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Abstract. A statement of hyperarithmetic analysis is a sentence of second
order arithmetic S such that for every Y ⊆ ω, the minimum ω-model containing

Y of RCA0+S is HYP(Y), the ω-model consisting of the sets hyperarithmetic

in Y . We provide an example of a mathematical theorem which is a statement
of hyperarithmetic analysis. This statement, that we call INDEC, is due to

Jullien [Jul69]. To the author’s knowledge, no other already published, purely

mathematical statement has been found with this property until now. We also
prove that, over RCA0, INDEC is implied by ∆1

1-CA0 and implies ACA0, but

of course, neither ACA0, nor ACA0
+ imply it.

We introduce five other statements of hyperarithmetic analysis and study
the relations among them. Four of them are related to finitely-terminating

games. The fifth one, related to iterations of the Turing jump, is strictly

weaker than all the other statements that we study in this paper, as we prove
using Steel’s method of forcing with tagged trees.

1. Introduction

This paper is part of an ongoing project of analyzing the subsystems of second
order arithmetic. This program is called Reverse Mathematics, and its main theme
is the following: Given a theorem of ordinary mathematics, determine the weakest
natural subsystem of second order arithmetic in which the theorem is provable.
(The basic reference on Reverse Mathematics is Simpson’s book [Sim99].) Surpris-
ingly, it often happens that this question has a precise answer, and moreover, it
is usually the case that the answer is one of five specific systems. This systems
are RCA0, WKL0, ACA0, ATR0, and Π1

1-ACA0, listed in increasing order of proof-
theoretic strength. (See [Sim99, p. 32]. We will describe the systems we will use in
Subsection 1.6 below.) The system RCA0, of Recursive Comprehension, is usually
used as a base system; when we say that for some particular theorems the question
above has a specific answer, we mean that, if RCA0 is assumed, it can be proved that
the theorem is equivalent to one of those five systems. RCA0 resembles Computable
Mathematics in the sense that, when working in RCA0, all the sets we can assume
exists are the ones that are computable from the ones we already know exist. It can
be proved that the ω-models of RCA0 are exactly the ones whose second order part
is closed under Turing reduction and disjoint union, where the disjoint union of two
sets X,Y ⊆ ω is the set X ⊕ Y = {2n : n ∈ X} ∪ {2n+ 1 : n ∈ Y }. The models of
second order arithmetic whose first order part is the standard one (ω, 0, 1,+,×), are
called ω-models. We will identify these models with their second order parts. The
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system of Arithmetic Comprehension, ACA0, has a similar behavior, but with re-
spect to arithmetic reducibility. The ω-models of ACA0 are exactly the ones whose
second order part is closed under arithmetic reduction and disjoint union. As are
the classes of recursive sets and of arithmetic sets, the class of hyperarithmetic sets
is a very natural one and enjoys many closure properties. This is the class that will
concern us in this paper. For more information on hyperarithmetic reductions, see
Subsection 1.5 below.

We say that an ω-model is hyperarithmetically closed if it is closed under disjoint
union and for every set X,Y ⊆ ω, if X is hyperarithmetically reducible to Y and
Y is in the model, then X is in the model too.

Definition 1.1. A system of axioms of second order arithmetic T is a theory of
hyperarithmetic analysis if

• it holds in HYP(Y) for every Y ⊆ ω, where HYP(Y) is the ω-model con-
sisting of the sets hyperarithmetic in Y ; and

• all its ω-models are hyperarithmetically closed.

Note that this is equivalent to saying that every for every set Y ⊆ ω, HYP(Y)
is the minimum ω-model of T which contains Y , and that every ω-model of T is
closed under disjoint unions.

In [Ste78, Section 5], Steel defines “theories of hyperarithmetic analysis” as the
ones which have HYP=HYP(∅) as their minimum ω-model. People were interested
in these theories because they characterize the class HYP . Our definition is a rel-
ativized version of the previous one, and it characterizes not only HYP , but also
the relation of hyperarithmetic reduction: When T is a theory of hyperarithmetic
analysis, a set X is hyperarithmetically reducible to a set Y if and only if every
ω-model of T which contains Y , also contains X.

The bad news is that there is no theory whose ω-models are exactly the ones that
are hyperarithmetically closed. This follows from a more general result of Van We-
sep [Van77, 2.2.2]: For every theory T whose ω-models are all hyperarithmetically
closed, there is another theory T ′ whose models are all also hyperarithmetically
closed and which has more ω-models than T does. So, there might not be a natural
theory of hyperarithmetic analysis. Indeed, there are many. Examples of known
theories of hyperarithmetic analysis are the following schemes: Σ1

1-dependent choice
(Σ1

1-DC0), Σ1
1-choice (Σ1

1-AC0), ∆1
1-comprehension (∆1

1-CA0), and weak-Σ1
1-choice

(weak-Σ1
1-AC0). The unrelativized versions of these results were proved by Harri-

son [Har68], Kreisel [Kre62], [Kle59] and [Sim99, Theorem VIII.4.16]. (See Sub-
section 1.6 below for definitions of these statements.) As listed, these statements
go from strongest to weakest, they all imply ACA0, and, except for Σ1

1-DC0, they
are implied by ATR0 (see [Sim99, VIII.3 and VIII.4]). Moreover, the implications
Σ1

1-DC0 =⇒ Σ1
1-AC0, Σ1

1-AC0 =⇒ ∆1
1-CA0, and ∆1

1-CA0 =⇒ weak-Σ1
1-AC0 can not

be reversed as proved by Friedman [Fri67], Steel [Ste78] and van Wesep [Van77],
respectively.

We say that a sentence S is a sentence of hyperarithmetic analysis if RCA0+S
is a theory of hyperarithmetic analysis. In [Fri75, Section II], Friedman mentions
two sentences related to hyperarithmetic analysis. These sentences, ABW (arith-
metic Bolzano-Weierstrass) and SL (sequential limit systems), use the concept of
arithmetic set of reals, which is not used outside logic. Another previously known
sentence of hyperarithmetic analysis is Game-AC studied by Van Wesep [Van77].
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He studied it in a more general context than second order arithmetic. But if we
restrict it to second order arithmetic, it essentially says that if we have a sequence
of open games such that player II has a winning strategy in each of them, then there
exists a sequence of strategies for all of them. He proved that, when restricted to
second order arithmetic, Game-AC is equivalent to Σ1

1-AC0. (An open game is a
game like the ones we describe in Subsection 1.2 below, with the difference that it
might last for ω many steps, and if it does, player II is the winner.)

We will introduce five new statements of hyperarithmetic analysis: CDG-CA,
CDG-AC, DG-CA, DG-ACand JI. The first four statements are related to finitely ter-
minating games. These are perfect-information games between two players, where
at each turn a player might have infinitely many possible moves but every run of
the game ends in finitely many steps. All these four statements are easily stated,
and obviously true. So obviously true that they would not even be considered the-
orems, although they are proof-theoretically strong. The same happens with the
statement Game-AC. The reason is that all these statements about games have the
form either of comprehension axioms or of choice axioms. The last statement JI is
the weakest statement of hyperarithmetic analysis we study and has to do with the
iteration of the Turing jump along ordinals. We use Steel’s method of forcing with
tagged trees to prove that it is strictly weaker than the other statements. This is
the same method used by Steel [Ste78] and by Van Wesep [Van77] to prove that
the implications Σ1

1-AC0 =⇒ ∆1
1-CA0, and ∆1

1-CA0 =⇒ weak-Σ1
1-AC0 cannot be

reversed.
However, to the author’s knowledge, no previously published mathematical the-

orem, which does not mention concepts from logic, has been proved a statement of
hyperarithmetic analysis. In this paper we present an example of such a theorem.
This theorem, that we call INDEC, was first proved by Pierre Jullien in his Ph.D.
thesis [Jul69, Theorem IV.3.3]. INDEC is published in English in, for example,
[Fra00, 6.3.4(3)] and [Ros82, Lemma 10.3]. We prove not only that INDEC is a
statement of hyperarithmetic analysis, but also that, over RCA0, INDEC is implied
by ∆1

1-CA0 and implies ACA0. Note that since HYP is the minimum ω-model of
INDEC, neither ACA0, nor ACA0

+ can imply it.
Another interesting fact about INDEC is that is incomparable over ACA0 to other

natural statements of mathematics. This is probably the first example of previously
published purely mathematical statements which are incomparable and are between
ACA0 and ATR0. The statements we have in mind are the following: The existence
of elementary equivalence invariants for Boolean Algebras, and Ramsey Theorem.
The former statement was studied by Shore [Sho06]. He first analyzed how to work
with the statement in second order arithmetic and then proved that it is equivalent
to ACA0

+ over RCA0. (ACA0
+ is equivalent to ACA0 plus the sentence ∀X(X(ω)

exists), where X(ω) is the ωth Turing jump of X.) The latter statement, Ramsey’s
Theorem, has been extensively studied in the context of reverse mathematics (see
[Sim99, III.7], [CJS01], or [Mil04, Chapter 7]). It is known that it slightly stronger
than ACA0. The reason why these statements are incomparable with INDEC is
the following one. Barwise and Schlipf [BS75] proved that Σ1

1-AC0 (and hence also
∆1

1-CA0 and INDEC) is conservative over ACA0 for Π1
2 formulas. In other words,

any Π1
2 formula sentence which is provable in Σ1

1-AC0 is already provable in ACA0.
Then, since ACA0

+ can be axiomatized by a Π1
2 sentece over ACA0, and is strictly
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stonger than ACA0, it is not implied by Σ1
1-AC0, and hence it is not implied by

RCA0+INDEC either. The same argument is true about Ramsey’s theorem.
We now formally introduce all these statements of hyperarithmetic analysis.

1.1. Indecomposability Statement. We start with the most natural of all these
statements. As we said in the introduction, INDEC is due to Jullien [Jul69].

Definition 1.2. Given a linear ordering A = 〈A,≤〉, a cut in A is a pair of
sets 〈L,R〉 such that L = A r R is an initial segment of A. We say that A is
indecomposable if for every cut 〈L,R〉, A embeds either into L or into R. (Here we
are thinking of L and R as sub-orderings of A.) We say that A is indecomposable
to the right if for every cut 〈L,R〉 with R 6= ∅, we have that A embeds in R.
Analogously we define indecomposable to the left. A linear ordering is scattered if
η, the order type of the rational numbers, does not embed in it.

Statement 1.3. We let INDEC be the statement
Every scattered indecomposable linear ordering is either
indecomposable to the right or indecomposable to the left.

Indecomposable linear orderings are very useful when studying properties of lin-
ear orderings. Every scattered linear ordering can be written as a finite sum of
indecomposable linear orderings, so they are in some sense the building blocks for
the class of scattered linear orderings. Countable indecomposable linear orderings
can be written as ω- or ω∗-sums of smaller indecomposable linear orderings. These
facts are due to Laver [Lav71]; see also [Ros82, Chapter 10]. In the same paper,
Laver proved Fräıssé’s conjecture which says that there is no infinite descending
sequence or infinite antichain in the quasi-ordering formed by the countable linear
orderings ordered by embeddablity. These structure theorems together allow us to
prove properties about linear orderings by transfinite induction. For example, Jul-
lien [Jul69, Chapter V] used these structure theorems for scattered linear orderings
to classify the countable extendible linear orderings. (A linear ordering is extendible
if every countable partial ordering which does not embed it has a linearization which
does not embed it either.) The author used them to prove that every hyperarith-
metic linear ordering is equimorphic to a recursive one in [Mon05b], and to analyze
the proof theoretic strength of Jullien’s theorem and Fräıssé’s conjecture in [Mon06].

We prove in section 2 that, over RCA0, INDEC is implied by ∆1
1-CA0 and that it

implies ACA0. The former proof is not very complicated. The latter one is more
interesting and has some ideas that will be used in Section 3 to prove that INDEC
is a theory of hyperarithmetic analysis. To prove that the ω-models of INDEC
are hyperarithmetically closed, we start by considering an ω-model M of INDEC.
Of course, we think of M as set of subsets of ω. Then, we prove that for every
computable increasing sequence of ordinals {αn}n∈ω, converging to a computable
ordinal α, we have that if (∀n)0(αn) ∈ M, then 0(α) ∈ M. To prove this we use
Ash and Knight’s machinery to construct a specific linear ordering such that when
we apply INDEC to it, we can deduce that 0(α) ∈ M. Then we relativize and
use effective transfinite induction to prove that for every set X ∈ M and every
X-computable ordinal α ∈ M, X(α) ∈ M. When we refer to Ash and Knight’s
machinery we refer to the results that Ash and Knight derived from Ash’s 0(α)-
priority arguments (see [AK00]).
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1.2. Game statements. Before introducing the game statements, let us quickly
review our notation for trees. We write N<ω for the set of finite strings of natural
numbers, and 2<ω for the set of finite strings of zeros and ones, ordered by inclusion.
A tree is a downward closed subset of N<ω and a binary tree is a downward subset
of 2<ω. Given a tree T and σ ∈ T , we let Tσ = {τ : σ_τ ∈ T}, where σ_τ is the
string obtained by concatenating σ and τ . We use ∅ for the empty string. Given a
string σ, we let |σ| be its length, σ �n be the initial substring of σ of length n, and
σ− = σ �(|σ| − 1).

Definition 1.4. To each well founded tree T , we associate a game G(T ) which is
played as follows. Player I starts by playing a number a0 ∈ N such that 〈a0〉 ∈ T .
Then player II plays a1 ∈ N such that 〈a0, a1〉 ∈ T , and then player I plays a2 ∈ N
such that 〈a0, a1, a2〉 ∈ T . They continue like this until they get stuck. The first
one who cannot play loses. Equivalently, the first one that reaches an end node of
T wins. We call the sequence 〈a0, ..., ak〉 obtained at the end of the game, a run
of the game, and any sequence obtained any time along the game, a partial run.
Note that since T is well founded, the game cannot last forever. We call the games
which are of the form G(T ) finitely terminating games.

Remark 1.5. Finitely terminating games are in one to one correspondence with
clopen games. A clopen game is played over the full tree N<ω and runs of the
game go for ω many steps. At the end of time, the players are left with an infinite
sequence X ∈ Nω, and player I wins if that sequence belongs to a previously chosen
clopen set A ⊂ Nω. Otherwise II wins. This defines the game G(A). A clopen
set is a set which is closed and open. Every clopen set A is determined by a well
founded tree TA and a subset A of the set of end nodes of T . It is determined in the
sense that X ∈ A if and only if the initial segment of X which is an end node of T
belongs to A. It is not hard to see that for every clopen game G(A), using TA and
A, one can construct a well-founded tree T such that G(A) and G(T ) are in some
sense equivalent. Also, given a well-founded tree T , it is not hard to construct a
clopen set A that will induce an equivalent game.

Definition 1.6. Let TI = {σ ∈ T : |σ| is even} and TII = {σ ∈ T : |σ| is odd}.
So, TI is the set of partial runs σ of G(T ) such that if σ has been played so far in
a game, then it is I’s turn to play. Similarly with TII . Let P be either I or II. A
strategy for P in a tree game G(T ) is a function s : TP → N . We say that a partial
run σ ∈ T follows a strategy s if for every τ ⊂ σ, τ ∈ TP =⇒ σ(|τ |) = s(τ). A
strategy s for P is a winning strategy if for every run σ of T which follows s, σ 6∈ TP .
In other words, s is a winning strategy for P if whenever P plays following s, he
is ensured to win despite what the other player plays. A game G(T ) is determined
if there is a winning strategy for one of the two players. We say that a game is
completely determined if there is a map d : T → {W, L} such that for every σ ∈ T ,
if d(s) = W, then I has a winning strategy in the game Tσ, and if d(s) = L, then II
has a winning strategy in the game G(Tσ). We call such a d, a winning function for
G(T ). We cal a tree T determined (completely determined) if G(T ) is determined
(completely determined).

It is clear that I and II cannot both have winning strategies, so winning functions,
if they exists, have to be unique. (This can be proved in RCA0.) On the other hand,
winning strategies do not need to be unique. This is because the value of a strategy
at a node which does not follow it is not relevant at all.
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Theorem 1.7. The following are equivalent over RCA0.
(1) ATR0;
(2) Every finitely terminating game is determined;
(3) Every finitely terminating game is completely determined.

Proof. The equivalence between (1) and (2) is proved in Steel’s thesis [Ste76]. (See
[Sim99, Theorem V.8.7]). The fact that (1) implies (3) follows from the uniformity
in the proof of (1) =⇒ (3). It is clear that (3) implies (2). �

Now, we introduce four statements about finitely terminating games that we
will later prove are statements of hyperarithmetic analysis. But, first, we need the
following definition.

Definition 1.8. Given a sequence {Tn : n ∈ N}, we let
∑

n Tn be the tree S such
that for each n ∈ N , S〈n〉 = Tn. So, we can think of the game G(

∑
n Tn) as a

game in which player I starts by choosing a game from {G(Tn) : n ∈ N}, and then
players I and II play it starting with player II. Whoever wins the chosen game,
wins G(

∑
n Tn).

Given a game G, let G∗ be the game that is played exactly as G but players
I and II are interchanged. So, for instance, if G = G(T ), we can assume that
G∗ = G(T ∗), where T ∗n = {0_σ : σ ∈ T}.

Statement 1.9. • CDG-CA: Given a sequence {Tn : n ∈ N} of completely
determined trees, there exists a set X such that n ∈ X iff I has a winning
strategy for G(Tn).

• CDG-AC: Given a sequence {Tn : n ∈ N} of completely determined trees,∑
n Tn is also completely determined.

• DG-CA: Given a sequence {Tn : n ∈ N} of determined trees, there exists a
set X such that n ∈ X iff I has a winning strategy for Tn.

• DG-AC: Given a sequence {Tn : n ∈ N} of determined trees,
∑

n Tn is also
determined.

Remark 1.10. The statement DG-ACis equivalent to a clopen-game version of the
statement Game-AC mentioned in the introduction.

1.3. The Jump Iteration statement. This statement will be useful when trying
to prove that a sentence is one of hyperarithmetic analysis.

Statement 1.11. The Jump Iteration statement, JI, is the following:
For every set X and every ordinal α,
if, for every β < α, X(β) exists, then X(α) exists.

Let us prove that the ω-models of RCA0+JI are hyperarithmetically closed. Con-
sider a ω-model M of RCA0+JI. If it were not hyperarithmetically closed, there
would be a set X ∈ M and a least X-computable ordinal α such that X(α) 6∈ M.
But this contradicts JI. So JI is a sentence of hyperarithmetic analysis.

A similar argument is used to prove that the ω-models of INDEC are hyperarith-
metically closed in Section 3. We believe that by formalizing the ideas in that
Section one can prove that INDEC =⇒ JI.

1.4. Summary of results. The following theorem contains all the implications
we know how to prove between the different statements of hyperarithmetic analysis
that we study in this paper.
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Theorem 1.12. All the theories and statements mentioned in the diagram below
are ones of hyperarithmetic analysis. The implications and the non-implications in
the diagram hold over RCA0. Moreover, all the non-implications are witnessed by
ω-models.

Σ1
1-DC0

'/WWWWWWWWWWWWWWW

WWWWWWWWWWWWWWW

Σ1
1-AC0

��

×
oo

DG-AC

��
DG-CA ⇐⇒ ∆1

1-CA0

×

^^

ow gggggggggg
gggggggggg

&.UUUUUUUUUUU

UUUUUUUUUUU

weak Σ1
1-AC0

'/WWWWWWWWWWW
WWWWWWWWWWW

×

99

INDEC

CDG-AC ⇐⇒ CDG-CA

��
JI.

×
aa

Since all the statements in the diagram follow from Σ1
1-DC0, for every Y ⊆ ω,

HYP(Y ) is a model of them [Sim99, Theorem VIII.4.16]. We will prove that the
ω-models of INDEC are hyperarithmetically closed in Section 3. Since all the other
statements imply JI, every ω-model of each of them is hyperarithmetically closed.

The part of the diagram which only mentions Σ1
1-DC0, Σ1

1-AC0, ∆1
1-CA0 and

weak-Σ1
1-AC0, was already mentioned in the introduction. That ∆1

1-CA0 implies
INDEC will be proved in Section 2. All the other implications are proved in Section
4. The fact that JI does not imply CDG-CA is proved in Section 5.

Many arrows are missing from the diagram. For instance, we do not know
whether DG-AC is strictly in between Σ1

1-AC0 and ∆1
1-CA0, or is equivalent to one

of them. We would also like to know more about how INDEC relates to the other
statements. We conjecture that it implies CDG-CA, but we have not even proved
that it implies JI. Another interesting question is whether CDG-CA and CDG-AC
are equivalent to weak-Σ1

1-AC0.

1.5. Hyperarithmetic Theory. Standard references for Hyperarithmetic Theory
are [AK00] and [Sac90].

Let L = 〈L,≤
L
〉 be a presentation of a linear ordering (i.e., L is a linear ordering

whose domain L is a subset of ω) which has a least element 0. Given X,Y ⊆ ω, we
say that Y is an H(X,L)-set if Y [0] = X and for every l ∈ Lr {0}

Y [l] =
⊕
k<

L
l

(Y [k])′

where Y [j] = {n : 〈j, n〉 ∈ Y } and
⊕

k∈ABk = {〈k, n〉 : k ∈ A,n ∈ Bk}. When L is
an ordinal it is not hard to prove by transfinite induction that there exists a unique
H(X,L)-set. We denote that set by X(L). But if we consider another isomorphic
presentation of L, even the Turing degree of X(L) may change. Although, there are
some cases when we know it does not change. Given an countable ordinal α and
a set X, we say that α is an X-computable ordinal if there is a presentation of α
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recursive in X. When α is an X-computable ordinal, all the H(X,L)-sets, where
L is an X-computable presentations of α, are Turing equivalent; this result is due
to Spector [Spe55]. The least non-X-computable ordinal is denoted by ωX

1 . Note
that the set of X-computable ordinals is closed downward. We use ωCK

1 to denote
ω∅1 , where CK stands for Church-Kleene.

Theorem 1.13. [Kle55, Ash86] Given sets X,Y ⊆ ω, the following are equivalent

(1) (∃α < ωY
1 )X ≤T Y (α), where ≤T means “is computable in”.

(2) X ∈ ∆1
1(Y ), that is, there exists Σ1

1 formulas ψ and ϕ such that (∀n)n ∈
X ⇐⇒ ψ(n, Y ) ⇐⇒ ¬ϕ(n, Y ).

(3) There is a Y -computable infinitary formula ϕ such that X = {n : ϕ(n)}.
If ωY

1 = ωCK
1 we also have:

(4) there is a computable infinitary formula ϕ such that X = {n : ϕ(n, Y )}.

(A computable infinitary formula is a formula where infinite disjunctions and
infinite conjunctions are allowed, so long as they are taken over computably enu-
merable sets of computable infinitary formulas. See [AK00, Chapter 7] for more
information on these formulas.)

Definition 1.14. When sets X,Y ⊆ ω satisfy any of the first three conditions in
the theorem above we say that X is hyperarithmetically reducible to Y and write
X ≤H Y . We let HYP(Y ) = {X ⊆ ω : X ≤H Y } and HYP = HYP(∅).

1.6. Subsystems of second order arithmetic. We only review the subsystems
of second order arithmetic that we will be using. We refer the reader to [Sim99] for
more information. We use the same notation as in [Sim99], and, for instance, we
use capital letters for set variables and lower case letters for number variables.

As our basic system we will use RCA0. It consists of the axioms for semi-rings
plus ∆0

1-comprehension and Σ0
1-induction. ACA0 consists of RCA0 plus the axiom

scheme of arithmetic comprehension. ∆1
1-CA0 also includes ∆1

1-comprehension. It
is known that ∆1

1-CA0 is a theory of hyperarithmetic analysis.
Σ1

1-dependent choice is the following scheme, where ϕ ranges over the Σ1
1 formu-

las:
∀Y ∃Z(ϕ(Y, Z)) =⇒ ∃X∀n(ϕ(X [n], X [n+1])).

Σ1
1-choice is the following scheme, where ϕ ranges over the Σ1

1 formulas:

∀n∃X(ϕ(n,X)) =⇒ ∃X∀n(ϕ(n,X [n])).

The scheme weak-Σ1
1-choice is the following, where ϕ ranges over the arithmetic

formulas:
∀n∃!X(ϕ(n,X)) =⇒ ∃X∀n(ϕ(n,X [n])),

where ∃! stands for “there exists a unique”. Together with RCA0 they form the
systems Σ1

1-DC0, Σ1
1-AC0 and weak-Σ1

1-AC0 respectively.

1.7. Linear orderings. We use N for the set of all the natural numbers and ω for
the linear ordering ω = 〈N ,≤N 〉. (We also use ω, at the meta-level, as the standard
first order model of arithmetic.)

A linear ordering A = 〈A,≤A〉 is said to be recursive if both A and ≤A are
recursive. Some recursive linear orderings we will be dealing with are: 1, the linear
ordering with one element; m, the linear ordering with m elements; ω, the ordering
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of the natural numbers; ζ, the ordering of the integers; η, the ordering of the ratio-
nals; ωn, the ordering of the n-tuples of natural numbers ordered lexicographically;
and ωn∗, the reverse linear ordering of ωn.

Now we define some recursive operations on linear orderings. Let A = 〈A,≤A〉
be a linear ordering. Given a ∈ A, define A(<a) to be the restriction of A to
{x ∈ A : x <A a}. Analogously define A(≤a), A(>a), and A(≥a). Given a, b ∈ A,
let [a, b]A be the restriction of A to {x ∈ A : a ≤A x ≤A b}. Let (a, b)A be
the restriction of A to {x ∈ A : a <A x <A b}. The reverse linear ordering of
A = 〈A,≤A〉 is A∗ = 〈A,≥A〉. Let B = 〈B,≤B〉 be another linear ordering. The
product, A·B, of two linear orderings A and B is obtained by substituting a copy of
A for each element of B. That is: A · B = 〈A×B,≤A·B〉 where 〈x, y〉 ≤A·B 〈x′, y′〉
iff y <B y

′ or y = y′ and x ≤A x′. The sum,
∑

i∈A Bi, of a set of linear orderings
{Bi}i∈A indexed by another linear ordering A, is constructed by substituting a copy
of Bi for each element i ∈ A. So, for example, A · B =

∑
i∈BA. When A = m, we

sometimes write B0 + ... + Bm−1 or
∑m−1

i=0 Bi instead of
∑

i∈m Bi. Let AB be the
linear ordering whose domain consist of finite strings σ = 〈〈a0, b0〉, ..., 〈ak, bk〉〉 ∈
(A×B)<ω such that b0 ≤B

b1 ≤B
... ≤

B
bk. Given σ, τ ∈ AB, let σ ≤

AB
τ if either

σ ⊆ τ or for the least i such that σ(i) 6= τ(i) we have σ(i) ≤A·B τ(i). Observe
that A(B+C) ∼= AB · AC . Other recursive linear orderings that we will use are
ωω =

∑
n∈ω ω

n and ωω∗ = (ωω)∗.
If A can be embedded in B, we write A 4 B. A is scattered if η 64 A.

Lemma 1.15. (RCA0) If Z is a scattered linear ordering and {Bz : z ∈ Z} is a
family of scattered linear orderings, then

∑
z∈Z Bz is also scattered. In particular,

the product of scattered linear orderings is scattered.

Proof. Suppose that f is an embedding η ↪→
∑

z∈Z Bz. If for every q ∈ η, f(q)
belongs to a different summand Bzq

, then the map q 7→ zq would be an embedding
of η into Z. So, there has to be a pair p, q ∈ η and a z ∈ Z, such that both f(p)
and f(q) are in Bz. But then η 4 [p, q]η 4 Bz. �

Trees will be an important tool in this paper. We started introducing basic
notation for trees at the beginning of Subsection 1.2. We can linearly order the
nodes of a tree in various ways. One is the Kleene-Brouwer ordering of N<ω defined
as follows:

σ ≤
KB

τ ⇐⇒ σ ⊇ τ ∨ ∃i(σ(i) ≤ τ(i) & ∀j < i(σ(j) = τ(j))).

Given a tree T ⊆ N<ω, we let KB(T ) be the Kleene-Brouwer ordering restricted
to T . ACA0 can prove that if a tree T is well-founded, then KB(T ) is well-ordered
[Sim99, Lemma V.1.3] (see [Hir94] for the reversal). Even though RCA0 cannot
prove this, it can prove the following.

Lemma 1.16. (RCA0) If T is well founded, then KB(T ) is scattered.

Proof. Suppose that f is an embedding of η intoKB(T ). By recursion, we construct
two sequences 〈pn : n ∈ N〉, and 〈qn : n ∈ N〉 of elements of η such that for each
n, pn ≤η

pn+1 <η
qn+1 ≤η

qn, |f(pn)| ≥ n and f(pn) �n = f(qn) �n. Just define
pn+1 and qn+1 as the least pair (in some enumeration of η2) which satisfies the
conditions above. Such a pair has to exist because f restricted to (pn, qn)η

∼= η is a
map into KB(Tf(pn) � n) ∼=

∑
m∈ω KB(T(f(pn) � n)_m) + 1. Finally, ∪n∈N f(pn) �n

is a path though T contradicting its well-foundedness. �



10 ANTONIO MONTALBÁN

On 2<ω we also have the Left-to-right ordering, ≤
LR

. It coincides with the
Kleene-Brouwer on incompatible strings, but when σ ⊂ τ we let σ ≤

LR
τ if τ(|σ|) =

1 and σ ≥
LR

τ if τ(|σ|) = 0. Observe that 〈2<ω,≤
LR
〉 has order type η.

Lemma 1.17. (RCA0) If A+A 4 A, then η 4 A.

Proof. Assume A + A 4 A. Observe that then A + 1 + A 4 A + A + A 4
A+A 4 A. So, there exist two embeddings f0, f1 : A ↪→ A and an a ∈ A such that
∀x, y ∈ A(f0(x) <A

a <
A
f1(y)). Now, given σ ∈ 2<ω define

f(σ) = fσ(0)(fσ(1)(...(fσ(|σ|−1)(a))...)).

f is an embedding of 〈2<ω,≤
LR
〉 ∼= η into A. �

2. Between ACA0 and ∆1
1-CA0

In this section we prove that INDEC implies ACA0 and is implied by ∆1
1-CA0

over RCA0. From the latter of these implications we get that HYP(Y ) is a model of
INDEC for every Y ⊆ ω. That ω-models of INDEC are closed under hyperarithmetic
reduction will be proved in the next section.

Definition 2.1. We say that a linear ordering A is weakly indecomposable if for
every a ∈ A, either A 4 A(≤a) or A 4 A(>a).

Note that an indecomposable linear ordering is weakly indecomposable. Also
note that, by Lemma 1.17, if A is scattered then for no a ∈ A do we have both
A 4 A(≤a) and A 4 A(>a).

Theorem 2.2. The following are equivalent over RCA0, and they are both implied
by ∆1

1-CA0.
(1) INDEC
(2) If A is a scattered, weakly indecomposable linear ordering, then there exists

a cut 〈L,R〉 of A such that

(2.1) L = {a ∈ A : A 4 A(>a)} and R = {a ∈ A : A 4 A(≤a)}

We call the cut 〈L,R〉 satisfying (2.1), the middle cut of A.

Proof. We first prove that (1) and (2) are equivalent.
To prove (2) from INDEC, consider a scattered, weakly indecomposable linear

ordering A. If A is indecomposable, then, by INDEC, it is either indecomposable
to the right or to the left. In the former case we would have that 〈L,R〉 = 〈A, ∅〉
satisfies (2.1) and in the latter case 〈L,R〉 = 〈∅, A〉 satisfies (2.1). In both cases
a cut 〈L,R〉 as in (2.1) exists. Suppose now that A is not indecomposable and
let 〈L,R〉 be a cut such that neither A 4 L nor A 4 R. We claim that 〈L,R〉 is
as in (2.1). We have that for every a ∈ A, either A 4 A(≤a) or A 4 A(>a). If
a ∈ L, then, since A 64 L, A 64 A(≤a), and hence A 4 A(>a). On the other hand, if
A 4 A(>a), then a cannot be in R, because we would have that A 4 R. Therefore
L = {a ∈ A : A 4 A(>a)}. Analogously R = {a ∈ A : A 4 A(≤a)}.

Let us now prove that (2) implies INDEC. Let A be a scattered indecomposable
linear ordering. By (2), a cut 〈L,R〉 of A as in (2.1) exists. Since A is indecompos-
able, either A 4 L or A 4 R. Without loss of generality, assume that A 4 R. If
L = ∅ and R = A, then A is indecomposable to the left. Suppose, then, that L 6= ∅.
Then, 1 + A 4 1 + R 4 A 4 R. So, there exists an a ∈ R such that A 4 A(>a).
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But then A+A 4 A, and by Lemma 1.17, η 4 A, contradicting the hypothesis on
A.

Finally, we prove that ∆1
1-CA =⇒ (2). Let A be a scattered, weakly indecompos-

able linear ordering. For every a ∈ A, either A 4 A(≤a) or A 4 A(>a), and since
A is scattered, it cannot be that both A 4 A(≤a) and A 4 A(>a). So we have that
A 4 A(≤a) ⇐⇒ A 64 A(>a). Since A 4 A(≤a) and A 4 A(>a) are Σ1

1 formulas,
∆1

1-CA0 implies that L and R as in (2.1) exist. �

Now we turn to proving that INDEC implies ACA0 over RCA0. Some ideas from
the proof will be used in the next section when we prove that every ω-model of
INDEC is hyperarithmetically closed. The idea of the proof of ACA0 is to construct
a recursive copy C of ωω +ωω∗ such that its middle cut computes 0′. We also need
C to be recursively weakly indecomposable. We say that C is recursively weakly
indecomposable if for every c ∈ C, there is a recursive embedding of C into either
C(≤c) or C(>c).

Lemma 2.3. For every n ∈ N , ωn is recursively indecomposable to the right. That
is for every c ∈ ωn, there is a recursive embedding of ωn into ωn

(>c). Moreover, an
index for the embedding can be found uniformly in c. Furthermore, RCA0 proves
that for every n, ωn is indecomposable to the right.

Proof. The proof is not hard. Just consider embeddings of the form 〈x0, ..., xn−1〉 7→
〈x0, ..., xn−1 + k〉. �

Theorem 2.4. (RCA0) INDEC implies ACA0.

Proof. We will prove that INDEC implies that K = 0′ exists. Then, by relativizing
the proof as usual, we can get that for every set X, X ′ exists, and hence ACA0

holds.
We start by constructing a linear ordering Z such that
• For every s ∈ Z there exists ns ∈ N such that either Z(<s) or Z(>s) has
ns many elements. In the former case we say that s is on the left side.
Otherwise s is on the right side.

• If the set RZ = {s ∈ Z : s is on the right side of Z} exists, it computes 0′.
Let {k0, k1, ...} be a recursive enumeration of K. For each s let Ks = {k0, ..., ks}

and σs = Ks � ks + 1. Consider the following ordering of N .

s <w t ⇐⇒ σs <KB σt,

where <KB is the Kleene-Brouwer ordering of 2<ω. Let Z = 〈N ,≤w〉. For each
s we have that either ∀t > s(kt > ks) (in other words, s is a true stage), or there
exists a t > s such that kt < ks. In the latter case we have that ∀t′ ≥ t(s <w t′),
and hence s is on the left side of Z, and ns = |{t′ < t : t′ <w s}|. In the
former case we have that s is on the right side and ns = |{t′ < s : s <w t′}|.
Observe that ACA0 can prove that Z is isomorphic ω + ω∗ but RCA0 cannot, since
RZ = {s : s is on the right side} is the set of true stages of the enumeration of K,
and hence from RZ we can compute K.

One idea to prove that K exists would be to use 2.2(2) to show that the middle
cut of Z, 〈LZ , RZ〉, has to exist. But RCA0 cannot prove that Z is weakly indecom-
posable. (Because if s is the greatest element of Z and if there exists an embedding
f : Z → Z(<x), then we would have that RZ is Σ0

1: t ∈ RZ ⇐⇒ ∃n(fn(s) <w t).
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But we already know that RZ is Π0
1, so by ∆0

1-CA it would exists, which we cannot
prove in RCA0.) So we need to consider a more complicated linear ordering.

We construct a uniformly recursive sequence of linear orderings {Ps}s∈N such
that

Ps
∼=

{
ωns if s is on the left side
ωns∗ if s is on the right side.

,

To construct Ps recursively, uniformly in s, start by assuming that s is a true stage
and enumerating ωn∗ where n = |{t′ < s : s <w t′}|. If at any stage t > s we
discover that s is not a true stage (that is, we discover that kt < ks), we change
our mind and we start constructing ωns instead. (Note that by stage t we have
enumerated only finitely many elements of ωn.) Now define

C =
∑
s∈Z

Ps.

Observe that C is isomorphic to

(1 + ω + ω2 + ...) + (...+ ω2∗ + ω∗ + 1) ∼= ωω + ωω∗

but again, we need ACA0 to prove it. Furthermore, if the middle cut 〈LC , RC〉
existed, where RC = {y ∈ Ps : s on the right side}, then K would exist too.

Each Ps is scattered; this can be proven from the fact that either Ps or P∗s is
well ordered which is provable in RCA0. So, by Lemma 1.15, C is scattered. Now we
prove that C is weakly indecomposable. Consider y ∈ C. First suppose that y ∈ Ps

and s on the right side of Z. So s is the nsth true stage. We will construct an
embedding f of C into C(<y). Let τ = 〈s1, ..., sns

〉 be the tuple consisting of the first
ns true stages, where s = sns . Using τ as a parameter we will construct the desired
embedding recursively. Let D be the sum of the Ps, for s not in τ . Note that there
are recursive isomorphisms C ∼= D +

∑1
i=ns

ωi∗ ∼= D + ωns∗. (Assume, to simplify
notation, that C = D + ωns∗.) By Lemma 2.3 there is an embedding of ωns∗ into
ωns∗

(>y). Using this embedding we can construct an embedding C → C(<y) by leaving
the elements of D fixed. Now suppose that s ∈ LZ and hence it is not a true stage.
RCA0 can prove the existence of a sequence τ = 〈s1, ..., sns

〉 with s = sns
, such that

for all t′ not in the sequence we have s1 <w s2 <w ... <w sns
<w t′. (We just have

to find some stage t such that ∀t′ ≥ t(s <w t′) and then analyze <w restricted to
{t′ : t′ < t}.) As we did in the previous case we can find an embedding of C into
C(>y).

Since C is scattered and weakly indecomposable, by 2.2(2), the middle cut
〈LC , RC〉 exists. Therefore, 〈LZ , RZ〉 and 0′ exist too. �

3. Models of INDEC

In this section we prove that INDEC is a theory of hyperarithmetic analysis. We
already know that HYP(Y ) |=INDEC for every Y ⊆ ω. This is because we know
that ∆1

1-CA0 implies INDEC, and that for every Y , HYP(Y ) |=∆1
1-CA0.

Theorem 3.1. The ω-models of INDEC are closed under hyperarithmetic reducibil-
ity.

Let M be an ω-model of INDEC. To prove that M is closed under hyperarith-
metic reducibility we have to prove that for every X ∈ M and any X-recursive
ordinal α, X(α) ∈ M. We will actually prove that for every α < ωCK

1 , 0(α) ∈ M.
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Then, a relativization of the proof will give the desired result. Since INDEC implies
ACA0, we have that, if for some recursive α, 0(α) ∈ M, then 0(α+1) ∈ M too. We
will prove that if {αn}n∈N is a recursive increasing sequence of recursive ordinals
with limit α and 0(αn) ∈ M for every n, then 0(α) ∈ M too. This implies, using
transfinite induction, that for every α < ωCK

1 , 0(α) ∈ M. Fix such a sequence
{αn}n∈N .

We will construct a recursive scattered linear ordering Y (of the form ζα·ω · Z
for some other recursive linear ordering Z), and a recursive linear ordering C such
that

(C1) C ∼= Y · (ωω + ωω∗);
(C2) The cut 〈LC , RC〉 of order type 〈Y · ωω,Y · ωω∗〉 has Turing degree 0(α);
(C3) For each n ∈ N there exist an mn ∈ N , a recursive linear ordering Dn and

an isomorphism fn ≤T 0(αmn ),

fn : C → Y · ωn +Dn + Y · ωn∗.

Let us first see what we can do once we have constructed such a linear ordering
C. First, we note that C is weakly indecomposable inside M: Consider a ∈ C and,
without loss of generality, suppose that a ∈ LC . Then, for some n, a belongs to the
initial segment of C of order type Y ·ωn. By (C3), this initial segment is isomorphic
to the canonical recursive presentation of Y ·ωn via an isomorphism which is recur-
sive in 0(αmn ), and hence is inside M. Since ωn is recursively indecomposable to
the right, we can use this isomorphism to construct an embedding C ↪→ C(>a) that
is inside M. Since C is the product of scattered linear orderings, it is scattered,
and hence it is scattered inside M. Now, since M |= INDEC, the middle cut of C,
which is 〈LC , RC〉, belongs to M, and therefore 0(α) ∈M.

3.1. The construction. In this subsection we will construct C and prove it is as
desired. We will use Lemma 3.5 below, which we will not prove until the next
subsection.

We start by constructing a linear ordering Z which has a cut, 〈LZ , RZ〉, of
Turing degree 0(α). Then, we will construct C as a Z-linear ordering (see Definition
3.3 below). Essentially, C is a recursive Z-linear orderings if it can be written as a
recursive sum of the form C =

∑
x∈Z Px(C), where Px(C) are uniformly recursive

linear orderings. Another notion that we introduce in this section is the notion of
a T -sequence. We will use T -sequences to organize the construction.

Lemma 3.2. There exist a recursive linear ordering Z and a cut 〈LZ , RZ〉 in it
such that:

(Z1) 〈LZ , RZ〉 ≡T 0(α);
(Z2) Z is scattered;
(Z3) There are recursive function ψ,ϕ : Z → N such for every x ∈ Z,

x ∈ LZ ⇐⇒ ψ(x) ∈ 0(αϕ(x)).

Proof. Let 〈Sn : n ∈ N〉 be a recursive sequence of trees such that Sn has a unique
path which is Turing equivalent to 0(αn) uniformly in n. The fact that such a
sequence exists is known. The reader can find a proof in Shore [Sho93, Theorem 2.3]
that each such tree Sn exists, then, observing that Shore’s proof is uniform, we get
our sequence of Sn’s. Consider S = {σ ∈ N<ω : ∀〈i, j〉 < |σ|(〈σ(i, 0), ..., σ(i, j)〉 ∈
Sn)}. Clearly S has a unique path, Y , which is Turing equivalent to 0(α). Let
Z = KB(S). Let LZ = {x ∈ S : x ≤

KB(S) Y } and RZ = Z r LZ . Clearly
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〈LZ , RZ〉 ≡T 0(α). Given σ ∈ S, let ϕ(σ) = max{i : 〈i, j〉 < |σ|} + 1. Then,
0(αϕ(σ)−1) can compute a string τ = Y � |σ|, and then σ ∈ LZ ⇐⇒ σ <

KB(S) τ .
Let ψ(σ) be such that σ ∈ LZ ⇐⇒ ψ(x) ∈ 0(αϕ(x)).

Note that Z is scattered: Otherwise we could find two incomparable strings σ1

and σ2 ∈ S such that η embeds in both KB(Sσ1) and KB(Sσ2). But then, neither
Sσ1 nor Sσ2 would be well-founded, and S would have at least two paths. �

Definition 3.3. Given a linear ordering Z, a Z-linear ordering is a first-order
structure 〈B, {Px : x ∈ Z}〉, where B is a linear ordering and the Px are unary
relation such that

• ∀a ∈ B∃!x ∈ Z(Px(a)),
• ∀x ∈ Z∃a ∈ B(Px(a)), and
• ∀x, y ∈ Z∀a, b ∈ B(Px(a) & Py(b) & x ≤Z y =⇒ a ≤B b).

We can think of a Z-linear ordering as a linear ordering B, together with an order-
preserving, onto map pB : B → Z (defined by pB(b) = x ⇐⇒ Px(b)). We write
Px(B) for the sub-ordering of B with domain {b ∈ B : Px(b)}. Note that B =∑

x∈Z Px(B).
If B is a Z-linear ordering, and X is any linear ordering, we let X · B be the

Z-linear ordering which has X · B as its underlying linear ordering, and for each
z ∈ Z, x ∈ X and a ∈ B, we let 〈x, a〉 ∈ Px(X · B) ⇐⇒ a ∈ Px(B).

If a ∈ Z, A is a Z(≤a)-linear ordering and B is a Z(≥a)-linear ordering, note that
we can put a Z-linear ordering structure on A+ B.

The following lemma will be the main tool in the construction of C.

Lemma 3.4. Given a computable sequence of ordinals {βn}n∈N , a computable
function ψ, a computable sequence of linear orderings {Zn : n ∈ N}, and two
computable sequences {An : n ∈ N} and {Bn : n ∈ N} where An and Bn are
Zn-linear orderings, we can recursively construct a sequence {Dn : n ∈ N} such
that

Dn
∼=

{
ζβn+1 · An if ψ(n) ∈ 0(βn)

ζβn+1 · Bn if ψ(n) 6∈ 0(βn),

via an isomorphism recursive in 0(βn). Moreover, we can get an index for {Dn :
n ∈ N} recursively from indices for {βn}n∈N , ψ, {An : n ∈ N} and {Bn : n ∈ N}.

The proof of this lemma makes use of Lemma 3.5, whose proof we defer to the
next subsection. Lemma 3.5 is really a corollary of the work of Ash and Knight.
It can be proved using the ideas of the proof of [AJK90, Lemma 4.4]. Instead we
prove it using [AK00, Theorem 18.9] and the results in [Ash91, §4] to verify the
hypothesis of [AK00, Theorem 18.9] for this particular case.

Lemma 3.5. Given a computable sequence of ordinals {βn}n∈N , a computable
function ψ and two recursive sequences of computable linear orderings {An : n ∈ N}
and {Bn : n ∈ N}, there is a computable sequence of computable linear orderings
{Dn : n ∈ N} such that

Dn
∼=

{
ζβn+1 · An if ψ(n) ∈ 0(βn)

ζβn+1 · Bn if ψ(n) 6∈ 0(βn),

via an isomorphism computable in 0(βn). Moreover, we can get an index for {Dn :
n ∈ N} computably from indices for {βn}n∈N , ψ, {An : n ∈ N} and {Bn : n ∈ N}.
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Proof of Lemma 3.4 using 3.5. For each n ∈ N and x ∈ Zn, let An,x = Px(An) =
{a ∈ An : Px(a)} and Bn,x = Px(Bn). Think of An,x and Bn,x as linear orderings.
We use Lemma 3.5 to construct linear orderings {Dn,x : n ∈ N , x ∈ Z} such that

Dn,x
∼=

{
ζβn+1 · An,x if ψ(n) ∈ 0(βn)

ζβn+1 · Bn,x if ψ(n) 6∈ 0(βn),

via an isomorphism recursive in 0(βn). Then, we just let Dn =
∑

x∈Zn
Dn,x and

Px(Dn) = Dn,x. �

The idea of the construction of C is as follows. (We will explain it in more detail
later.) Fix a ∈ Z and let m = ϕ(a). Let Y = ζα·ω · Z, Z0 = Z(≤a), Z1 = Z(≥a).
Suppose that Z has first and last elements a0 and a1. Suppose that (using the
recursion theorem) we have already constructed a Z0-linear ordering C0 and a Z1-
linear ordering C1. Moreover, suppose that we know that if a ∈ RZ , then C0 satisfies
conditions (C1), (C2′) and (C3), where (C2′) is

〈LC , RC〉, where LC = p−1
C (LZ) and RC = p−1

C (RZ), is the middle
cut of C,

and if a ∈ LZ , the same happens for C1 instead of C0.
We want to, uniformly from C0 and C1, construct a Z linear ordering C which

also satisfies conditions (C1)-(C3). We define two Z-linear orderings A and B as
follows. Let

A = ζα·ω · Z · ω + C0 + ζα·ω · Z · ω∗.
We need to define a Z-linear ordering structure on A. To do this, think of the
first summand as a {a0}-linear ordering (so pζα·ω·Z·ω is the constant function equal
to a0), the second summand as a Z0-linear ordering and the third summand as
a Z1-linear ordering. (We define the Z1-linear ordering structure of ζα·ω · Z · ω∗
arbitrarily. For example, given 〈z, y, v〉 ∈ ζα·ω · Z · ω∗, let

pζα·ω·Z·ω∗(〈z, y, v〉) =

{
a if v <

ω∗ 0 ∨ (v = 0 & y ≤Z a)
y if v = 0 & a ≤Z y.)

Let
B = ζα·ω · Z · ω + C1 + ζα·ω · Z · ω∗.

To define a Z-linear ordering structure on B we think of the first summand as a
{Z0}-linear ordering, the second summand as a Z1-linear ordering and the third
summand as a {a1}-linear ordering. Again, the Z0-linear ordering structure of
ζα·ω · Z · ω is defined arbitrarily.

Now, using Lemma 3.4, we construct a recursive Z-linear ordering C such that

C ∼=

{
ζαm+1 · A if a ∈ RZ
ζαm+1 · B if a ∈ LZ ,

and the isomorphism is recursive in 0(αm). (Recall that a ∈ LZ ⇐⇒ ψ(a) ∈ 0(αm).)
It is not hard to see that C satisfies conditions (C1), (C2′) and (C3).

Now, we construct a tree that we will use to organize the construction of C.

Lemma 3.6. There is a recursive linear ordering Z satisfying the conditions of
Lemma 3.2, and a recursive binary tree T such that 1 + LR(T ) + 1 ∼= Z via a
recursive isomorphism σ 7→ aσ. Moreover, T has an path X such that LZ = {aσ ∈
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T : σ <
LR(T ) X} and RZ = {aσ ∈ T : X <

LR(T ) σ}. We can also assume that for
each σ ∈ T , either both, σ_0 and σ_1, belong to T or both do not. Furthermore,
there is a recursive family {Zσ : σ ∈ T} of closed segments of Z such that Z∅ = Z,
Zσ_0 = Zσ(≤aσ) and Zσ_1 = Zσ(≥aσ) whenever σ_0 and σ_1 ∈ T .

Proof. Let Z0 be a linear ordering as in Lemma 3.2. Let Z = 1 + ζ · Z0 + 1. Note
that Z still satisfies the condition of Lemma 3.2, and that in Z we can recursively
decide whether two elements are separated by finitely many elements, and if so, we
can compute how many elements there are in between.

We define T , the map σ 7→ aσ, and the family {Zσ : σ ∈ T} simultaneously by
induction. Along the induction we will preserve the property that for every σ ∈ T ,
Zσ, if it is finite, has an odd number of elements and at least three. Let Z∅ = Z.
Suppose now that σ ∈ T , and that we have already defined Zσ. If Zσ has only three
elements, then leave σ_0 and σ_1 outside of T and let aσ be the middle element
of Zσ. If Zσ has at least five elements, enumerate σ_0 and σ_1 into T , and let aσ

be the ≤N -least element of Zσ such that Zσ_0 = Zσ(≤aσ) and Zσ_1 = Zσ(≥aσ) do
not have an even number of elements, and at least three. (Recall that the domain
of Z is a subset of N .) It is not hard to see that T , the map σ 7→ aσ, and the
family {Zσ : σ ∈ T} are as desired.

Let X be the leftmost path of {σ ∈ 2<ω : ∃τ ∈ 2<ω(aτ ∈ RZ & τ ≤
LR

σ)}. �

From now on, fix T and Z as in the lemma above, and we identify Z with
1 + LR(T ) + 1.

Definition 3.7. A T -sequence is a family of structures 〈Dσ : σ ∈ T 〉 such that Dσ

is a Zσ-linear ordering.

We will construct a recursive functional, E , that given (an index for) a T -sequence
returns (an index for) another T -sequence. Then, we will use the recursion theorem
to obtain a fixed point of this operator. Since we will be using the recursion theorem,
we will want, not only that E maps T -sequences to T -sequences in a certain way,
but also that E maps indices which do not correspond to T -sequences to indices
which do code T -sequences. This way we ensure that any fixed point of E is an
index of a T -sequence. For this purpose we prove the following lemma.

Lemma 3.8. There is a recursive function that, given an index e, returns an
index for a Z-linear ordering, Be, such that if e codes a Z-linear ordering Ae, then
Be = ζ3 · Ae.

Proof. Being an index for a Z-linear ordering is an arithmetic property, say Π0
k.

Then, applying Lemma 3.5, we get a family of linear orderings {De,x : e ∈ N , x ∈ Z}
such that

De,x =

{
ζk+1 · Px(Ae) if e codes a Z-linear ordering Ae;
ζk+1 if e is not the code of a Z-linear ordering.

Let De =
∑

x∈Z De,x and Px(De) = De,x. Actually, if for example we code Z-linear
orderings by a linear ordering and a function p onto Z, we get that being an index
for a Z-linear ordering is a Π0

2 property. So, we could make k = 2, although this is
not relevant for our purposes. �

We have now introduced all the ingredients of the construction.
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Construction of C. We construct a recursive operator E that, given (an index d for)
a T -sequence D̄ = {D̄σ : σ ∈ T}, returns (an index E(d) for) a T -sequence E(D̄).
(We are abusing notation here when writing E(D̄) instead of E(d).)

We actually want E(d) to be an index for a T -sequence even when d is not an
index for a T -sequence. We start by constructing a T -sequence D = {Dσ : σ ∈ T},
such that if d is actually an index for a T -sequence D̄, then Dσ = ζ3 · D̄σ for all
σ ∈ T . For each d and σ we can uniformly compute an index dσ such that if d is an
index for a T -sequence D̄ and σ ∈ T , then dσ is an index for the Zσ-linear ordering
D̄σ. Now, use Lemma 3.8 to construct a T -sequence D = {Dσ : σ ∈ T} such that,
for each σ ∈ T , if dσ is actually coding a Zσ-linear ordering D̄σ, then Dσ = ζ3 · D̄σ.

Now we define two T -sequences A = {Aσ : σ ∈ T} and B = {Bσ : σ ∈ T}. If σ is
an end node of T , let Aσ = ζα · Z · ω|σ| and Bσ = ζα · Z · ω|σ|∗. Define a Zσ-linear
ordering structure on Aσ and Bσ arbitrarily. Suppose now that σ is not an end
node of T . Let n = |σ|, a0 be the least element of Zσ and a1 be the greatest one.
So Zσ_0 = [a0, aσ]Z and Zσ_1 = [aσ, a1]Z . Let

Aσ = ζα·ω · Z · ωn +Dσ_0 + ζα·ω · Z · ωn∗.

We need to define a Zσ-linear ordering structure on Aσ. To do this, think of the first
summand as a {a0}-linear ordering, the second summand is a Zσ_0-linear ordering
and the third summand as a Zσ_1-linear ordering. (We define the Zσ_1-linear
ordering structure of ζα · Z · ωn∗ arbitrarily.) Let

Bσ = ζα·ω · Z · ωn +Dσ_1 + ζα·ω · Z · ωn∗

where the first summand is a Zσ_0-linear ordering, the second summand is a
Zσ_1-linear ordering and the third summand is a {a1}-linear ordering. Again,
the {Zσ_0}-linear ordering structure of ζα · Z · ωn is defined arbitrarily.

Last, using Lemma 3.4, we construct a T -sequence E(D̄) such that for each σ ∈ T ,

E(D̄)σ
∼=

{
ζαϕ(σ)+1 · Aσ if σ ∈ RZ
ζαϕ(σ)+1 · Bσ if σ ∈ LZ ,

and the isomorphism is recursive in 0(αϕ(σ)). (Recall ϕ is a recursive function such
that σ ∈ LZ ⇐⇒ ψ(x) ∈ 0(αϕ(σ)).)

By the recursion theorem there is an index c such that {c} = {E(c)}, where {e}
is the eth Turing function. Since E always returns indices for T -sequences, c is the
index of a T -sequence C̄. Let C = C̄∅. ♦

We claim that C is the desired Z-linear ordering.

Lemma 3.9. C satisfies conditions (C1)-(C3)

Proof. For each n let mn = ϕ(X �n). We start by observing that for every n, there
is an isomorphism

fn : C̄X � n → ζα·ω · Z · ωn + ζαmn+3 · C̄X � n+1 + ζα·ω · Z · ωn∗,

which is recursive in 0(αmn ). This, by induction on n, implies that for each n there
is an isomorphism gn ≤T 0(αmn ),

gn : C → ζα·ω · Z · ωn + ζαm0+3+···+αmn+3 · C̄X � n+1 + ζα·ω · Z · ωn∗.

(We have used that 1+ω+· · ·+ωn is recursively isomorphic to ωn, and ζαi+3·ζα·ω ∼=
ζαi+3+α·ω ∼= ζα·ω.) Condition (C3) follows. Moreover, we can construct the maps
gn such that if n1 > n0, then gn0 and gn1 coincide on the initial segment of the
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form ζα·ω · Z · ωn0 , and on the final segment of the form ζα · Z · ωn0∗. Therefore,
putting all these isomorphisms together, we get an isomorphism g ≤T 0(α),

g : C → ζα·ω · Z · ωω +D + ζα·ω · Z · ωω∗,

for some possibly empty linear ordering D. Also observe that for every b ∈ ζα·Z·ωω,
p(g−1(b)) ∈ LZ and for every b ∈ ζα · Z ·ωω∗, p(g−1(b)) ∈ RZ . Therefore, if b ∈ D,
p(g−1(b)) is either the last element of LZ of the first element of RZ . But LZ has
no last element and RZ has no first element (because otherwise 〈LZ , RZ〉 would
be recursive), so D has to be empty. Conditions (C1) and (C2′) follow. Condition
(C2) easily follows from (C2′). �

3.2. Pairs of computable structures. In this subsection we explain how the
results in [AK00, Chapter 18] and [Ash91, §4] imply Lemma 3.5.

We start by defining the back-and-forth relations and the notion of α-friendliness.
See [AK00, Sections 15.1 and 15.2] for more information on these concepts.

Definition 3.10. Let K be a class of structures for a fixed language. For each
ordinal α, we define the standard back-and-forth relation ≤α on pairs (A, ā), where
A ∈ K and ā is a tuple in A. Let ā in A and b̄ in B be tuples of the same length.
Then,

(1) (A, ā) ≤1 (B, b̄) if and only if all Σ1 formulas true of b̄ in B are true of ā in
A.

(2) For α > 1, (A, ā) ≤n (B, b̄) if and only if for each d̄ in B, and each β < α,
there exists a c̄ in A with |c̄| = |d̄| such that (B, b̄, d̄) ≤β (A, ā, c̄).

This definition can be extended to tuples of different length, but we are only in-
terested in pairs of tuples of the same length. We may write A ≤n B instead of
(A, ∅) ≤n (B, ∅).

A pair of structures {A0, A1} is α-friendly if the structures Ai are computable,
and for β < α, the standard back-and-forth relations ≤β on pairs (Ai, ā) with
ā ∈ Ai ∈ {A0, A1}, are r.e. uniformly in β. That is, we can recursively enumerate
all the triples 〈〈i, ā〉, 〈j, b̄〉, β〉 with β < α, ā ∈ Ai and b̄ ∈ Aj such that (Ai, ā) ≤β

(Aj , b̄).

One observation that might give the reader some intuition about the back-and-
forth relation is that (A, ā) ≤n (B, b̄) if and only if all the Πn infinitary formulas
true of ā in A are true of b̄ in B [AK00, Proposition 15.1].

Given this definition we can state the main theorem on pairs of computable
structures that we will be using.

Theorem 3.11. (Essentially [AK00, 18.9]) For each n, let An and Bn be structures
such that Bn ≤αn An and {An,Bn} is αn-friendly, uniformly in n. Let S be a Π0

(αn)

set. In other words, let S be such that that is there exists a computable function
f such that n ∈ S ⇐⇒ f(n) 6∈ 0(αn). Then, there is a uniformly computable
sequence {Cn}n∈N such that

Cn
∼=

{
An if n ∈ S
Bn otherwise.

Moreover, the isomorphisms above are recursive in 0(αn) and an index for {Cn}n∈N
can be obtained uniformly from indices for S, {αn : n ∈ N}, {An : n ∈ N},
{Bn : n ∈ N} and the back-and-forth relations.
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Proof. The first part of the theorem (before the “Moreover”) is exactly [AK00,
Theorem 18.9]. The rest follows from the proof of [AK00, Theorem 18.9]. In the
proof of [AK00, Theorem 18.9], for each n, a complicated apparatus, that outputs
a computable structure Cn as desired, is constructed. It is constructed uniformly
in n, and indices for An, Bn and the back-and-forth relations between them. This
apparatus is what they call an αn-system (defined in [AK00, Chapter 14]), which
is a ∆0

αn
-priority construction. From the fact that the construction of each of

these apparatuses is uniform in An, Bn and the back-and-forth relations between
them, we get that we can even get the sequence {Cn} uniformly from indices for S,
{αn : n ∈ N}, {An : n ∈ N}, {Bn : n ∈ N} and the back-and-forth relations.

The isomorphism between Cn and either An or Bn is ∆0
αn

because it can be
computed from a run of the αn-system. See the proof of [AK00, 18.6]. �

The only structures we will be dealing with are linear orderings. The following
two lemmas give us a way of computing the back-and-forth relations on linear
orderings without having to refer to the definition given above.

Lemma 3.12. [AK00, 15.7] Suppose that A and B are linear orderings. Let ā =
〈a0, ..., an−1〉 and b̄ = 〈b0, ..., bn−1〉 be increasing tuples form A, B respectively.
For each i ≤ n let Ai be the interval (ai−1, ai)A (of course, A0 = A(<a0) and
An = A(>an−1)). Define Bi analogously. Then (A, ā) ≤β (B, b̄) if and only if for
all 0 ≤ i ≤ n, Ai ≤β Bi.

Lemma 3.13. [AK00, 15.8] Suppose that A and B are linear orderings. Then
A ≤1 B if and only if A is infinite or at least as large as B. For β > 1, A ≤β B
if and only if, for any 1 ≤ γ < β and any finite partition of B into intervals
B1, ...,Bk, with end points in B, there is a corresponding partition of A into intervals
A1, ...,Ak, such that for all i < n, Bi ≤γ Ai.

Now we use the results in [Ash91, §4] to prove that we can apply Theorem 3.11
to get Lemma 3.5.

Notation 3.14. Let ξβ =
∑

γ<β ζ
γ ·ω and νβ = ξβ + ξ∗β . Observe that ζβ = ξ∗β + ξβ ,

that every final segment of ζβ with first element in ζβ has order type ξβ , and that
every segment of ζβ with both endpoints in ζβ has order type

ξγ + ζγ · n+ ξ∗γ = νγ · (n+ 1),

for some γ < β and n ∈ N .

Lemma 3.15. (Essentially [Ash91, Proposition 4.8]) Let α, β and γ be ordinals.
(1) νβ · n ≤2γ να ·m if and only if either 〈β, n〉 = 〈α,m〉, or α, β ≥ γ.
(2) νβ · n ≤2γ+1 να ·m if and only if either 〈β, n〉 = 〈α,m〉, α ≥ γ & β > γ, or

α = β = γ & n ≥ m.

Proof. The proof is technical, but not complicated. It is by induction on γ and
makes heavy use of Lemma 3.13. We only prove part (1) to illustrate the ideas.

Suppose that α, β ≥ γ; we want to show that νβ · n ≤2γ να · m. Let δ < γ.
Let A1, ...,Ak be a partition of να · m into intervals with endpoints in να · m.
Then, there exists ordinals αi : i = 1, ..., k and numbers m1, ...,mk such that for
each i, Ai = να1 ·m1. Necessarily maxαi = α and

∑
i:αi=αmi = m. For i with

αi < δ, let βi = αi and ni = mi. For the first i such that αi = α, let βi = β and
ni = n. For all the other i, let βi = δ and ni = 1. Note that for every i = 0, ..., k,
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ναi
·mi ≤2δ+1 νβi

·ni and that
∑

i≤k νi ·ni
∼= νβ ·n. For i = 1, .., k, let Bi = νβi

·ni.
By Lemma 3.13, this shows that νβ · n ≤2γ να ·m.

Now assume that νβ · n ≤2γ να · m; we want to show that if 〈β, n〉 6= 〈α,m〉,
then α, β ≥ γ. If either α or β is equal to δ and δ + 1 < γ, then, by inductive
hypothesis, νβ · n 6≤2δ+2 να ·m, so νβ · n 6≤2γ να ·m. If γ = α = β + 1, then, again
by inductive hypothesis, νβ ·n 6≤2β+1 να ·m, so νβ ·n 6≤2γ να ·m. If γ = β = α+ 1,
then να ·m 6≤2α+1 νβ · n, so νβ · n 6≤2γ να ·m. �

Lemma 3.16. For any linear orderings B and D and an ordinal α, ζα+1 · B and
ζα+1 · D are α-back-and-forth equivalent and α-friendly.

Proof. The proof is by induction on α. Let β < α. Let 〈z0, d0〉, ..., 〈zk−1, dk−1〉 ∈
ζα · (ζ · D) be any ordered tuple. Let c0, ..., ck−1 ∈ ζ · B be such that di < dj ⇐⇒
ci < cj . Observe that for each i, the interval [〈zi, di〉, 〈zi+1, di+1〉]ζα+1·D is β-back
and forth equivalent to [〈zi, ci〉, 〈zi+1, ci+1〉]ζα+1·C .

They are α-friendly because any closed interval interval of ζα+1 · B is either
isomorphic to νβ · m for some β ≤ α, or of the form ξα+1 + ξ∗α+1

∼= να+1, or of
the form ξα+1 + ζα+1 · C + ξ∗α+1 for some C, which is α-back and forth equivalent
to ξα+1 + ζα+1 + ξ∗α+1

∼= να+1 · 2. In all these cases we know how to compute the
β-back-and-forth relations recursively. �

Lemma 3.5 now follows from Theorem 3.11 and the lemma above. This finishes
the proof of Theorem 3.1.

Remark 3.17. The result of Lemma 3.16 is not sharp. Possibly, one could prove
that α, ζα+1 · B and ζα+1 · D are β-back-and-forth equivalent for some β > α.
Therefore, Lemma 3.5 is not sharp either. But this is not relevant for our results.

4. The Game Statements

In this section we prove all the implications in Theorem 1.12 that have to do
with game statements. All these statements were introduced in Subsection 1.2. We
work in RCA0.

Σ1
1-AC0 =⇒ DG-AC: Let {Tn : n ∈ N} be a sequence of determined trees. If for

some n, II has a winning strategy for G(Tn), then then I has the following winning
strategy in

∑
n Tn: Start by playing n, and then use II’s winning strategy in G(Tn).

(Recall that I is the second player in G(Tn).) Suppose now that for every n, I has
a winning strategy in G(Tn). We will show that then, II has a winning strategy in∑

n Tn. Using Σ1
1-AC0, let 〈sn : n ∈ N〉 be such that sn is a winning strategy for I

in G(Tn). Now, if I starts playing n, II continues following sn in G(Tn) and wins.

DG-AC =⇒ DG-CA: Let {Tn : n ∈ N} be a sequence of determined trees. Now,
for each n, consider the game Ḡn = Gn + G∗n. Where Gn = G(Tn) and G∗n is in
Definition 1.8. So Ḡn is the game in which player I starts by choosing whether to
play Gn or G∗n. Since Gn is determined for each n, I has a winning strategy for Ḡn

in which he starts by choosing whichever of Gn, or G∗n has a winning strategy for
II. Therefore, by DG-AC, II has a winning strategy s for

∑
n Ḡn. Let X be the set

of n such that if I starts playing n in
∑

n Ḡn, then II, following s, starts playing
Ḡn by choosing G∗n. So, X is the set of n such that II has a winning strategy in
G∗n, or equivalently, such that I has a winning strategy in Gn.
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∆1
1-CA0 =⇒ DG-CA: Let {Tn : n ∈ N} be a sequence of determined trees. Since

there exists a winning strategy for I in G(Tn) if and only if there is no winning
strategy for II in G(Tn). By ∆1

1 we can define a set X such that n ∈ X if and only
if there exists a winning strategy for I. DG-CA follows.

DG-CA =⇒ ∆1
1-CA0: Let ϕ and ψ be Σ1

1 formulas such that ∀n(ψ(n) ⇐⇒
¬ϕ(n)). We want to show that there exists a set X such that ∀n(n ∈ X ⇐⇒ ψ(n))
By [Sim99, Theorem V.1.7′], there exist a sequences of trees {Tn : n ∈ N} and
{Sn : n ∈ N} such that for every n,

Sn has a path ⇐⇒ ψ(n) ⇐⇒ ¬ϕ(n) ⇐⇒ Tn is well-founded.

Consider the game, Ḡn, in which players I and II alternatively play numbers
a0, a1, .... Player I, when playing a2i, has to make sure that 〈a0, a2, ..., a2i〉 ∈ Sn

because otherwise he looses. Player II, when playing a2i+1, has to make sure that
〈a1, a3, ..., a2i+1〉 ∈ Tn; otherwise he looses.

Suppose that Tn is well-founded and Sn is not. Let X be a path through Sn.
Notice that if I plays X(i) in his ith move, he will surely win. Analogously, if Sn is
well-founded and Tn is not, II has a winning strategy in the game Ḡn. So, we have
that for each n, Ḡn is determined. By DG-CA, there exists a set X such that

n ∈ X ⇐⇒ I has a winning strategy in Ḡn ⇐⇒ Sn has a path ⇐⇒ ψ(n).

∆1
1-CA0 =⇒ weak-Σ1

1-AC0 is not hard to prove. See for example [Sim99].

weak-Σ1
1-AC0 =⇒ CDG-CA: Let T be a well founded tree. We first show that d

is the unique winning function of G(T ) if and only if

(4.1) ∀σ ∈ T (d(σ) = W ⇐⇒ ∃n(σ_n ∈ T & d(σ_n) = L)).

It is clear that if d is a winning function, then (4.1) holds. Suppose now that
d : T → {W, L} satisfies (4.1). For each σ ∈ T with d(σ) = W we have to define a
winning strategy sσ for I in G(Tσ), and if d(σ) = L we have to define a winning
strategy sσ for II in G(Tσ).

If d(σ) = W and τ ∈ Tσ,I , we let sσ(τ) be the least n ∈ N such that τ_n ∈ Tσ and
d(σ_τ_n) = L. We claim that sσ is a winning strategy for I in G(Tσ). Observe
that one can easily prove by induction that if τ ∈ Tσ is a partial run of G(Tσ)
following sσ, then, if τ ∈ Tσ,I , d(σ_τ) = W and, if τ ∈ Tσ,II , d(σ_τ) = L. Since for
every end node τ of Tσ, d(σ_τ) = L, we have that if I follows sσ, he surely wins.

If d(σ) = L and τ ∈ Tσ,II , we let sσ(τ) be the least n ∈ N such that τ_n ∈ Tσ

and d(σ_τ_n) = L. An argument like the one above shows that sσ is a winning
strategy for II in G(Tσ).

Now, in order to prove CDG-CA, consider a family of completely determined trees
{Tn : n ∈ N}. We want to show that there exists a set X such that n ∈ X if and
only if I wins G(Tn). For each n, there is a unique function dn such that (4.1) holds.
So, by weak-Σ1

1-AC0, the sequence 〈dn : n ∈ N〉 exists. Let X = {n : dn(∅) = W}.

CDG-AC =⇒ CDG-CA: If d is the winning function of
∑

n Tn given by CDG-AC,
let X = {n : d(〈n〉) = W}.
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CDG-CA =⇒ CDG-AC: Suppose we are given a sequence {Tn : n ∈ N} of com-
pletely determined trees. Consider the family {Tn,σ : n ∈ N , σ ∈ Tn}, where Tn,σ

is the tree {τ : σ_τ ∈ Tn}. By CDG-CA, there is a set X such that ∀n∀σ ∈
Tn(〈n, σ〉 ∈ X ⇐⇒ I has a winning strategy in G(Tn,σ)). Let 〈dn : n ∈ N〉 be
such that for all n ∈ N and σ ∈ Tn, dn(σ) = W ⇐⇒ 〈n, σ〉 ∈ X and dn(σ) = L
otherwise. Note that each dn is a winning function for G(Tn).

CDG-CA =⇒ JI. Let α be an ordinal and suppose that for every β < α, 0(β)

exists. By recursive transfinite induction, we construct a family of tree games
{Gβ,n : β < α, n ∈ N}, such that n ∈ 0(β) ⇐⇒ I has a winning strategy in
Gβ,n. For β = 0 and any n, let T0,n = ∅. In the game G(∅) player I starts loosing,
and II always wins. If β is a limit ordinal, then n ∈ 0(β) ⇐⇒ n = 〈mn, γn〉 &
γn < β & mn ∈ 0(γn). So, let Tβ,n = Tγn,mn

, if n = 〈mn, γn〉 & γn < β, and let
Tβ,n = ∅ otherwise. If β = γ + 1, then there exists a recursive function f such that
∀n(n ∈ 0(β) ⇐⇒ ∃s(f(n, s) 6∈ 0(γ))). Let Tβ,n =

∑
s∈N Tγ,f(n,s). Then, I has

a winning strategy in Tβ,n if and only if, for some s, II has a winning strategy in
Tγ,f(n,s), which happens if and only if n ∈ 0(β). Moreover, we claim that, using
our assumption that for every β < α, 0(β) exists, we can prove that each game
Tβ,n is completely determined: By recursive transfinite induction we define 0(β)-
recursive indices for winning functions dβ,n for Tβ,n. Of course, for β = 0, d0,n

is the empty function. When β is a limit ordinal we just let dβ,n = dγn,mn
, if

n = 〈mn, γn〉 & γn < β, and let dβ,n = ∅ otherwise. When β = γ + 1, we let
dβ,n(∅) = W ⇐⇒ ∃s(f(n, s) 6∈ 0(γ)) and let dβ,n(〈s〉_σ) = dγ,f(n,s)(σ).

So, we have a family {Gβ,n : β < α, n ∈ N} of completely determined games
such that I wins Gβ,n if and only if n ∈ 0(β). By CDG-CA, there exits a set X such
that 〈β, n〉 ∈ X ⇐⇒ I wins G(Tβ,n). This X is 0(α).

5. JI does not imply CDG-CA

This section is dedicated to prove the following theorem.

Theorem 5.1. There is an ω-model of JI which is not a model of CDG-CA. There-
fore, RCA+JI does not imply CDG-CA, and hence does not imply weak-Σ1

1-AC0 ei-
ther.

We will define a sequence {〈TG
i , d

G
i , h

G
i 〉 : i ∈ ω} in a generic way. Then, we

will let M∞ be the least ω-model closed under hyperarithmetic reduction, which
contains the sequence {TG

i : i ∈ ω} and each of the functions dG
i . We will prove

that, in M∞, each TG
i is a well-founded tree and dG

i is a winning function for it.
Even though M∞ contains all the functions dG

i , we will prove that it does not
contain the sequence {dG

i : i ∈ ω}. Moreover, we will prove that it does not contain
the set {n : dG

i (∅) = W}. This will imply that CDG-CA does not hold in M∞. To
show that JI holds in M∞ we will show that for every X ∈ M∞ and ordinal α,
X(α) ∈M∞ if and only if α < ωCK

1 . This will easily imply JI.
The functions hG

i are going to be a kind of rank functions on TG
i that we will

specify later. We use them to ensure that the trees TG
i look well-founded in M∞,

and to prove properties about the forcing notion.



INDECOMPOSABLE LINEAR ORDERINGS AND HYPERARITHMETIC ANALYSIS 23

5.1. Ranked games. Given a tree T , a game rank for T is a pair of functions
d : T → {L, W} and h : T → ω1 such that

(1) If σ ∈ T and d(σ) = L, then for every immediate successor τ of σ in T ,
d(τ) = W and h(σ) = sup{h(τ) + 1 : τ ∈ T & τ− = σ}.

(2) If σ ∈ T and d(σ) = W, then for some immediate successor τ of σ in T ,
d(τ) = L and h(σ) = min{h(τ) : d(τ) = L & τ− = σ}.

Observe, that d is a winning function for G(T ), even when T is not well founded.
By this we mean that if d(σ) = W, then player I has a strategy in G(Tσ) that will
lead him to win in finitely many steps. This is because when player I moves, he
always has the option to move to a node labeled L without increasing the ordinal
label. On the other hand, player II is always forced to play to a node labeled W and
with a strictly smaller ordinal label.

But, if a tree T has a game rank function, it is not necessarily well-founded. For
example, consider the tree T = {0n : n ∈ ω} ∪ {0n_1 : n ∈ ω}. A game rank
function for T is defined as follows. Let d(0n_1) = L, h(0n_1) = 0, d(0n) = W,
h(0n) = 0. The following condition guaranties that T is well-founded.

Definition 5.2. We say that a game rank d, h on T is uniform if whenever σ ∈ T ,
d(σ) = W and τ is an immediate successor of σ we have that if d(τ) = L, h(τ) = h(σ),
and if d(τ) = W, h(τ) < h(σ).

Note that not every well-founded tree has a uniform game rank.

5.2. The forcing notion. Let ξ̄ be a recursive ordering of order type ωCK
1 · (1+η)

(i.e., a Harrison linear ordering [Har68]), and let ξ = ξ̄ ∪ {∞}, where ∞ is a new
symbol grater than all the elements of ξ̄. We let ∞ <∞. We intend the functions
dG

i , hG
i mentioned above, to act like uniform game ranks on the trees TG

i . They
will not be actual game ranks because the image of hG

i will not be an ordinal, but
ξ. The advantage of using the Harrison ordering, instead of ωCK

1 as Steel does in
[Ste78], is that the forcing notion is then computable.

Definition 5.3. We let IP be the forcing notion which consist of conditions p of
the form 〈〈T p

i , d
p
i , h

p
i 〉 : i < np〉, where

(1) np ∈ ω and each T p
i is a finite subtree of ω<ω;

(2) dp
i : T p

i → {L, W} and hp
i : T p

i → ξ;
(3) If σ ∈ T p

i , dp
i (σ

−) = L then dp
i (σ) = W, and hp

i (σ) < hp
i (σ

−);
(4) If σ ∈ T p

i , dp
i (σ

−) = W then, if dp
i (σ) = L, hp

i (σ) = hp
i (σ

−), and if dp
i (σ) = W,

hp
i (σ) < hp

i (σ
−);

(5) hp
i (∅) = ∞.

We use T p to denote {〈i, σ〉 : i < np, σ ∈ T p
i } and dp and hp to denote the partial

functions defined by dp(〈i, σ〉) = dp
i (σ) and hp(〈i, σ〉) = hp

i (σ). Given p, q ∈ IP ,
we let q ≤

IP
p if, nq ≥ np, T q ⊇ T p, dq ⊇ dp and hq ⊇ hp as functions. Let

G be a hyperarithmetically generic filter. That is, G is a filter and meets every
hyperarithmetic dense subset of IP . We define 〈〈TG

i , d
G
i , h

G
i 〉 : i ∈ ω〉 in the obvious

way.
Given F ⊂

f
ω, we let GF = 〈TG

i : i ∈ ω〉 ⊕
⊕

j∈F d
G
j , and let MF be the set of

all sets which are hyperarithmetic in GF . (By F ⊂
f
ω we mean that F is a finite

subset of ω.) Let M∞ =
⋃

F⊂
f

ω MF .
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Note that being hyperarithmetically generic over IP is a Σ1
1 condition: It can

easily be written as a formula ϕ of the form (∀X ≤H ∅)ψ, where ψ is arithmetic.
The Spector-Gandy Theorem [Spe60, Gan60] says that every such ϕ is equivalent to
a Σ1

1 formula. So, we can takeG generic such that ωG
1 = ωCK

1 . This is because of the
Gandy low basis theorem [Sac90, Corollary III.1.5] which says that every non-empty
Σ1

1 class has a hyperarithmetically low member. (A set Y ⊆ ω is hyperarithmetically
low if ωY

1 = ωCK
1 .) Fix such a G. Therefore, every set X ∈ M∞ is computable

from G
(α)
F for some F ⊂

f
ω and α < ωCK

1 , and hence is of the form {x : ψ(x,GF )}
for some computable infinitary formula ψ. See [AK00, Chapter 7] for a definition
of computable infinitary formulas.

We shall prove that M∞ |= JI & ¬CDG-CA.

5.3. The forcing relation. Both Steel [Ste78] and Van Wesep [Van77] used a
ramified language as a forcing language, when they worked with tagged trees forc-
ing. Instead, we use computable infinitary formulas in the language of first-order
arithmetic augmented with a unary relation symbol · ∈ T and binary relation sym-
bols di(·) = ·, for each i ∈ ω. For F ⊂

f
ω, we denote the set of formulas which

do not mention di for i 6∈ F by LF . We let L∞ =
⋃

F⊂
f

ω LF . We associate

to each formula of L∞ a rank α < ωCK
1 defined by transfinite induction as fol-

lows: if ϕ is an atomic formula of arithmetic, then rk(ϕ) = 0, rk(x ∈ T ) = 1,
rk(d(x) = L) = rk(d(x) = W) = 2, rk(∀xψ(x)) = rk(¬ψ) = rk(ψ) + 1 and
rk(

∧
i∈ω ψi) = sup{rk(ψi) + 1 : i ∈ ω}. (The motivation for the base case in

the definition of rk is just to prove Lemma 5.8.)

Definition 5.4. The forcing relation for formulas of L∞ is defined as usual:
(1) p 
 ψ ⇐⇒ ψ when ψ is a quantifier free formula of arithmetic;
(2) p 
 〈i, σ〉 ∈ T if either |σ| < 2, or σ−− ∈ T p

i and hp
i (σ

−−) ≥ 1;
(3) p 
 di(σ) = L if one of the following holds:

• σ ∈ T p
i and dp

i (σ) = L,
• σ− ∈ T p

i , dp
i (σ

−) = W and hp
i (σ

−) = 0,
• σ−− ∈ T p

i , dp
i (σ

−−) = L and hp
i (σ

−−) = 1;
(4) p 
 di(σ) = W if one of the following holds:

• σ ∈ T p
i and dp

i (σ) = W,
• σ− ∈ T p

i , dp
i (σ

−) = L and hp
i (σ

−) > 0;
(5) p 
 ∀xψ(x) if for all n, p 
 ψ(n);
(6) p 


∧
i∈ω ψi if for every i, p 
 ψi;

(7) p 
 ¬ψ if for every q ≤
IP
p, q 6
 ψ.

It can be proved by induction on the formulas that p 
 ψ if and only if whenever
G is a hyperarithmetically generic filter, p ∈ G and M∞ is the model defined from
G, we have that M∞ |= ψ. This property is what motivated the definition of
p 
 di(σ) = L and p 
 di(σ) = W.

Observe that for a formula ψ of rank α, 0(α) can decide whether p 
 ψ uniformly
in ψ, p and α. This can be easily proved by transfinite induction. (Actually, less
than 0(α) is required.)

We are now ready to prove that M∞ |= JI.

Lemma 5.5. Let α ∈ M∞ be a linear ordering and X ∈ M∞ be an H(∅, α)-set.
Then α and is a well ordering and α < ωCK

1 .

(See definition of H(∅, α)-set in Subsection 1.5.)
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Proof. Since X ∈M∞, there exist F and β < ωCK
1 such that X ≤T G

(β)
F . Suppose

toward a contradiction that α is not a well ordering. Then, there is a decreasing
sequence a0 > a1 > a2 > ... of elements of α, and we have that for every k,
X [ak] ≥T (X [ak+1])′. Then, by [Sac90, Lemma III.3.3], we have that for every
recursive ordinal γ, 0(γ) ≤T X ≤T G

(β)
F uniformly. So, there is a computable

infinitary Σ0
β+1 formula ϕ such that for every δ < ωCK

1 , {n : ϕ(G, δ, n)} = 0(δ).
Let γ be the rank of the formula ϕ. We will get a contradiction by proving that
0(γ) ≥T 0(γ+1). Let p 
 {n : ϕ(G, γ + 1, n)} = 0(γ+1). Now, given n, recursively
in 0(γ) find q ≤

IP
p which decides ϕ(G, γ + 1, n). Then n ∈ 0(γ+1) if and only if

q 
 ϕ(G, γ + 1, n).
If we had α ≥ ωCK

1 , we would also have that for every recursive ordinal γ,
0(γ) ≤T X ≤T G

(β)
F uniformly, and we would get a contradiction the same way. �

It follows from the lemma above that for α,X ∈ M∞, X(α) ∈ M∞ if and only
if α < ωCK

1 .

Lemma 5.6. M∞ satisfies JI.

Proof. Let X and α be such that, in M∞, α is an ordinal and ∀β < α, X(β) ∈M∞.
In particular, we have that for all β < α, 0(β) ∈ M∞, and hence, by the previous
lemma, α < ωCK

1 . It then follows that X(α) ∈M∞. �

5.4. Retaggings. The goal of this subsection is to prove that CDG-CA does not
hold in M∞. We need to show that in M∞ all the trees TG

i are well-founded and
completely determined by dG

i , but that the set {n : dG
n (∅) = W} is not in M∞.

The next definition and lemma are key when forcing with tagged trees.

Definition 5.7. Let p, p∗ ∈ IP , F ⊂
f
ω and α ∈ ωCK

1 . We say that p∗ is an
α-F -absolute retagging of p, and we write Ret(α, F ; p, p∗), if

(1) np = np∗ , T p = T p∗ and for i ∈ F , dp
i = dp∗

i ;
(2) for all i < np and σ ∈ T p

i , if hp
i (σ) < α, then hp∗

i (σ) = hp
i (σ) and dp∗

i (σ) =
dp

i (σ); and
(3) if hp

i (σ) ≥ α, then hp∗

i (σ) ≥ α.

Lemma 5.8. Let ψ be a formula in LF of rank less than or equal to α and let
p, p∗ ∈ IP be α-F -absolute retaggings. Then, p∗ 
 ψ if and only if p 
 ψ.

Proof. The proof is by transfinite induction on α. All the cases are trivial except
for ψ = ¬ϕ. Suppose that p∗ 
 ¬ϕ; we want to show that p 
 ¬ϕ. Consider
q ≤

IP
p; we need to show that q 6
 ϕ. Let β < α be the rank of ϕ. We claim that

that there is a q∗ ≤
IP
p∗ which is a β-F -absolute retagging of q. From the claim we

would get what we want because, since p∗ 
 ¬ϕ, we have that q∗ 6
 ϕ, and hence
q 6
 ϕ.

Let us now prove the claim. Note that we can assume that T q r T p has only
one element 〈j, σ〉; we can then prove our claim for a general q by induction on
|T q r T p|. Let T q∗ = T q = T p∗ ∪ {〈j, σ〉} and for τ ∈ T p∗ , let hq∗

i (τ) = hp∗

i (τ)
and dq∗

i (τ) = dp∗

i (τ). Now, if σ = ∅, let dq∗

j (σ) = dq
j(σ) and hq∗

j (σ) = hq
j(σ) = ∞.

Suppose now that σ 6= ∅ and let τ = σ−. There are two cases. The first case is
hq

j(σ) < α, where we need to define hq∗

j (σ) = hq
j(σ) and dq∗

j (σ) = dq
j(σ). We need

to verify that this definition is consistent. To do this we have to look at all the
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possible values of hp∗

j (τ) and dp∗

j (τ). All the possibilities are easy to analyze. The

second case is hq
j(σ) > α. In this case we only need to worry to define hq∗

j (σ) ≥ β

and dq∗

j (σ) to be consistent with hp∗

j (τ) and dp∗

j (τ), which is not hard to do. �

Lemma 5.9. The trees TG
i , i ∈ ω, have no infinite paths in M∞.

Proof. Suppose, toward a contradiction, that X ∈M∞ is a path through TG
i . The

sequence {hG
i (X �n) : n ∈ ω} is a descending sequence in ξ, and therefore, for

every n, hG
i (X �n) > ωCK

1 . There are some F ⊂
f
ω and formula ϕ ∈ LF such

that (∀n,m)(X(n) = m ⇐⇒ ϕ(n,m)). Let ψ(k) be the formula that says that
{〈n,m〉 : ϕ(n,m,GF )} is a path through TG

i and that ϕ(0, k) (i.e., the path starts
with 〈k〉). Let α be the rank of ψ(k) and let p ∈ G force ψ(k) for some k ∈ ω. It is
not hard to prove that there exists q such that Ret(α, F ; p, q) and hq

i (〈k〉) < ωCK
1 ,

using the fact that hp
i (〈k〉) > ωCK

1 > α. Then, by the previous lemma, we have
that q 
 ψ, which is impossible because, since hq

i (〈k〉) < ωCK
1 , there cannot be any

path though Ti starting with 〈k〉 in any model defined from a generic extension of
q. �

Corollary 5.10. In M∞, {TG
i : i ∈ ω} is a sequence of completely determined

well-founded trees.

Proof. From the definition of IP and the fact that G is generic, we get that for
every i, dG

i satisfies (4.1) and hence is a winning function for G(TG
i ). �

Lemma 5.11. In M∞, there is no set X such that n ∈ X if and only if I has a
wining strategy in the game determined by Tn.

Proof. If such a set X existed in M∞, there would be a formula ϕ(n) ∈ LF , for
some F ⊂

f
ω, such that (∀n)ϕ(n) ⇐⇒ dn(∅) = W. Let α = rk((∀n)ϕ(n) ⇐⇒

dn(∅) = W), and let p ∈ G be such that p 
 (∀n)ϕ(n) ⇐⇒ dn(∅) = W and for some
i ∈ ω r F , dp

i (∅) = L and p 
 ¬ϕ(i). Such p has to exists by the genericity of G.
We will get a contradiction by proving that there exists q such that Ret(α, F ; p, q)
and dq

i (∅) = W. Let q be such that T q = T p, hq = hp, and except at 〈i, ∅〉, dq = dp.
Let dq

i (∅) = W. Since hq
i (∅) = ∞, we have that Ret(α, F ; p, q). To show that q ∈ IP ,

observe that for all immediate successors σ of ∅ in T q, dq
i (σ) = W, so condition

5.3(4) is satisfied just because ∞ is grater than any other element of ξ. �

Theorem 5.1 now follows.
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