 6.6. If 1 + L+ 1 64 P, then
(1) {Pm}m∈ω is a partition of P.
(2) if x ≤

P
x′, x ∈ Pm and x′ ∈ Pm′ , then m ≥ m′.

(3) For each m, L 64 Pm.

Proof. The first two parts follow easily from the definitions. For the last part, note
that if L 4 Pm, then 1 + L+ 1 4 1 + L 4 P. �

Proposition 6.7. Given an h-indecomposable linear ordering L, L is extendible if
and only if 1 + L+ 1 is.
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Proof. We have already shown the implication from right to left. Now assume
L is extendible and consider P such that 1 + L + 1 64 P. Let {Pm}m∈IN be as
defined above. For each m let Qm = 〈Pm,≤Qm

〉 be a linearization of Pm which
does not embed L. To get all the linearizations {Qm}m∈IN uniformly, consider
Q =

⊕
m∈IN Pm. Observe that L 64 Q, and linearize Q so that L does not embed

in the linearization. Observe now that
∑

m∈ω∗ Qm is a linearization of P which
does not embed 1 + L (by Corollary 2.12, substituting left for right and ω∗ for
ω). �

Remark 6.8. Note that the results we have proved so far in this subsection could
have been proved using only RCA0. But ATR∗ is enough for our purposes.

6.3. Extendibility of
∑

m∈ω∗ Lm. Now suppose we are given a partial ordering
P such that L 64 P. Again assume that L = lin(T ) is h-indecomposable to the left,
and also assume that L 6= ω∗. Let Lk = lin(T〈(k)0〉). (Since L 6= ω∗, T〈m〉 exists.)
So L =

∑
k∈ω∗ Lk. We will partition P into {Pm,γ}m∈ω,γ∈ωCK

1
such that for each

m and γ, 1 +Lm + 1 64 Pm,γ . Note that if we could uniformly linearize each Pm,γ

into a linear ordering Qm,γ such that 1+Lm+1 64 Qm,γ , then
∑

〈m,γ〉∈ω×ωCK
1
Qm,γ

would be a linearization of P which does not embed L.
We will construct the partition much as in the proof that ω2∗ is extendible. But

the fact that ω2∗ is an ω∗-sum of terms which are all equal (all terms are ω∗) made
that proof easier. In the general case, instead of considering one tree TP,L, we have
to consider a tree Tm

P,L for each m ∈ IN . This modification is needed for the proof
of Lemma 6.11(4) below.

Definition 6.9. Given a poset P and m ∈ IN , define Tm
P,L to be the set of all

σ = 〈π0, ..., πn−1〉 such that:
• for every i < n, πi is a (n− i)-tuple from P;
• for every i < n and j, k < |πi|, if j <

Lm+i
k, then πi(j) <P

πi(k);
• for every i, i′ < n, j < |πi| and j′ < |πi′ |, if i < i′ then πi(j) >P

πi′(j′).

Lemma 6.10. If L 64 P, then for all m, Tm
P,L is well founded.

Proof. Suppose that Tm
P,L is not well founded. A path f though Tm

P,L codes a
sequence 〈f0, f1, f2, ...〉 such that each fi is an embedding of Lm+i into P and for
all x, y, if i < j, then fi(x) >P

fj(y). So, we have an embedding∑
i∈ω∗,i≥m

Li 4 P.

Since L is h-indecomposable to the left, we have an embedding L 4 P, contradicting
the hypothesis. �

When L 64 P, we have that for each x ∈ P and m ∈ ω, Tm
P(≤x),L is well founded,

and uniformly recursive in x and m (and P and L). Let Tm
x,L = Tm

P(≤x),L So, each
tree Tm

x,L has a rank rx,m ∈ ωCK
1 . For each x, let rx be the least of {rx,m : m ∈ IN}

and mx be the least m such that rx,m = rx. Define rkP,L(x) = 〈mx, rx〉. Given
γ ∈ ξ, and m ∈ IN , let Pm,γ = {x ∈ P : rkP,L(x) = 〈m, γ〉}.

Lemma 6.11. Assume that L 64 P and that P is hyperarithmetic, then
(1) For γ ∈ ξ r ωCK

1 , Pm,γ = ∅.
(2) {Pm,γ}γ∈ξ,m∈IN is a partition of P .
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(3) If x ≤
P
x′, x ∈ Pm,γ and x′ ∈ Pm′γ′ , then 〈m, γ〉 ≤

ω×ξ
〈m′, γ′〉. i.e.

γ <
ξ
γ′ or γ = γ′ and m ≤ m′.

(4) 1 + Lm + 1 64 Pm,γ .

Proof. Part (1) is because the trees Tm
P,L are well founded and hyperarithmetic.

Part (2) is clear because for all x ∈ P , rkP,L(x) ∈ IN × ξ. To prove part (3) we
show that if x ≤

P
y, then rkP,L(x) ≤

ω×ξ
rkP,L(y): Since for each m, Tm

x,L ⊆ Tm
y,L,

we have that rx,m ≤ξ
ry,m. Therefore, rx ≤ξ

ry, and if rx = ry, then mx ≤ my. For
the last part consider x, y ∈ Pm,γ , and suppose, toward a contradiction, that there
is an embedding f : Lm ↪→ (x, y)P . We shall define an embedding, g, of Tm+1

x,L into
Tm

y,L such that g(∅) ) ∅. This will imply that the rank of Tm+1
x,L is strictly smaller

than the rank of Tm
y,L, and therefore rx ≤ξ

rx,m+1 <
ξ
ry,m = ry. This would

contradict the assumption that rx = ry = γ. Given σ = 〈π0, ..., πn−1〉 ∈ Tm+1
x,L , let

g(σ) = 〈f �n+ 1, π0, ..., πn−1〉 ∈ Tm
y,L.

It is not hard to check that g is as wanted. �

6.4. One step iteration. Now we join the previous two constructions into one.
The partition we define in this subsection is the one that we will iterate later to
construct a linearization of P.

Let L = lin(T ) be h-indecomposable to the left. The case when L is → is
analogous. First suppose that L 6= ω∗ and that L =

∑
m∈ω∗ Lm, where Lm =

lin(T(m)0).

Definition 6.12. For m,n ∈ IN and γ ∈ ξ, let

Pm,γ,n = {x ∈ Pn : rk
Pn,L

(x) = 〈m, γ〉},

where Pn is as defined in 6.5. Note that the definition of Pm,γ,n depends also on
L.

Lemma 6.13. If 1 + L+ 1 64 P and P is hyperarithmetic, then
(1) For γ ∈ ξ r ωCK

1 , Pm,γ,n = ∅.
(2) {Pm,γ,n}γ∈ξ,m,n∈IN is a partition of P .
(3) if x ≤

P
x′, x ∈ Pm,γ,n and x′ ∈ Pm′γ′n′ then 〈m, γ, n〉 ≤

ω×ξ×ω∗ 〈m′, γ′, n′〉.
i.e. n ≥ n′ or n = n′ and either γ <

ξ
γ′ or γ = γ′ and m ≤ m′.

(4) 1 + Lm + 1 64 Pm,γ,n.

Proof. For each part, first apply Lemma 6.6 and then Lemma 6.11. �

The case L = ω or = ω∗ is a little different. Suppose L = ω∗. First define
〈Pn〉n∈IN exactly as in Definition 6.5. So, we have that if 1+ω∗ 64 P, then ω∗ 64 Pn

for any n. Let rkPn,ω∗(x) = 〈x, rk(Pn(≤x))〉 ∈ ω × ξ. (We are using here that
P ⊆ IN .) Here, rk(Pn(<x)) is the usual rank of the well founded partial ordering
Pn(<x). Since Pn is hyperarithmetic, rk(Pn(<x)) ∈ ωCK

1 . Let Pm,γ,n = {x ∈ Pn :
rkPn,ω∗(x) = 〈m, γ〉}. In other words, Pm,γ,n = {m} if m ∈ Pn and rk(Pn(≤x)) = γ,
and Pm,γ,n = ∅ otherwise.

Lemma 6.14. If 1 + ω∗ + 1 ∼ 1 + ω∗ 64 P and P is hyperarithmetic, then
(1) For γ ∈ ξ r ωCK

1 , Pm,γ,n = ∅.
(2) {Pm,γ,n}γ∈ξ,m,n∈IN is a partition of P .
(3) if x ≤

P
x′, x ∈ Pm,γ,n and x′ ∈ Pm′γ′n′ then 〈m, γ, n〉 ≤

ω×ξ×ω∗ 〈m′, γ′, n′〉.
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(4) Each Pm,γ,n has at most one element.

Proof. Parts (1), (2) and (4) follow from the fact that for all x and n, rkPn,ω∗(x) ∈
ωCK

1 and that Pm,γ,n ⊆ {m}. Part (3) it is also immediate from the definition of
the sets Pm,γ,n. �

The idea now, to linearize P, is to keep on partitioning each piece we get in
this fashion. First we partition P into {Pm,γ,n}γ∈ξ,m,n∈IN . Then, we partition
each Pm,γ,n, which is not a singleton, into {P〈〈m,γ,n〉,〈m′,γ′,n′〉〉}γ′∈ξ,m′,n′∈IN so that
1 + L〈(m)0,(m′)0〉 + 1 64 P〈〈m,γ,n〉,〈m′,γ′,n′〉〉, where Lσ = lin(Tσ). We keep on doing
this until we get a partition of P into singletons. The problem is that, to iterate
this process, we need a uniform way of getting {Pm,γ,n}γ∈ξ,m,n∈IN from P. Note
that the definition we gave of Pm,γ,n only makes sense when 1+L+1 6↪→ P. Using
the fact that the rank function is ∆1

1 we get that {Pm,γ,n}γ∈ξ,m,n∈IN is ∆1
1 in P. So,

there is a Σ1
1 formula ϕΣ(P,L, 〈m, γ, n〉, x) and a Π1

1 formula ϕΠ(P,L, 〈m, γ, n〉, x)
such that if 1 + L+ 1 64 P, then for all m,γ, n, and x,

ϕΣ(P,L, 〈m, γ, n〉, x)⇔ ϕΠ(P,L, 〈m, γ, n〉, x)⇔ x ∈ Pm,γ,n.

We will use these formulas later to define the iteration process.

6.5. The complement of a linear ordering. Now we construct the structure
over which we are going to iterate the process of partitioning P.

For each h-indecomposable linear ordering L = lin(T ) we will define another
linear ordering com(T ), and a Π1

1 subclass of it, comCK(T ), that we call the com-
plement of 1+L+1. The name “complement” is inspired by the following property.
Suppose that T is recursive, then for every recursive linear ordering A we have that

A 4
CK
com(T )⇔ 1 + L+ 1 64 A.

The implication from left to right will follow from Lemma 6.17, and the other
direction from the main result of this section, Proposition 6.18.

The idea of the definition of com(T ) is like the one of the definition of lin(T )
(Definition 2.6), but instead of taking ω (or ω∗) sums we take ω∗ × ξ∗ × ω (or
ω × ξ × ω∗) sums. Thus, for example, if sT (∅) = +, then

com(T ) =
∑

〈m,γ,n〉∈ω∗×ξ∗×ω

com(T(m)0),

and if sT (∅) = −, then

com(T ) =
∑

〈m,γ,n〉∈ω×ξ×ω∗

com(T(m)0).

Definition 6.15. Given a recursive signed tree T , let

com(T ) = {σ ∈ Seq
ω∗×ξ∗×ω

: σ 6= ∅ & l(σ−) is an end node of T},

where l(〈〈m0, a0, n1〉, ..., 〈mk, ak, nk〉〉) = 〈(m0)0, ..., (mk)0〉 and σ− = σ � |σ| − 1.
Now we define the ordering on com(T ). Consider σ1 6= σ2 ∈ com(T ). Let τ ∈
Seqω∗×ξ∗×ω and x1 6= x2 ∈ ω∗ × ξ∗ × ω be such that τ_x1 ⊆ σ1 and τ_x2 ⊆ σ2.
We define

σ1 ≤com(T ) σ2 ⇔
{
x1 ≤ω∗×ξ∗×ω

x2 & sT (l(τ)) = + or
x1 ≥ω∗×ξ∗×ω

x2 & sT (l(τ)) = −.
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Let comCK(T ) be the class of all σ ∈ com(T ) such that for all i < |σ|, (σ(i))1 ∈
ωCK

1 . Let c̃om(T ) be the downward closure of com(T ), i.e.

c̃om(T ) = {σ ∈ Seq
ω∗×ξ∗×ω

: ∃τ ⊇ σ(τ ∈ com(T ))}.

Observe that c̃om(T ) is a tree and com(T ) is the set of end nodes of c̃om(T ).

Example 6.16. Let us look at one of the simplest cases. T = {∅} and sT (∅) = −.
So lin(T ) = ω∗, comCK(T ), the complement of 1+ω∗+1 ∼ 1+ω∗, is ω×ωCK

1 ×ω∗ ∼
ωCK

1 ×ω∗. On the one hand, observe that 1+ω∗ does not embed in ω×ωCK
1 ×ω∗.

Because otherwise we would have an embedding of ω∗ into a popper final segment
of ω × ωCK

1 × ω∗, but every proper final segment of it is well ordered, since it is
included in a segment of the form ω × ωCK

1 × n. Therefore, if 1 + ω∗ 4 A, then
A 64 comCK(T ). On the other hand, consider a recursive linear ordering A such
that 1 + ω∗ 64 A. We can decompose A into a sum

∑
i∈ω∗ Ai such that each Ai

is recursive and well ordered. Decompose A in the same way we partitioned P in
Definition 6.5, but now we get A =

∑
i∈ω∗ Ai because A is linearly ordered.) Then,

each Ai embeds in ωCK
1 , so we have an embedding of A into ω × ωCK

1 × ω∗.
Lemma 6.17. Let T be a recursive signed tree and L = lin(T ). Then 1 +L+ 1 64
comCK(T ).

Proof. Suppose g is an embedding of 1 + L + 1 into com(T ) such that for all
x ∈ 1 + L + 1, g(x) ∈ comCK(T ). For each n, we define σn ∈ T and a recursive
embedding gn : 1 + Lσn + 1 ↪→ com(Tσn), uniformly in 0′′ (where Lσ = lin(Tσ)).
We will define the sequence {σn}n∈IN such that for all n, σn ( σn+1, contradicting
the well-foundedness of T . Let σ0 = ∅ and g0 = g. Suppose we have defined σn

and gn : 1 + Lσn
+ 1 ↪→ com(Tσn

). If for some n we have that Tσn
= {∅} and Lσn

is ω∗, then we get a contradiction because we have an embedding of 1 + ω∗ into
ω × ωCK

1 × ω∗. Analogously if for some n we have that Lσn is ω. To fix ideas
assume that sT (σn) = −. So

Lσn
=

∑
m∈ω∗

Lσ_
n (m)0 and com(Tσn

) =
∑

〈m,γ,n〉∈ω×ξ×ω∗

com(Tσ_
n (m)0).

Think of ω × ξ × ω∗ and ω∗ × ξ∗ × ω as having the same domain but opposite
orderings. For each m, let xm be a member of Lσ_

n (m)0 , the mth term in the first
sum above. So 〈xm〉m∈IN is co-initial in L. Let am ∈ ω∗ × ξ∗ × ω be the first entry
of the sequence gn(xm) ∈ Seqω∗×ξ∗×ω. So gn(xm) belongs to the amth term in the
second sum above. Let b ∈ ω∗ × ξ∗ × ω be the first entry of gn(x) ∈ Seqω∗×ξ∗×ω,
where x is the first element of 1 + Lσn + 1. Note that

a0 ≤ω∗×ξ∗×ω
a1 ≤ω∗×ξ∗×ω

a2 ≤ω∗×ξ∗×ω
· · · ≤

ω∗×ξ∗×ω
b.

Let a = limm(am) (with the discrete topology). The limit has to exist, because
otherwise we would have an embedding of ω + 1 into ω∗ × ξ∗ × ω, or equivalently
of 1 + ω∗ into ω × ξ × ω∗, contradicting what is said in the example above. Let
σn+1 = σ_

n ((a)0)0. Find m̄ such that ∀m ≥ m̄(am = a). Then, we have that∑
m∈ω∗,m>m̄

Lσ_
n (m)0 4 com(Tσn+1)

Now, pick a copy of 1+Lσn+1 + 1 inside
∑

m∈ω∗,m>m̄ Lσ_
n (m)0 and construct gn−1

as the restriction of gn to it.
�
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6.6. The linearization. Now we describe the partition process that we mentioned
earlier. Let L = lin(T ) be a recursive h-indecomposable linear ordering. Consider
P, a recursive partial ordering such that 1 + L + 1 64 P. We will define a hyper-
arithmetic family {Pσ}σ∈c̃om(T ) of subsets of P indexed by c̃om(T ), such that

(C1) If σ ∈ com(T ) r comCK(T ), then Pσ = ∅.
(C2) {Pσ}σ∈comCK(T ) is a partition of P .
(C3) If σ, τ ∈ com(T ), x ∈ Pσ, y ∈ Pτ and x ≤

P
y, then σ ≤com(T ) τ .

(C4) For σ ∈ c̃om(T )r com(T ), 1+Ll(σ) +1 64 Pσ and {Pσ_x}x∈ω∗×ξ∗×ω is the
partition of Pσ given by Definition 6.12 with respect to Ll(σ).

(C5) For σ ∈ com(T ), Pσ is either empty or a singleton.
Then we can construct a map from P to comCK(T ) which preserves order. Just map
x ∈ P to the σ ∈ com(T ) such that Pσ = {x}. Therefore we have a linearization of
P which, by Lemma 6.17, does not embed 1 +L+ 1. This will prove the following
proposition.

Proposition 6.18. Given a recursive h-indecomposable linear ordering L = lin(T )
and a recursive partial ordering P such that 1+L+1 64 P, there is a hyperarithmetic
linearization Q of P such that Q 4 comCK(T ), and therefore 1 + L+ 1 64 Q.

Theorem 6.1 now follows from the relativized version of the previous proposition
and Proposition 6.7.

The obvious definition of {Pσ}σ∈c̃om(T ) by recursion using the construction of
6.4, would use a too complicated recursion that is not available in ATR∗. The
problem is that the definition of the partition of each Pσ only makes sense when we
know that 1 + Ll(σ) + 1 64 Pσ. But to prove that, we have to have already defined
Pσ− and proved that 1 + Ll(σ−) + 1 64 Pσ.

The main tool to construct this partition of P is the following lemma.

Lemma 6.19. (ATR∗) Let ψΣ(X,x) be a Σ1
1 formula and ψΠ(X,x) and χ(X) be

Π1
1 formulas. Suppose that we know that for every set X,

(X)
χ(X)⇒ ∀y(ψΣ(X, y)⇔ ψΠ(X, y)) &

∀Y (Y = {y : ψΣ(X, y)} ⇒ χ(Y )).

Let X0 be a given set such that χ(X). Then, there exists a sequence 〈Rn : n ∈ IN〉
such that

(1) R0 = X0,
(2) for every n, Rn+1 = {y : ψΣ(Rn, y)} = {y : ψΠ(Rn, y)}, and
(3) for every n, χ(Rn).

First we show how this implies Proposition 6.18.

Proof of Proposition 6.18. We have to construct a family {Pσ}σ∈c̃om(T ) of subsets
of P indexed by c̃om(T ) satisfying conditions (C1)-(C5). We have already seen how
this implies the proposition. We apply the Lemma above to construct a sequence
〈Rn : n ∈ IN〉 such that Rn = {Pσ}σ∈c̃om(T ),|σ|=n. All we need to do is to define
ψΣ, ψΠ, χ and X0. Let X0 = {P}. Let Γ be either Σ or Π. We let ψΓ(X,x) be the
formula that says the following: X is of the form {Qσ : σ ∈ c̃om(T ), |σ| = n} for
some n, x is of the form 〈τ, y〉 for some τ ∈ c̃om(T ) with |τ | = n + 1 and y ∈ P ,
and

ϕΓ(Qτ− ,Ll(τ−), τ(n), y).
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(The formulas ϕΓ(Q,L, x, y) were defined at the end of Subsection 6.4.) Let χ(X)
be the formula that says that X is hyperarithmetic and of the form {Qσ : σ ∈
c̃om(T ), |σ| = n} for some n, and for each τ ∈ c̃om(T ) with |τ | = n, 1+Ll(τ) +1 64
Qτ .

Note that ψΣ is Σ1
1 and ψΠ and χ are Π1

1. Condition (X) follows from Lemmas
6.13 and 6.14 and the comments on ϕΣ and ϕΠ at the end of subsection 6.4. �

Proof of Lemma 6.19. Let Γ be either Σ or Π and Γ̄ be the other one. We say that
a sequence R̄ = 〈Ri : i < n〉, with n ≤ ω + 1, is acceptableΓ if R0 = X0, and for all
i < n− 1

∀y(y ∈ Ri+1 ⇒ ψΓ(Ri, y)) and ∀y(ψΓ̄(Ri, y)⇒ y ∈ Ri+1).

We say that R̄ satisfies χ if ∀i < n(χ(Ri)). We make three observations.
The first observation is that if R̄ is acceptableΠ and satisfies χ, then it is also

acceptableΣ: For each i, since χ(Ri), ∀y(ψΣ(Ri, y) ⇔ ψΠ(Ri, y)), and therefore
Ri+1 = {y : ψΣ(Ri, y)} = {y : ψΠ(Ri, y)}.

The second observation is that if R̄ is acceptableΠ and satisfies χ, Q̄ is either
acceptableΣ or acceptableΠ and |R̄| = |Q̄|, then R̄ = Q̄: Use arithmetic induction.
If Ri = Qi, since χ(Ri) we have that

Qi+1 = {y : ψΠ(Qi, y)} = {y : ψΠ(Ri, y)} = Ri+1.

These two observations imply that if there is an R̄ which is acceptableΠ and satisfies
χ, then it is the unique acceptableΠ sequence and also the unique acceptableΣ

sequence.
The last observation is that for every n there exists an R̄ of length n which is

hyperarithmetic in R0, acceptableΠ and satisfies χ. We prove this using Σ1
1-IND.

By Lemma 5.11, the formula we are proving by induction is equivalent to a Π1
1 one.

For the induction basis consider 〈R0〉. For the induction step assume we have R̄
of length n ≥ 1 which is hyperarithmetic in R0, acceptableΠ and satisfies χ. Since
χ(Rn−1), because of condition (X) we can define

Rn = {y : ψΣ(Rn−1, y)} = {y : ψΠ(Rn−1, y)},

by ∆1
1-CA (which holds in ATR∗; [Sim99, Lemma VII.4.1]). Since Rn−1 is hyper-

arithmetic, Rn is too. Now, R̄_Rn has length n + 1, is hyperarithmetic in R0, is
acceptableΠ and satisfies χ.

Now we want to define R̄ of length ω, acceptableΠ, acceptableΣ and satisfying
χ. We define it by ∆1

1-CA as follows: We let 〈n, x〉 ∈ R̄ if and only if there exists
a sequence 〈Q0, ..., Qn〉, hyperarithmetic in R0 and acceptableΠ, such that x ∈ Qn,
which is equivalent to a Π1

1 formula by Lemma 5.11. Equivalently, 〈n, x〉 ∈ R̄ if and
only if there exists a sequence 〈Q0, ..., Qn〉, acceptableΣ such that x ∈ Qn, which is
a Σ1

1 formula. It follows from the observations above that these two definitions are
equivalent and that R̄ is as required. �

6.7. Extendibility of η. The proof theoretic strength of the fact that η∗ is ex-
tendible was studied by Downey, Hirschfeldt, Lempp and Solomon in [DHLS03].
They proved the extendibility of η in Π1

2-CA0 and give a modification of their proof,
due to Howard Becker, that uses only Π1

1-CA0. Becker’s modification is based in
the observation that if η 64 P and P is recursive, then P has a hyperarithmetic lin-
earization which does not embed η. This observations allowed him to use Lemma
5.11 to reduce the complexity of certain formulas used in the proof. We prove now
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that the extendibility of η is provable in ATR∗. Notice that ATR∗ is strictly weaker
than Π1

1-CA0. (It is weaker because Π1
1-CA0 implies ATR0 and Σ1

1-IND. It is strictly
weaker because every β-model is a model of ATR∗ but there is a β-model which
is not a model of Π1

1-CA0. See [Sim99, Chapters VI and VII].) Joseph Miller [Mil]
proved that the extendibility of η implies WKL0 and that over Σ1

1-AC0, it implies
ATR0. Whether the extendibility of η is equivalent to ATR0 over RCA0 is still an
open question.

Theorem 6.20. (ATR∗) η is extendible.

Proof. Take a partial ordering P such that η 64 P. Consider the class of all the
recursive trees T such that, if sT : T → {+,−} is the constant function equal to +,
then lin(T ) = lin(〈T, sT 〉) 4 P. (Note that the definition of lin(T ) did not require
T to be well founded.) Only consider the trees T that also satisfy that for every
σ ∈ T , σ has an extension which is an end node of T . This is a Σ1

1 class of trees,
and therefore different from the class of well founded recursive trees (see [Sim99,
Theorem V.1.9]). We claim that there is no tree T in this class with lin(T ) 4 P
which is not well founded. Suppose, toward a contradiction that lin(T ) 4 P and
〈ai〉i∈IN is a path through T . We will show that then, there is an embedding of η
into P. Consider the left-to-right ordering, ≤

LR
, on Seq2 which has order type η.

Given σ ∈ Seq2, define σ̄ ∈ Seq3 of length |σ|+ 1 by letting, for i < |σ|, σ̄(i) = 0 if
σ(i) = 0 and σ̄(i) = 2 if σ(i) = 1 and let σ̄(|σ|) = 1. Now define f(σ) to be a string
in lin(T ) ⊆ Seq extending

〈〈a0, σ̄(0)〉, 〈a1, σ̄(1)〉, ..., 〈a|σ|, σ̄(|σ|)〉 ∈ T̂ ,
which exist by our assumption on T . Note that if σ <

LR
τ , then f(σ) <lin(T ) f(τ).

So, we have that η 4 lin(T ) 4 P, contradicting our assumptions.
Hence, there has to be some well founded T such that lin(T ) 64 P. By Theorem

6.1, lin(T ) is extendible, and therefore, there is a linearization of P which does not
embed lin(T ). But then, this linearization cannot embed η either. �
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