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ABSTRACT. Fraissé studied countable structures S through analysis of the age of S, i.e., the
set of all finitely generated substructures of S. We investigate the effectiveness of his analysis,
considering effectively presented lists of finitely generated structures and asking when such a
list is the age of a computable structure. We focus particularly on the Fraissé limit. We also
show that degree spectra of relations on a sufficiently nice Fraissé limit are always upward
closed unless the relation is definable by a quantifier-free formula. We give some sufficient
or necessary conditions for a Fraissé limit to be spectrally universal. As an application, we

prove that the computable atomless Boolean algebra is spectrally universal.
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Computable model theory studies the algorithmic complexity of countable structures, of
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their isomorphisms, and of relations on such structures. Since algorithmic properties often
depend on data presentation, in computable model theory classically isomorphic structures
can have different computability-theoretic properties. One of the main goals of computable
model theory is to obtain computability-theoretic versions of various classical model-theoretic
notions and results. For example, it is natural to look at the algorithmic analogues of the
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notion of a structure. These notions have existed at least since the publication of van der
Waerden’s Moderne Algebra [24] in 1930, in which an explicitly given field is one in which the
elements are uniquely represented by distinguishable symbols with which one can perform the
field operations algorithmically. This idea gave rise to the notion of a computable structure, a
basic concept in computable model theory.

When we say structure, we mean an L-structure, where £ is a fixed computable language.
A computable language is a countable language for which the set of symbols and their arities
are algorithmically presented. Since we consider only countable structures .4, we can assume
that their domains dom(.A) are initial segments of w. The atomic diagram of a structure A is
the set of all quantifier-free sentences of £ U {a : a € dom(A)}. A structure is computable if
its atomic diagram is computable. For example, there is a computable dense linear ordering
without endpoints. There is also a computable random graph. On the other hand, while the
standard model of arithmetic is computable, Tennenbaum showed that there is no computable
nonstandard model of Peano Arithmetic (see [1]).

Although these definitions may appear static, computability theory studies dynamic pro-
cesses, and we usually think of computable structures as being built, one element at a time,
rather than presented in their entirety all at once. When we study a computable structure
A, we can only consider finitely many elements at any given step in our examination of the
structure. Each finite subset F' of the domain generates a substructure Arp C A, and since A
is computable, the generating process is effective: Ap has a computably enumerable domain,
with the same computable functions and relations as A, and thus Ap is itself computably
presentable, just from our knowledge of A and F. (See the Pullback Lemma 2.2 for details.)

Therefore, it is natural for computable model theory to consider the finitely generated
substructures of A. The set of all such substructures was named the age of A and was first
studied (in the context of pure model theory) by Fraissé [7]. Fraissé studied under which
conditions a class of finitely generated structures is the age of some structure. We look at this
question in an effective context in Section 2, introducing the notion of a computable age. If
among all structures with a certain age there is a homogeneous one, it is called the Fraissé
limit of the set of finitely generated structures. Fraissé also studied which conditions are
necessary for a class of finitely generated structures to have a Fraissé limit. We look at this
question in an effective context in Section 3. In both of these sections, the interesting cases
are when the finitely generated structures might be infinite. When all the structures in the
age are finite, all the proofs in [11] are already effective. This will not be the case for results in
the following sections. In Section 4, we look at various examples of computable Fraissé limits
and their properties.

It is standard to generalize the definition of computable structure by defining the Turing
degree of a countable structure with domain w to be the Turing degree of its atomic diagram.
We will denote the Turing degree of A by deg(A). Hence, A is computable iff deg(A) = 0,
the degree of (). This only refers to the degree of the given presentation of A. However, there
could be isomorphic copies of A with different Turing degrees. The Turing degree spectrum,
Spec(.A), of a countable structure A is

Spec(A) = {deg(B) : B= A}.

These spectra may have various structural properties within the Turing degrees. For ex-
ample, Slaman [22] and Wehner [25] independently showed that there is a structure whose
spectrum contains precisely the nonzero Turing degrees, and Miller [19] showed that there is
a linear ordering the spectrum of which does not contain 0, but contains all nonzero AJ (that
is, limit computable) Turing degrees.
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A structure A is called automorphically trivial if its domain contains a finite subset
{ag,...,an—1} such that every permutation f of dom(A) with f(a;) = a; for i < n is an
automorphism of A. For example, the complete graph on w-many vertices is automorphically
trivial. On the other hand, a linear ordering is automorphically trivial if and only if it is
finite. It is not hard to prove that for an automorphically trivial structure, all isomorphic
copies have the same Turing degree. If, in addition, the language of the structure is finite,
then that degree is 0 (see [12]). The following important theorem is due to Knight [18].

Theorem 1.1 (Knight). Let A be a structure that is not automorphically trivial. Then the
Turing degree spectrum of A is upward closed under <p. That is, for any two Turing degrees
c <t d, if c € Spec(A), then also d € Spec(A).

In [2], Ash and Nerode considered complexity of an additional relation R on the domain of
A, that is, a relation not named in £. More precisely, they investigated syntactic conditions
on A and R under which for every isomorphism f from .4 onto a computable model B, f(R)
is computable, or computably enumerable (abbreviated by c.e.). This leads to the following
general definition.

Definition 1.2. Let P be a computability theoretic complexity class. An additional relation
R on the domain of a computable structure A is called intrinsically P on A if the image of R
under every isomorphism from 4 onto a computable structure belongs to P.

Harizanov defined in [9] the Turing degree spectrum of a relation R on a computable struc-
ture A, DgSp 4(R), as the set of Turing degrees of the images of R under all isomorphisms from
A onto computable structures. It turns out that, unlike spectra of structures, many spectra of
relations have upper bounds under Turing reducibility. For example, the adjacency relation on
a computable linear order is always 0’-computable. However, we show in Section 5 that if A
is a nice (in a sense we will specify) Fraissé limit, then the degree spectrum DgSp 4(R) of any
relation R is upward closed in the Turing degrees, unless R can be defined by a quantifier-free
formula with parameters in A. In the latter case, DgSp 4(R) = {0}.

In [12], Harizanov and R. Miller studied connections between these two types of spectrum,
defining the notion of spectral universality for computable models of certain theories. Such
structures S exhibit a close connection between the spectra of countable models of the theory
and the spectra of the relations on S.

Definition 1.3. A computable structure S is spectrally universal for a theory T if for every
automorphically nontrivial countable model A of T, there is an embedding f : A — S such
that A, as a structure, has the same degree spectrum as f(dom(.A)), as a relation on the
domain of S.

In particular, Harizanov and Miller studied the computable dense linear ordering and the
computable random graph, proving similar results for both.

Theorem 1.4. ([12]) Let A = (w, <) be a computable dense linear ordering without endpoints.
(i) The structure A is spectrally universal for the theory of linear orderings.
(ii) For any unary relation R on A, the following are equivalent:

(a) The degree spectrum DgSp 4(R) is upward closed under Turing reducibility;

(b) The relation R is not intrinsically computable;

(c) R cannot be defined by a quantifier-free formula with parameters from dom(.A).

(The equivalence of (b) and (c) had already been shown by Moses in [20].)
As a corollary, Harizanov and Miller obtained from Miller’s result in [19] that there is a
relation R on A such that DgSp 4(R) does not contain 0, but contains all nonzero A degrees.
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Theorem 1.5. ([12]) Let G be a computable random graph.
(i) The structure G is spectrally universal for the theory of (symmetric irreflexive) graphs.
(i) For any unary relation R on G, the following are equivalent:

(a) The degree spectrum DgSpg(R) is upward closed under Turing reducibility;

(b) The relation R is not intrinsically computable;

(c) R cannot be defined by a quantifier-free formula with parameters from dom(G).

It is natural to ask whether there are spectrally universal structures for other theories. Both
the random graph and the countable dense linear ordering are Fraissé limits, as defined below,
for the classes of finite graphs and finite linear orderings, respectively. Harizanov and Miller
conjectured that the computable atomless Boolean algebra is spectrally universal for the theory
of Boolean algebras. This structure is the Fraissé limit for the class of finite Boolean algebras.
They conjectured further that other computable Fraissé limits of classes of finite structures
might be spectrally universal for their associated theories. In this paper we generalize some of
their results to arbitrary Fraissé limits of classes of finite or finitely generated structures, and
provide conditions under which computable Fraissé limits will or will not satisfy other results
from [12].

In Section 6 we provide necessary conditions for a theory to have a spectrally universal
model. One is that it has to be locally finite. The other is a restriction on the number of
atomic types that are realized by only finitely many different tuples.

In Section 7 we use the result of Section 3.2 to get a sufficient condition for the existence
of a spectrally universal model. As an application, we prove the conjecture mentioned above
that the computable atomless Boolean algebra is spectrally universal.

1.1. Classical results about Fraissé limits and background definitions. The material
in this subsection is from [11, Chapter 6]. Let D be an L-structure. The age of D is the class of
all finitely generated structures that can be embedded in D. More generally, a class of finitely
generated structures is called an age if it is (up to replacing its members with isomorphic
structures) the age of a structure. Fraissé showed that a (nonempty) finite or countable class
K of finitely generated structures is an age of a finite or a countable structure if and only if
K has the hereditary property and the joint embedding property, as defined below.

Definition 1.6. (see [11]) Let K be a class of finitely generated structures.

(i) We say that K has the hereditary property, abbreviated by HP, if whenever A € K and
B is a finitely generated substructure of A, then B is isomorphic to some structure in K.

(ii) We say that K has the joint embedding property, abbreviated by JEP, if for every
A, B € K there is some C € K such that A and B embed into C.

Theorem 1.7 (Fraissé, see [11]). A class of finitely generated structures K is an age if and
only if K satisfies the HP and JEP properties.

Definition 1.8. A structure D is ultrahomogeneous (the term used in [14, Chapter 6]) if every
isomorphism between finitely generated substructures of D extends to an automorphism of D.

Definition 1.9. Let K be a class of finitely generated structures. A structure D is the Fraissé
limit of K if D is countable, ultrahomogeneous and has age K.

Theorem 1.10 (Fraissé). The Fraissé limit of a class of finitely generated structures is unique
up to tsomorphism.

Definition 1.11. A class of finitely generated structures K satisfies the amalgamation prop-
erty, abbreviated by AP, if whenever A,B,C € K and there are embeddings e¢ : A — B,
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f A — C, then there is a D € K and embeddings g : B — D and h : C — D such that

ge = hf.
B
VRN
A D
NA

Theorem 1.12. (Fraissé, see [11]) A class of finitely generated structures K has a Fraissé
limit if and only if K satisfies HP, JEP and AP.

Definition 1.13. Th,(K) is the class of all sentences 1 of £ such that A |= v for all structures
Ain K.

This leads to the following question: If the class K of all finitely generated models of a
theory T forms an age with AP and has computable Fraissé limit F, when is F spectrally
universal for 17

Recall that a class K of structures is locally finite if every finitely generated structure in K
is finite, and a theory T' is said to be locally finite if the class of its models is locally finite. A
class K is uniformly locally finite if there exists a function g : w — w such that every structure
in K which is generated by n elements contains at most g(n) elements, and K is computably
locally finite if this function g may be chosen to be computable. For example, the theory of
Boolean algebras is computably locally finite via the function g(n) = 2(2").

2. COMPUTABLE AGES

Now we turn to the computable model theoretic aspects of the structures in the previous
section. First, we introduce some definitions.

Definition 2.1. Let K be a set of finitely generated structures in the same language.

(1) A representation of K is a sequence K = {(A;, d@;)}icw, where the domain of each A;
is a subset of w, each A; is generated by the finite tuple @;, and K = {A4; }icy -

(2) We say that this representation is computable if the sequence {@; };c., of tuples is com-
putable and the functions, relations, and constants on the structures A; are uniformly
computable. Notice that this implies that each A4; has a c.e. domain the index of which
is computable in 7.

(3) We say that K is computably representable if K has a computable representation. We
will say K is a computable age if K is a computable representation of an age.

Note that the structures 4; in a computable representation K are not necessarily computable
structures, according to our definition, unless their domains are initial segments of w. However,
the structures A; have c.e. domains and computable functions and relations. We call such a
structure a c.e. presentation of its isomorphism type. The following well-known easy lemma
justifies this generalization, in an effective and uniform way.

Lemma 2.2 (Pullback Lemma). Every c.e. presentation of a structure is isomorphic to a
computable copy. Moreover, this copy can be found computably from a c.e. index for the
domain of the original structure. Furthermore, the isomorphism from the computable copy to
the c.e. one is computable and it can be found uniformly.

The notion of isomorphisms of classes of structures also has a computable counterpart.
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Definition 2.3. Two sets of finite structures J and K are isomorphic if every structure in J
is isomorphic to one in K, and every structure in K is isomorphic to one in J. (Two structures
in J may be isomorphic to each other, and likewise in K. Therefore, this definition does allow
J and K to have different numbers of isomorphic copies of a single structure.)

Now, given two representations K = {(A;, @;) }ico and J = {(Bs, b;) Yiew, we say that K and
J are computably isomorphic if the isomorphisms can be found computably uniformly, or, in
other words, if there exists a computable sequence {(ji,d;) : i € w} such that d; € Bj, and
the map a; — d_; extends to an isomorphism A; — Bj;, and there exists another computable
sequence {(k;, €) : i € w} such that €; € A, and the map b; — & extends to an isomorphism

Bi — Ay,

Given a computable structure, its age has one natural computable representation among
all its computable presentations.

Definition 2.4. Let D be a computable structure. Let {d@; : i € w} be an enumeration of all
the tuples from D, and let A; be the substructure of D generated by @;. Let Kp = {(A;, @) }icw-
We call Kp the canonical representation of the age of D. We say that a representation K is
a canonical representation of the age of D if K is computably isomorphic to Kp. Sometimes,
we will write “canonical age” as an abbreviation for “canonical representation of the age”.

In this and the next section we study what properties of a representation K of a set of finite
structures guarantee that:

e K is a canonical age of some computable structure;
e K is a canonical age of a Fraissé limit with various properties;
e K is the age of a Fraissé limit.

If K is a representation of K, we will say K has a certain property (such as HP, JEP, or being
an age) if K does. We are interested in ages where HP and JEP are computably verifiable.

Before continuing, let us say a few words about maps defined on finitely generated struc-
tures. Suppose (A,a) is a finitely generated structure and B is any structure. To specify an
embedding f : (A,d) — B, we need only to specify f(a), the behavior of f on the generators.
We write f : @ — B to denote that f is a function mapping each element of @ into B, with
f(@) denoting the tuple of images of these elements under f. If such an f extends uniquely
to all of A and defines a 1-1 homomorphism from A into B, then we say that f extends to an
embedding f : A — B.
Definition 2.5. Let K = {(A;, d@;) }icw be a computable age.

(1) The age K has the computable hereditary property, abbreviated by CHP, if there is a
computable function that given an index ¢ (for A;) and a tuple ¢ € A;, returns an
index j (for A;j), a tuple @ € A;, and a bijection between the finite tuples @ and ¢,
which extends to an embedding of A; into A;.

(2) The age K has the computable joint embedding property, abbreviated by CJEP, if there
is a computable function that given indices ¢ and j (for A; and A;), returns an index

k (for Ag) and tuples b and @ in Ay, such that the maps @; — b and @ d; — C extend to
embeddings A; — Aj and A; — Aj.

The canonical age of a computable structure always has these properties.
Lemma 2.6. Let D be a computable structure. Then Kp has CJEP and CHP.

Proof. For CJEP, given A; and A; generated by a; and d;, look for k such that @, € D
contains both @; and @;. Then, both 4; and A; embed into A;, via the inclusion maps. For
CHP, given A; and ¢ € A;, look for k such that @, = ¢. Then A embeds into A; via the
inclusion map. O
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Observation 2.7. If K contains only finite structures, then CJEP is equivalent to JEP and
CHP is equivalent to HP. The reason is that in this case one can just search for the desired
structures.

It turns out that we can get CHP almost for free.

Theorem 2.8. Let K be a computably representable set of finitely generated structures with
HP. Then K has a computable representation K that has CHP.

Proof. Let K = {(B;,b;) }icw be a computable representation of K. For each 4, let {d@;, : e € w}
be a computable list of all the tuples of B;, uniformly in i. Let A; . be the substructure of B;
generated by @; .. Let K= {(A;¢,dic)}iecw-

Since K has HP, it is not hard to see that K is a representation of K. We claim that K has
CHP. Given A; ; € K and a tuple ¢ € A; ; C B;, there is a k such that ¢ = @; ;. Then A;; and
the identity map ¢ = d; j are as needed for CHP. O

If K is an age, then, by definition, there is a structure D such that K is the age of D.
To characterize those K that are ages of computable structures, we need the following known
lemma.

Lemma 2.9. Let Dy — Dy < --- be a chain of c.e. presentations of structures, with both the
presentations and the embeddings d; : Dy — D;y1 computable uniformly in i. We call this a
computable chain of structures. Then there exists a computable presentation C of the union of
the chain over these embeddings, and embeddings 0; : D; — C that are computable uniformly
mn .

Proof. Essentially, the usual construction of the direct limit C works effectively. First, using
Lemma 2.2, we can assume that each D; is actually a computable structure. Given i < j,
let §;j = dj—10....00;4100;: D; — Dj. Consider the set of pairs £ = {(d,i) : i € w,d €
Dl} Now, given (do,’io), (dl,il) € FE, we let (do,io) = (dl,il) if 5i07k(d0) = dil,k(dl) where
k = max{ip, i1 }. Note that = is a computable equivalence relation. Let C' be E/ = and given
d; € D;, let 0;(d;) be the equivalence class of (d;,i). (We encode C = E/ = as a subset of
w by taking the least element of each equivalence class. This set is computable and hence
isomorphic to an initial segment of w.) It is not hard to see that C is the union of the images
of the maps 0; : D; — C and that for every i < j, §; = 6; 0 J; ;. The functions and relations
on C are then defined in the obvious way, using the maps 6;, and, clearly, the structure C is a
presentation of the union of the chain, with computable domain. O

Theorem 2.10. Let K = {(A;,d;) }icw be a computable age. Then K is a canonical age of a
computable structure if and only if it has CJEP and CHP.

Proof. (=) Lemma 2.6.

(<) We construct a uniformly computable chain Ay — Agy) = -+ of structures in K.
Let d(0) = 0 and d(n + 1) be the joint embedding of A,+1 and Ay, given by the CJEP.
Then Lemma 2.9 yields a computable structure D with age K.

We claim that K is computably isomorphic to Kp. Given A; € K, we know how A; embeds
into Ay;), and how Ay;) embeds into D. So we can find a tuple in D which generates a
structure isomorphic to A;. Therefore, we can find a structure in Kp isomorphic to A;.
Conversely, given a tuple ¢ € D, and hence a structure Dz in Kp, there is an n such that ¢
comes from Ag(,). Since K has CHP, we can find a structure A; € K which is isomorphic to
the substructure of Ag(,,) generated by ¢. A; is then isomorphic to Dz, as wanted. (]
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3. COMPUTABLE FRAISSE LIMITS

In this section we study what conditions a computable age K has to satisfy in order to have
a computable Fraissé limit. First we look at some properties of computable Fraissé limits.

3.1. Computable properties of Fraissé limits. We say that a computable structure F is
the Fraissé limit of K if F is homogeneous and has age K.

Definition 3.1. Given a computable structure D, and a tuple de D, we use D to denote the

substructure of D generated by d. We say that D is computably homogeneous if there exists a
computable function which, given a tuple d € D, a map g: d — D, and x € D, returns a tuple
7 € D and y € Dy such that:

e D;C Dy; and
o ifc= <g(af), r), and g extends to an embedding D ; < D, then the function h : ¢ — Dy
with h(z) = y and h(g(z)) = z for z € d extends to an embedding Dy — D5.

7
>

Dz
Even if g does not extend to an embedding, we still require that D> C D;.

If Dz is an extension of the image g(D;) by an arbitrary finite number of generators, we can
still effectively compute some 7 such that Dy extends D ; and embeds Dz so that the diagram
commutes, simply by iterating this process over the generators of Dz one by one.

Proposition 3.2. Let Fy and F1 be two computably homogeneous computable structures the
canonical ages of which are computably isomorphic. Then Fy and F1 are computably isomor-
phic.

Proof. The classical proof that any two w-homogeneous structures with the same age are
isomorphic actually produces a computable isomorphism if the two structures are computably
presented and are computably homogeneous. See Lemmas 6.1.3 and 6.1.4 in [14]. U

We immediately obtain the following corollary. We say that a computably presentable
age K is computably categorical if any two computable presentations of it are computably
isomorphic. For example, this is always the case when all the structures in K are finite.

Corollary 3.3. If K is computably categorical and all computable Fraissé limits of K are
computably homogeneous, then the Fraissé limit of K is computably categorical. O

Corollary 3.4. If K is locally finite and has a computable Fraissé limit F, then F is com-
putably categorical.

Proof. Since K is locally finite, all its computable representations, including the canonical age
of F, are computably isomorphic. Since F is locally finite and homogeneous, it is computably
homogeneous. Now, by the corollary above, F is computably categorical. (]

Essentially by the same proof we get the following corollary.
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Corollary 3.5. If F is computably homogeneous, then every isomorphism between finitely
generated substructures of F extends to a computable automorphism of F.

Observation 3.6. If F is a locally finite computable structure and is homogeneous, then it is
computably homogeneous. The reason is that we can find 4 and y as in Definition 3.1 just by
searching.

3.2. Existence of computable Fraissé limits. Next, we turn from homogeneity to amalga-
mation. Let K = {(A;,d@;)}icw be a computably presented age. As above, we write f : @; — A;
to denote that f maps the generators of A; into A;, and we say that f extends to an embedding
[+ A; — A if the extension of f to A; is uniquely defined and is an injective homomorphism.

Definition 3.7. K has the computable amalgamation property, or CAP, if there exists a
computable function such that given indices i, j, k for structures A;, A;, Aj, and maps f: @; —
A; and g: @; — Ay, returns an index « of a structure A, and maps e: @; — A, and h: @, —
Ag such that if f and g extend to embeddings f and g as in the diagram below, then e and
h extend to embeddings such that the diagram commutes.

Even if f and ¢ do not extend to embeddmgs, we ask for e to extend to an embedding

.Aj — .Aa.

For locally finite ages K in finite signatures, CAP is equivalent to AP.
Now we turn to the existence of computable Fraissé limits. The following lemma gives a
way of constructing Fraissé limits. Its proof can be found in [14].

Lemma 3.8 (How to build a Fraissé limit). Let K be an age with AP. Let D = U,e,D;,
where {D; }icw 18 a chain of structures in K with the property that whenever f: A — B is an
embedding of structures in K, and there is an embedding g : A — D; for some i € w, then
there is some j > i and an embedding h : B — D; which extends f. Then D is a Fraissé limit

' N
NA

Theorem 3.9. Let K be a computable age with CHP and CJEP. Then K is a canonical age
of a computably homogeneous Fraissé limit if and only if K has CAP.

Proof. First, assume that K has CAP (and CJEP and CHP). To build a computable copy
F of its Fraissé limit, we build a uniformly computable chain Ay — Ag) <= -+, with
elementary embeddings d; : Ay — Ag (g+1) also uniformly computable, and apply Lemma
2.9 to get a computable structure F. For i < j, we use d; ; to denote d;_10---06;: A; — Aj.
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By Lemma 3.8, for F to be a Fraissé limit it suffices to meet for each (i, 7, k, f, g) the following
requirement.

Rirp gt U f1d — Agpy and g : @ — Ay extend to embeddings f and
g, then there exist s > r and an embedding h such that the

following diagram commutes.

Aar)
/ &1
A; Ad(st1)
x

A
Ay,

Let d(0) = 0, and define d(s + 1) inductively for all s as follows.

Suppose s = (i,1,k, f,g), where i,r,k € w, A; is generated by an n-tuple d@; (for some
n), and Ay is generated by an (n + 1)-tuple dy, with f : @; — Ay, and g : @ — A from
some uniform enumeration of all such maps. We may assume that » < s. Applying CAP to
ors o frdi — Ags) and g: @ — Ak, we get o, e, h such that e extends to an embedding
Ag(s) = Aa. Moreover, if 6, ;0 f and g actually extend to embeddings, then €04, ;o f=hog.
In any case, we let Ajs11) = Aq and 65 = €.

It is not hard to see that our construction satisfies the requirements R; ;. 1 1 -

To see that F is computably homogeneous, consider g, J; x and € as in Definition 3.1. We
need to compute ¥ and y. (The structure now is F, and we write F; for the substructure

generated by the tuple cf) First, find an r such that all coordinates of d and ¢ lie in Adrys
and use CHP on K to find i and k and isomorphisms ¢ : A; — Fyand ¢ : Ay — Fz, with
o(d;) = d and Y(a@) = é Set s = (i,r,k, | @, L ogo). Then at stage s + 1 we defined
d(s + 1) and 05 so that the diagram below commutes.

Ad(r)
A; Ad(s+1)=7;

%)
= P
P
Fe

Set ¥ = dg(s41)- (More precisely, ¥ should be the image of @11y in F, as built from the
chain Agqy — Agq)y — ---.) Since s > r, we clearly have F; C Ay, C Ager1) = Fy-
Moreover, if g does extend to an embedding g : F; < Fz, then since the tuple (g(x(d;)), z) is
precisely 1(d;), the CAP shows that the embedding h demanded by Definition 3.1 really does
exist. Thus F is computably homogeneous.

For the converse, let F be a computably homogeneous computable copy of the Fraissé limit
of K. We can assume that K = Kz since CAP is preserved under computable isomorphisms
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of sets of structures. So K has CHP and CJEP, and indeed each A, in K is just F;. To show
that K has CAP, consider i, j, k, f and g as in Definition 3.7. We may assume that a; is an
n-tuple and @y = (b1,...,bp4+1) is an (n + 1)-tuple, and g(d@;) = (b1, ..., bn).

Let d = f(d;) € Aj. Let k=go f~':d— (bi,...,by). Let 2 = by and &= d * z.

Now the computable homogeneity of F applied to k, dand z gives us v and y as in Definition
3.1. Let F, be a finitely generated substructure of F that contains both F5 and A;. Note

that 7, € K. Let e: A; — F, be the inclusion map and h: b— F5 be as in the definition of
homogeneity. Note that F,, e and h are as required for CAP. U

Now we still wish to characterize those computable ages which have computable Fraissé
limits. However we no longer require the Fraissé limit to be computably homogeneous and
we also do not require the age to be a canonical age of the Fraissé limit. It turns out that
a much weaker condition on the age is necessary. This analysis will be useful later when we
study spectrally universal structures.

Definition 3.10. We say that a computable age K has the computable extension property, if
there is a partial computable function which, given i € w and a quantifier-free formula 6(a, )

with @ € A;, outputs a structure (Aj;,d;), an embedding f : A; — A;, and a tuple b such that

Aj = 0(f(a), b) if such j and b exist, and does not halt otherwise. When such (Aj,d;) and b
exist we say that 6(a, ¥) is consistent with A; in K.

Remark 3.11. If all structures in K are finite, then any computable representation of K has
the computable extension property.

Theorem 3.12. Let K be an age that satisfies AP. Then K has a computable Fraissé limit if
and only if K has a computable representation which has the computable extension property.

Proof. First assume that K has a computable Fraissé limit D. Let Kp be the canonical
representation of the age of D. We claim that it has the computable extension property.
Given (A;,d@;) € Kp and 0(a@, &), if @ € Ay, just search for b € D such that D |= 6(a, b). Recall
that A; C D. If such a b is ever found, return the substructure of D generated by d@; and b.

For the other direction, let K = {(A;,d;)} be a computable representation of K which
has the computable extension property. We will use a finite injury priority construction, and
construct a Fraissé limit D of K by finite approximations.

Similarly to Theorem 3.9, we will ensure that D is a Fraissé limit by building a chain
As) = Aaq) = - — D with embeddings fi: Ay — Aa(it1), and hi: Ay — D such
that h; = hit1 0 fi and D = Ujewhi[Ay]. However, this chain of structures will not be
computable, so we cannot use Lemma 2.9 to build D. Instead, we have to build D separately.
We will build D by finite approximations, satisfying the following requirements.

Ry = Rjijrn: Il Ae — Aj and k @ Ae — Ay are embeddings, then there exists an
embedding h such that the following diagram commutes. (Here I : A, — A; is the I-th map
of the form d. — A; in some effective listing of such maps, which may or may not extend to
embeddings.)

(@)

ﬁo...ofi
Aa(n)
/

Aj

Ae %A
N
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In Theorem 3.9, using CAP, we were able to immediately meet requirement R,, at stage n+1,
where A,y Was just the amalgamator of A; and A, (,_1), and we knew that A,y — Aqm-1)-
Now, at any stage s + 1, for each requirement R,, we can only guess at an amalgamator of
Aqi) and Aj, and we will build Ds 1 one step towards this amalgamator. We will have to be
careful about our guesses for the different requirements, to try to have them be consistent.

At stage s of the construction, we will define a number ng, a sequence Ay (1), Aa(2,s)
Aq(ns,s), and for each n < ng, a map fps: Ga(n,s) — Ga(n+1,s), Such that at stage s they seem
to be a chain of embeddings (i.e., if we look at the elements of A, ) which are less than s, the
extension of f, ; preserves the structure). We might discover later that f, s does not extend
to an embedding A, s — A,1,. We will show that for each n, a(n) = lim, a(n, s) exists and
that limgsng = co. At stage s we also define a finite set D and assign a truth value to each of
the first s atomic formulas gpl(cf) for some enumeration of all the atomic formulas, where d are
elements of D,. We also define a partial onto function hy, s: A,, s — Ds; the values of the
atomic values on Dy come from the values of these formulas evaluated on h;; s(Ds) C Ay, s
Let 05(Ds) be the conjunction of all these formulas. We have to make sure that if ¢ < s, then
Dy C Dy and 045(Ds) = 64(Dy). This will ensure that D = |J, Dy has a computable atomic
diagram, and hence is a computable structure. Here we use D, to denote the finite structure
defined by the atomic diagram 6,(Ds).

Suppose that A; N Dy = b. We say that A; is consistent with Dy if A; is consistent with
0s(d, ) as in Definition 3.10. At each step s we always make sure that for every n < ng,
Aq(n,s) is consistent with D, even if a(n, s) is going to change later.

Aa(l)g h Aa(Q)c oI Aa(n)c fn

We usually think of the maps f; and h; as inclusions. So, the elements of A, ;) are naturally
in A, for i < j, and in D. We will abuse notation and use this convention.

Let us now turn our attention to a requirement R,, with n = (e, i, j, k, ). Note that if some
l:Ae — Ajork: Ac — A is not an embedding, we will find out after a finite amount of
time. At any stage s such that we know that [ : Ac — Aj or that k : Ac — Ay ) 1S not an
embedding, we consider requirement R ;1 ; inactive. If a(i,s) = a(i) and k : Ae — Ay s) is
not an embedding, or if I : A. — A; is not an embedding, then R ; ;) will never be active
again, and it will be satisfied.

Our goal is that for each n, if R, is active infinitely often, then a(n) = lim, a(n,s) will
exist, and A(,) will meet requirement R;,.

As we said before, R, will guess the amalgamator. It will do it by looking at all the possible
amalgamators, one by one. R, will make a guess and believe it until it sees it is not correct,
and only then will it move to the next guess. To keep track of these guesses, we will use an
auxiliary function 3(n,s). For each n = (e, 1,7, k,l) that we consider at stage s + 1, we will
have 3(n,s + 1) = (m,p,q) guess that p: Ay—16) — Am and ¢ : A; — A, are embeddings
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such that the following diagram commutes.

f’i,n

(1) Aa(i,s)

Ae/ XA
\Aj/

Aa(n—l,s)

m

We will have that A, s41) is an extension of Ay, consistent with D;. So at stage s + 1 we
will guess that Ay s41) = -+ = Ag(n,s+1), we will know that each A, ; ) is consistent with
D, and we will extend Dy to a substructure of Ay, s11). We do this since we guess that
each A, s41) Will meet requirement R;.

Note that if we assume that A,y = lims A, (; 5) exists for all i < n, then requirement R,
either becomes inactive forever, or else, since K has AP, there is an amalgamator of A,,_1)
and A;, which we will find after finitely many wrong guesses.

We say that requirement R, requires attention at stage s + 1 if R, is active and either
B(n, s) is undefined, or 3(n, s) = (m,p, q) is defined, but we have just found out that A,, does
not amalgamate A,(,—1,5) and A; via p and q.

Construction:

Since the age K = {(A;, @;) }icw is given in such a way that the generators and the functions
and relations are uniformly computable, we view the finitely generated structures as being
revealed to us stage by stage, by applying at each step every function (there are finitely
many) to what we have observed in the domain so far, and then looking at the relations on
this new part of the domain.

Stage 0: Let «(0,0) =0, 5(0,0) = 0 and Dy consist of dy in Ay, and 0y(Dy) be the empty
conjunction that is always true.

Stage s+ 1: Let n be least such that R,, requires attention at stage s + 1. Let (m,p, q) be
least such that at stage s+ 1, p: Ay(n—1,5) — Am and q : Aj — Ay, appear to be embeddings
such that (2) holds. Let @ be that portion of D that sits naturally inside of A, ,—1). By
induction hypothesis, 0s(d@, ) is consistent with Ay(,—1,4). It follows from the fact that K
has AP that if p : Ayn—1,) — Am is really an embedding then (p(a@), ¥) is consistent with
A,,. Now if 0(p(a),¥) is consistent with A,,, then the computable extension property will
give us ¢ : A, — A,, and a tuple b such that A, E0(g(p(a)), l;) So, for (m,p, q), we run the
computable extension property with A,, and 6(p(@), ¥), and simultaneously continue to check
whether p : Ayn—1,5) — Am is an embedding, until either we are given A, or we find out
that p : Aq(n—1,5) — Am is not an embedding. In the latter case we increment (m,p,q) by 1,
and try again. Since K has AP, this process must halt, and we will be left with some A,, that
might be an amalgamator of A, ) and Aj, and some A;, together with an embedding

g: Apm — Ay, and a tuple b such that A, |= 6(g(p(@)),b). In the following diagram the “?”
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indicates that we do not know whether the map is an embedding.

fa(n 1,8)0" Ofa(ls)
> Acx(n—l,s)

/a . XUtm

Set g(p(Ds)) to be the image of Dy in A,. Let C be the (partial) substructure of A, resulting
from applying all the functions and constants with index less than s once to g(p(Ds)) and
also adding the atomic diagram of @,. We would like to let Ds11 = C. However, we must first
make sure that such a definition would be consistent with all A, ) for I < n. Note that if
it is true that Ay — Aaqr,s) = - — Aam-1,5) = Ar, then C would be consistent with
all of them, since it is a substructure of A,. For each 0 < [ < n, in turn, use the computable
extension property to check whether C is consistent with A, ;) (that is, let 6 be the diagram

(2)

of Cin Ay, let @ = Ay N h;sl [Ds], and run the computable extension property on Ay,
and 0(d, ¥); if this halts then C is consistent with A, ,)), and at the same time search to
see if we find out that f,q_14) @ Aag—1,s) — Aa(,s) 18 not an embedding. If C is actually
consistent with all A, ), then all the functions given by the computable extension property
will halt and we will know it. In this case, we define Ds11 =C, a(l,s + 1) = a(l,s) for I < n,
ﬁ(las =+ 1) = 5(l78) for I <mn, ﬁ(na 5+ 1) = <m7p7 q>7 Aa(n,s+1) - AT7 and fa(n—l,s-l—l) =pog.
Otherwise, we will find that for some [ < n, fo1-1,5) : Aa(i-1,5) — Aa(l,s) is not an embedding.
In this case, we let Dgy1 = Dy, ak, s+ 1) = a(k,s) for k <1, B(k,s+ 1) = B(k,s) for k <,
and leave a(k, s + 1) and ((k, s + 1) undefined for all k > .

Lemma 3.13. For alln, a(n) = lims a(n, s) and f(n) = lim, B(n, s) ezist, R, requires atten-
tion at most finitely often, and either the hypotheses in R, fail, or Ay,) meets requirement

R,.

Proof. We proceed by induction on n. The statement clearly holds for n = 0. Suppose it
holds for all n’ < n. Let n = (e,i,7,k,l). By induction hypothesis, (i) exists. So if the
hypotheses for R, fail, then we will find out after a finite amount of time, and so there will
be a point after which for all s, a(n,s) = a(n — 1,s), 5(n, s) is undefined, and R,, does not
require attention at stage s. Suppose the hypotheses for R, hold. Then since K has AP, there
is some (m, p, q) such that the following diagram commutes.

fa(n 1,s)0" Ofa(ls)
-Aan 1,s)

(3) a %,8)
Let s’ be least such that a(n/,s) = a(n’) for all n’ < n and all s > s'. Let (m,p,q) be least
such that (3) holds. Then for each (m/,p’,¢') < (m,p,q) there is some stage t > s’ at which

we know that (3) does not hold for (m’,p’, ¢) in place of (m, p,q). Hence there is a least stage
t" such that for all s > t', B(n,s) = (m,p,q). Thus Ay, ) will be an extension of A, that
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is consistent with Dy. Since Ayg) X - 5 Aam-1) = Aa(n), We will have a(n,s) = a(n,t’)
for all s > #. At stage t' we will ensure that all generators of Ay, are included in Dy. At
any stage s > t’ where we extend Ds, we build it to be a substructure of an extension of
Aq(n), with one more application of functions than at the previous stage. Hence we will have
Aa(ny < D. This proves the lemma. O

Note that D is actually a structure since we have closed it under all the functions (opera-
tions), one at a time. We have that D = U;ewhi[Ay(;)] because all the generators of the A, )
are eventually included in some Ds. O

4. EXAMPLES

This section is devoted to examples of Fraissé limits for various classes K of finitely gen-
erated structures. We will focus on several properties of the Fraissé limits: computable rep-
resentability, w-categoricity, computable categoricity, and spectral universality. The classes
we consider are linear orderings, graphs, Boolean algebras, p-groups, algebraic extensions of
Zy, Z-modules, and various types of classes with a successor function. Some of these classes
contain precisely the finitely generated models of a particular first-order theory T that may
or may not be c.e. or finitely axiomatizable; for others there is no such theory.

Table 1 summarizes much of the information we get in this section, showing the classes K
for which we have computable Fraissé limits, along with their properties.

K Th(F) K F F

K, T F ULF w-cat. LF c.c. s.u.

linear orderings Yes dense LO Yes Yes  Yes Yes Yes
graphs Yes | random graph  Yes Yes  Yes Yes Yes
Boolean algs. Yes | atomless BA Yes Yes Yes Yes Yes
successor S Yes | (Up>0Zp)“ UZY No No No No No

S, loops only No (Un>0Znp ) No No  Yes Yes Yes

S, no loops Yes z7v No No No No No
Z-modules Yes | (Q/ZUQ)<¥  No No No No No
torsion Z-mod. No (Q/zZ)<¥ No No  Yes Yes Yes
torsion-free Z-mod. Yes Q<w No No No No No
p-groups No (Lo )<¥ No No  Yes Yes Yes
algebraic exts. of Z, No Zjo No No Yes Yes No

TABLE 1. In each row, K, is a class of countable models and F is the Fraissé
limit of the subclass K containing the finitely generated structures in K. The
column labeled “T” tells us whether K, is the class of countable models of a
first-order theory. LF stands for locally finite, ULF stands for uniformly LF,
w-cat. for w-categorical, c.c. for computably categorical and s.u. for spectrally
universal for K.

Two well-known examples are presented in [12]: the countable dense linear ordering and
the random graph. These are similar in many ways. Each is the Fraissé limit for the class K of
finite models of a finitely V-axiomatizable theory (the theories of linear orderings and graphs,
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of course) in a relational language. Hence both of these classes K are uniformly locally finite.
Both Fraissé limits are computably categorical, and their theories are both w-categorical. Both
are spectrally universal, as proven in [12].

The countable atomless Boolean algebra is the Fraissé limit of the class of finite Boolean
algebras, and satisfies all the same conditions as the previous two, except that the language
of Boolean algebras is not relational. However, n elements generate a Boolean algebra of size
at most 22", so the theory is still uniformly locally finite, and it will be shown in Section 7.1
to be spectrally universal.

Now consider a language with a single unary function symbol S, and with an axiom saying
that S is one-to-one, so that we may think of S as a successor function. If we adjoin more
axioms to say that there are no finite loops (i.e., S"(x) # z, for each n > 0), then the resulting
theory is c.e. but not finitely axiomatizable, and the class K, of finitely generated models
of this theory contains precisely the finite unions of w-chains. This class of structures has a
Fraissé limit Fo,, which is the disjoint union of countably many Z-chains, which we denote
by Z“, and so F is computably representable. However, this theory is not locally finite, let
alone uniformly so, and, moreover, F, is not spectrally universal by Lemma 6.3. It is also
not computably categorical, because the relation “x and y are in the same Z-chain” can be
computable or noncomputable in different computable copies of Z“. Also, the theory of Fo
is not w-categorical, since any finite union of Z chains is elementarily equivalent to Fo.

We can also form the class Kg of models of a successor function in which every element lies
on a (finite) loop. By compactness this is not the class of finitely-generated models of any set
of sentences in this language, but it is locally finite (although not uniformly) and does have a
Fraissé limit Fg, consisting of countably many loops of size n for each n > 0. We often write Fg
as (Up>0Zy,)¥. The theory Th(Fy) is not w-categorical, but Fy is computably representable,
computably categorical, and spectrally universal for the class of countable models with no
Z-chains.

Finally, in the language of successor we can allow both w-chains and finite loops. This gives
a finitely axiomatizable theory, with a non-locally-finite class K of finitely generated models,
the Fraissé limit of which, F, is the disjoint union of Fy and F, above. As with F,, F is
neither computably categorical nor spectrally universal, and its theory is not w-categorical.

Abelian groups act very much in the same way as structures in the language of successor.
Again the basic theory is finitely axiomatizable, with a non-locally-finite class K of finitely
generated models, and there is one subclass containing the torsion-free abelian groups and
another one containing the torsion abelian groups, which behave just as the corresponding
subclasses did in the language of successor. The Fraissé limit of the torsion abelian groups is
the additive group (Q/Z)<%, the algebraic direct product of countably many copies of (Q/Z).
The torsion-free abelian groups have Fraissé limit Q<“, and the Fraissé limit of the class of
all abelian groups is the disjoint union of these two. (For us, the algebraic direct product of
countably many abelian groups contains those countable sequences in which cofinitely many
elements are the identity element 0.) These Fraissé limits have exactly the same properties
named above for Fy, Foo and F, respectively.

A p-group is an abelian group in which every element has order a power of the prime p.
The Fraissé limit of the class of finitely generated p-groups is often written as (Zpe~)<*, the
algebraic direct product of countably many copies of the Priifer p-group. This Fraissé limit is
quite similar to Fy above.

Algebraic fields of characteristic p are discussed in Section 6.2, since they are a natural
example of a locally finite class of models the Fraissé limit of which is not spectrally universal.
For us a field is algebraic if it is an algebraic extension of its prime field. We must require
our fields to be algebraic extensions of Z, in order for the class of finitely generated models
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to be locally finite. In this case the Fraissé limit is the algebraic closure of Z,, which is
computably categorical but not spectrally universal, and its theory is not w-categorical. If we
allowed transcendental extensions, then the Fraissé limit would be the algebraic closure of the
function field Z,(Xo, X1, . . .), which is still not computably categorical, nor spectrally universal
for the class of countable fields of characteristic p, and whose theory is not w-categorical.
Table 1 suggests several implications, some already known and some which we now prove.

Proposition 4.1. Let K be the age of a Fraissé limit F, in a finite language. Then the
following hold.

(1) The age K is uniformly locally finite iff Th(F) is w-categorical and has quantifier
elimination.

(2) If F is computable and spectrally universal for a class K, such that K is the set of all
finitely generated structures in K, then K is locally finite.

(3) If K is locally finite, then F is relatively computably categorical.

Proof. Part (1) appears in [14, Corollary 6.4.2]. Part (2) is a restatement of Lemma 6.3. For
(3), suppose that F is a structure with domain w isomorphic to F. By ultrahomogeneity,
every finite partial automorphism f : A — A (with A ¢ F and A C F) extends to one
more element a € F. But A and a together generate a finite substructure B C F, by local
finiteness, and we may identify all elements of B and search through F (using an F-oracle)
until we find a corresponding substructure B extending A, and then extend f to map all of
B onto B. The same works for any @ € F, so by going back and forth, we may build an
isomorphism, computable in F, from F onto F. O

Counterexamples to the converse of (3) exist, although none appear in Table 1. For instance,
let F be any of the computably categorical Fraissé limits from the table (all of which are also
relatively computably categorical), and let F’ be the disjoint union of F with a Z-chain, with
the language augmented by one new unary relation symbol R, which holds of all elements
on the Z-chain, and one new function symbol S which names the successor of an element
on the Z-chain and is the identity function on R. Relative computable categoricity allows
us to build an isomorphism from the complement R in F onto R in any copy of F, and
pairing up the elements of the Z-chains in two copies of F is trivial using R and .S, so there
exists an isomorphism computable in the degrees of the two structures. Thus, F’ is relatively
computably categorical. However, F’ is the Fraissé limit of the class K’ of disjoint unions
(defined by R), where the R-part is an w-chain under S, and the R-part is an element of
the class K corresponding to F. This class K’ is not locally finite, so we have the desired
counterexample to the converse of (3).

Next, we ask how a Fraissé limit could fail to be computably representable. Theorems 3.9
and 3.12 provide useful conditions, but the simplest examples arise from producing unusual
theories related to those already described in this section.

For instance, in the language of the successor function S, let T' be the theory whose axioms
are:

And for each n € )/, the axiom

(Vz)S™(z) # =.
Thus if A is a model of this theory, then each member of A belongs either to a Z-chain or to
a loop, but there can be no loops of size n with n € (. Here (/' represents the jump of the
empty set, which is c.e., so this T is c.e. Clearly, the finitely generated models of T' satisify
HP, JEP, and AP, so T has a Fraissé limit F, consisting of countably many Z-chains and
countably many loops of length n for each n > 1 such that n ¢ (/. However, from any copy of
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F one could enumerate the complement of (', so the least degree of any representation of F is
0’. Indeed, the age of F is not computably representable, for the same reason. One could do
the same with any other noncomputable c.e. set in place of (', of course, and get this result
for any ¥; degree above 0.

5. UPWARD CLOSURE OF DEGREE SPECTRA OF RELATIONS

Knight proved that the degree spectra of any non-trivial structures is upward closed (see
Theorem 1.1). This result does not hold for degree spectra of relations. For example, if one
considers the successor relation on a computable linear ordering, this relation is always co-
c.e., and therefore its degree spectrum is not upward closed in the Turing degrees. However,
we show that in the case where the structure is a sufficiently nice Fraissé limit, the degree
spectrum of any “non-trivial” relation on the structure is upward closed.

Theorem 5.1. Let F be a computable structure over a finite language L, which is computably
locally finite, homogeneous, and the existential diagram of which is computable. Let U be a
unary relation on F. Then the following are equivalent.

(1) The degree spectrum of U on F is not upward closed under Turing reducibility.
(2) The relation U is definable by a quantifier-free formula with parameters in F.
(3) The relation U is intrinsically computable.

Corollary 5.2. Let K be a class of finite structures over a finite language L such that Thy(K)
is computably axiomatizable and locally finite, and with computable Fraissé limit F. Then F
is as in Theorem 5.1.

Proof. Since K is an age, K contains all finite models of Th,(K). So K is computably locally
finite by Lemma 6.2, and hence so is F. The structure F is homogeneous because it is a Fraissé
limit. Finally, given an existential formula about F, we search to either find that the formula
holds in F, or else we wait for Th,(K) to prove that this existential formula does not hold in
any finitely generated substructure of F. So, the existential theory of F is decidable. (]

Proof of Theorem 5.1. (2) = (3) = (1) is immediate, so we show that if (2) fails, then
DgSp£(U) is upward closed. Suppose U is a unary relation on F, which is not quantifier-free
definable with parameters. Suppose also that (F,S) = (F,U), where S € d. Let ¢ > d, and
let C' € c. We will build an automorphism g : F — F such that C' <p ¢(S) and g <p C,
which will ensure that g(S) =7 C, as desired.

We build the automorphism by stages. At stage s, we will define g on a finite domain Dy and
range R;. The R; will be uniformly computable in s, while the D will only be C'—uniformly
computable. At each stage s, we have to make sure that g5 extends to an isomorphism from the
finite structure generated by D, to the one generated by Rs. By homogeneity, this implies that
gs extends to an automorphism of F. So, for each s, Rs and D must have the same quantifier-
free type. When we refer to “types” in this proof, we mean “quantifier-free type” (this abuse
of terminology is justified because F has quantifier elimination [14, Theorem 6.4.1]).

Construction:

Stage 0: Let gg = Dy = Ry = 0.

Stage s +1 = 2e + 1: Say Rs = {y1,...,yx}. For an arbitrary x, since F is uniformly
locally finite and the language is finite, there are only finitely many candidates for the atomic
diagram of {y1,y2,...,yx, z}. This is because there is a bound g(k 4+ 1) on the size of the
structure generated by {y1,v2,...,yk, ¢}, and since the language is finite, there are finitely
many possible ways for the functions, relations and constants of £ to be defined on those at
most g(k + 1) many elements. Moreover, since F is computably locally finite, we can list
these candidates, and since the existential theory of F is decidable, we know which of these
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candidates actually appear in F. Hence we can partition the domain of F into finitely many
computable pieces Z1,...,Z,, where x and z are in the same Z; exactly if they have the
same 1-type over {yi,...,yr}. Note that n can be found computably, and that each Z; is
quantifier-free definable over Rs. Now Dy = {g-'(v1),...,95 *(yx)}. Let By,..., B, partition
the domain of F into distinct 1-types over Dg. Note that the B; are uniformly C-computable.

For 1 <7 < n, let z;1 be the least member of Z; not in Rs. Choose x;2, ..., x;, from Z;
such that {z;;}2<;<k, represent all possible 1-types over Rs U {x;1}. As was the case for n,
each k; can be found computably. Let Ry11 = RsU{x;; |1 <i<n,1<j<k;}. We now use
C to define the extension of the domain Dg;; and the map gsy1 such that Dsy1 D Ds and
gs+1 O Gs- .

We claim that for some | < n, both B;NS # () and B;N S # 0. If there were no such [,
then for each B;, either B; C S or B; C 9, so that S could be expressed as the union

S = Up,csB;,

since the sets Bi,..., B, form a partition of the domain of . But each B; is definable
without quantifiers over the finite parameter set Dg, so S would then be definable over Dy
by the disjunction of the definitions of those sets B; with B; C S. By assumption S is not
so definable, and hence we may fix the least [ with both B; NS # () and B;NS # 0. Let
a € BBNSandbe BNS (or we could let a € By NS and b € B;N S, depending on the
coding). Since a € Bj, mapping a to x;; would certainly extend the partial isomorphism
gs. Since among 9, ..., T, there are representatives of all possible 1-types over Rs U {z; 1},
there must be some z; ,, such that mapping b to x;,, would extend the partial isomorphism.
Since F is homogeneous, there exists a further extension of this partial isomorphism to all of
Rs11. Such a partial isomorphism would have the property that for each j < [, the preimages
of z;, are all on the “same side of S” (that is, for each j < I, either (Vr < kj)[zj, € S] or
(vr < ky)les € S1.)

To code C into g(S), we will search for a configuration that allows us to define g as follows.
There is some [ as described above such that for j < I, we can have g~*(z;,,) all on the “same
side of §”. If e € C, we can have g_l(xl’l) € BN S and g‘l(aﬁl,m) € BN S for some m. If
e ¢ C we can have g~ '(z;1) € B;N S and g~ (z;,,) € BN S for some m.

So to define gs11, use the C' oracle to examine all possibilities ay 1, ..., ay , until we find
one that codes what we want, and define g;41 accordingly.

Stage s + 1 = 2e + 2: As before, partition the domain of F into finitely many computable
pieces 41, ..., Zp, where x and z are in the same Z; exactly if they have the same 1-type over
{y1, .., yx}. For 1 <i < n, let x; be the least member of Z; not in Rs. Let Rsy1 = Rs U {x; |
1<i<n}.

Use C' to compute the least a not in Ds. Then type(a, Ds) = type(zi, Rs) for some 4, and
this is C-computable. We will map g(a) = z;. Since F is homogeneous, there exist b; & D,
such that extending g, by mapping a — x; and b; — x;,j # 4, is an isomorphism. So we
C-computably search for such b;, defining D, 1 and gs11 accordingly.

Verification:

The construction certainly gives g <7 C, and that the R, are uniformly computable in s
(without a C-oracle). At odd stages we ensure that g is onto, and at even stages we ensure
that it is total. At each stage s, g5 is a partial isomorphism, so g : F — F is an automorphism.

It remains to show that C <p ¢(S). To check whether e € C, compute Rocy1 — Roe =
{z;; | 1 <i <n1 < j < k). Find the least [ such that there exists m with (z;; €
g(S)Nxpm & 9(S)) V(211 & g(S)ANapm € g(S5)). Such an [ exists by construction. Then e € C
iff 211 € g(9). O
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6. NECESSARY CONDITIONS FOR SPECTRAL UNIVERSALITY

In this section we examine when the computable Fraissé limit F of a class K will be
spectrally universal, under the assumption that such an F exists. We state two conditions
which are necessary in order to have spectral universality. These conditions make it easy to
disprove spectral universality for some Fraissé limits, as we did in Section 4.

In [12], spectral universality was defined only for theories. Here we extend the definition to
a more general case.

Definition 6.1. Let K, be a class of countable structures. We say that a computable struc-
ture S € K, is spectrally universal for K, if for every nontrivial A € K, there exists an
embedding f : A — S which preserves the spectrum (i.e., the spectrum Spec(A) of the
structure A is equal to the spectrum DgSpg(f(.A)) of the image of A as a relation on S).

Trivial structures are excluded from consideration in Definition 6.1 because by Theorem 1.1,
their spectra are always singletons, hence not very interesting. Notice that if, in Definition
6.1, K, is the set of countable models of a theory T, then this definition is equivalent to the
original definition in [12] of a spectrally universal structure for 7.

6.1. Local finiteness. The first lemma shows how in some cases “computably locally fi-
nite” comes for free. Then we show that local finiteness is a necessary condition for spectral
universality.

Lemma 6.2. If T is a locally finite theory in a finite language, then the class K of finite
models of T' is uniformly locally finite. If, in addition, T is computably axiomatizable, then T
is computadbly locally finite.

Proof. For any m,n > 0, we have a formula 6, (x1, ..., z,) which says that xi, ..., z, generate
a structure containing at least m distinct elements. (6" just lists all terms built by applying
at most m function symbols to z1,...,z,, and the constant symbols, and states that at least

m of these terms are distinct. It is important here that the language be finite, of course.) If
T were not uniformly locally finite, then for some fixed n and all m, the sentence

(Vay) - (Vop)—00 (21, ..., 2p)

would not be provable from T. Then a compactness argument on new constants ci,...,c,
shows that T'U {6)(¢) : m € w} is consistent, so it is possible for an infinite model of T
to be generated by n elements, which contradicts the local finiteness of 7. Thus 7" must be
uniformly locally finite.

If, in addition, T is computably axiomatizable, then we can compute g(n), a bound on
the maximum number of elements in a structure generated by n elements, as follows. Since
the theory T is computably axiomatizable, the set of formulas that are consequences of T is
c.e. To compute g(n), we just enumerate the consequences of 7" until we find an m such that
T = (Vop---Vao,)=0m  (21,...,2,). Since T is uniformly locally finite, we will eventually
find an m with this property, and we let g(n) = m. O

Lemma 6.3. If K, is not a locally finite class, then there is no spectrally universal structure

for K.

Proof. We fix any computable structure S, and show that S is not spectrally universal for
K. . Let A be a structure in K,,, which is infinite but generated by a finite set {a,...,an}.
Then the image f(A) of A in & under any embedding f is the closure in S of the set
{f(a1),..., f(an)} under the functions named in the language. Hence f(.A) is intrinsically
c.e. However, A itself must have an upward closed spectrum, by Theorem 1.1. (A cannot be
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automorphically trivial: it is infinite, yet every automorphism of A is determined by its values
on the generating set.) So f did not preserve the spectrum of A. O

6.2. Finite realizability. For the purpose of this section, all types will be complete atomic
types, i.e., maximally consistent sets of atomic formulas and negated atomic formulas in a
fixed finite set of variables (usually z1,. .., z,, sometimes written &), and we will usually omit
the word “atomic.” Having proven Lemma 6.3, we will only need to deal with locally finite
theories and classes, in finite languages. In this situation an atomic type is always generated
by a finite subset of its formulas, and the finite subset can be recognized once it appears, so
we may think of atomic types as finite objects. If we allow parameters from a structure in our
types, we will so specify. The list of parameters will also normally be finite, usually aq, ..., a,
or a.

A more interesting example where spectral universality fails is provided by the class Ky of
all fields of a fixed characteristic p > 0 which are algebraic over their prime field Z,. The class
K, is a locally finite class, but it is not uniformly locally finite, as a single primitive n-th root of
unity generates a structure in K of power > n. The elements of K, may be characterized as
the finite algebraic field extensions of Z,. It is not possible to express algebraicity of extensions
of Z, by any set of sentences in the language of fields, so this K, is not the class of countable
models of any first-order theory (as was already clear from Lemma 6.3). Nevertheless, the
class of algebraic field extensions of Z,, is well-known and of definite interest. The Fraissé limit
JFp for the subclass of finite extensions of 7Z, is computably presentable: it is the algebraic
closure of the field Z,.

It is not difficult to see that F, fails to be spectrally universal for K,. Let A be the
computable field of characteristic p which we get by starting with Z,, and adjoining a primitive
pn-th root of unity whenever any n > p enters the halting set (/. (Here p,, represents the n-th
prime number, so p, > p when n > p.) Clearly, A is an algebraic extension of Z,. However,
any isomorphic image R of A within F, would allow us to compute §', since for n > p we
would have n € () iff any (hence all) of the (p, — 1)-many primitive p,,-th roots of unity in F
belongs to R. Thus, no image of A in a computable copy of F, can have the degree 0 in its
spectrum, yet A itself is computably presentable. Therefore, F,, is not spectrally universal for
Kp, and the same would hold for any other field into which all elements of K, embed, since
such a field must realize all possible roots of unity.

The shortcoming of this Fraissé limit 7, has to do with its having types (in this case, the
types I'), of a primitive p,-th root of unity, for all n) which are realized only finitely often.
By using p,, instead of n, we ensured that we could realize or omit any subset of {T';, : n > 1}
without forcing any other I'), either to be realized or to be omitted. Thus, we may say
that these types are independently realizable. However, Theorem 6.5 will provide a simpler
(and more general) proof that F, is not spectrally universal, without using any notion of
independence.

Definition 6.4. An atomic n-type A (without parameters) is finitely realizable in K if there
exists an m > 0 in w such that:

e no A € K contains more than m distinct n-tuples realizing A; and
e some A € K contains m distinct n-tuples realizing A.

This m must be unique, so we also call A m-realizable in K. If K is the set of finitely
generated models (or equivalently, countable models) of a theory T', then we say that A is a
finitely realizable type under T'.

Theorem 6.5. Suppose K, is a class of countable structures, closed under taking substruc-
tures, and K C K, is the subclass of finitely generated structures in K. Assume that there
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are infinitely many atomic types (without parameters) which are finitely realizable in K. Then
no computable structure S in K, can be spectrally universal for K.

Proof. Suppose S were spectrally universal for K. By its universality, S must realize every
m-realizable atomic type I' at least m times. Also, for any such I, if S realized I" more than
m times, then § would have a finitely generated substructure B that realized I' more than
m times, and, by hypothesis, this B would also be in K,,, contradicting m-realizability of I'.
Hence I' must be realized exactly m times in S.

Let A be the substructure of S generated by all elements of tuples in S which realize
finitely realizable types. Then the only substructure of & isomorphic to A is A itself, so
every automorphism of & must map A onto itself. By assumption, A € K, so by spectral
universality we have Spec(A) = DgSpg(A) = {deg(A)}, since the image of A in S can only be
A itself. Theorem 1.1 then implies that A is trivial, hence finite. (We may assume K, to be
locally finite, by Lemma 6.3, so if A were infinite, it would have infinitely many generators,
which would have to realize infinitely many distinct types, contradicting triviality.) Hence T'
has only finitely many finitely realizable types. U

Thus, we could have shown that the algebraic closure F,, of Z;, was not spectrally universal
for algebraic extensions of Z,, just by considering embeddings of F,, into itself.

7. A SUFFICIENT CONDITION FOR SPECTRAL UNIVERSALITY

In this section we give a sufficient condition for certain Fraissé limits to be spectrally
universal for countable structures of the same age. We will observe that this condition holds
in the already known examples of spectrally universal structures. We will also show that
the condition is true for the class of finite Boolean algebras, establishing that the countable
atomless Boolean algebra is spectrally universal for countable Boolean algebras. This answers
a question from [12].

Let K be an age with AP, let F be the Fraissé limit of K, and let A be a countable model
with age included in K. To show that F is spectrally universal, we will need to find a unary
relation R in F, which is isomorphic to A and has the same spectrum within F as the spectrum
of A. Before stating the condition we want to impose on A to ensure that such a relation
exists, we need the following definition.

Definition 7.1. Let £4 be the language £ augmented with constant symbols ¢, one for each
a € A, and with a unary relation A. Now we consider the class of structures finitely generated
over A. Define FA to be the set of £A-structures B such that:

e the L-reduct of B is a model of T

e for € B, we have that B = A(x) if and only if B =z = c® for some a € A;

e the map a — c¢*: A — B is an L-embedding;

e B is finitely generated, so, as L-structures, B is finitely generated over A.

Theorem 7.2. Let K be a class of finite structures over a finite language L, with a computable
Fraissé limit F, such that Thy(K) is computably axiomatizable and locally finite. Suppose that
for every countable model A with age K, there exists an age K4 C FA of LA-structures such
that:
(1) KA has HP, JEP and AP;
(2) if C C D are finite models of T and C C A, then there is B in KA that is an exact
amalgamation of D and A over C (i.e., the intersection of the images of A and D in
B equals the image of C);
(3) for any presentation A of A, there is an A-computable representation of KA with the
A-computable extension property.
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Then F is spectrally universal for countable models with age K.

Proof. Consider A, a countable model with age K, and let K4 be given by the hypothesis of
the theorem. Since K4 is an age with AP, K has a Fraissé limit; call it 7*. We observe that
the L-reduct of FA is the Fraissé limit of K, and hence isomorphic to F. The reason is that
both are weakly homogeneous and both have age K (see [14, Lemma 6.1.4]). Let R be the
unary relation on F that corresponds to the interpretation of A in F* under this isomorphism.
Clearly R and A are isomorphic. We claim that they have the same spectrum. By Theorem
5.1, it is enough to show is that for every presentation A of A there is a relation R in F
that is computable from A and automorphic to R. We know that K- has an A—computable
representation which has the A-computable extension property. Then, by Theorem 3.12, K4
has a Fraissé limit F4 computable in A. By the countable categoricity of Fraissé limits, we
have that 74 is isomorphic to FA. By the computable categoricity of Fraissé limits for locally
finite K (Corollary 3.4), we have that the L-reduct of FA and F are isomorphic via an A-
computable isomorphism. Let R be the relation in F induced by the interpretation of A in
FA, under this isomorphism. Note that R and R are automorphic as unary relations on F
and that R <7 A, as desired. O

Remark 7.3. The spectral universality of the dense linear ordering and the random graph were
not originally proved using this method [12]. However, an age K* as the one in Theorem 7.2
was implicitly used in the original proofs. For the case of linear orderings, K* consisted of
the £A structures B such that for every - € B — A, either there is a least element of A greater
than it, or there is a greatest element of A less than it. For the case of graphs, K consisted
of the £A structures B such that for every € B — A, z is adjacent to only finitely many
elements of A.

7.1. The countable atomless Boolean algebra. Now we will use Theorem 7.2 to show
that the countable atomless Boolean algebra is spectrally universal for the class of countable
Boolean algebras.

Definition 7.4. Given a Boolean algebra C, and ¢ € C we let C¢ be the unique Boolean
algebra D such that:

(1) D extends C;
(2) D is generated by C and a new element d; and

(3) cis the least element of C greater than d, and 0 is the greatest element of C less than
d.

We need to show that C¢ is well defined.

Lemma 7.5. Given a Boolean algebra C, ¢ € C, a Boolean algebra satisfying the conditions
in Definition 7./ exists and is unique.

Proof. Let us start by proving the existence. Define C¢ = C®C<.. Let f: C — D be defined by
f(z) = (z,xAc). Is not hard to see that f is an embedding, so we view C¢ as an extension of C.
Let d = (0,¢) € C¢. Observe that d generates C¢ over C because (x,y) = (f(z)A=d)V (f(y)Ad)
for every (z,y) € C°. Note that the least element of f[C] greater than d is (¢,c) = f(c), and
the greatest element less than d is (0,0) = f(0).

Let us now prove the uniqueness. Let D be an extension of C satisfying the conditions of
the definition of C¢. Given (z,y) € C¢, let g(z,y) = (x A —=d) V (y Ad) € D. Tt is not hard to
see that ¢ is a homomorphism of Boolean algebras. It is onto because both C and d are in the
image of g: C = ¢[f[C]] and d = ¢(0,¢). To show that g is one-to-one, suppose g(z,y) = 0.
Then, z — d = 0 and hence z < d, which implies x = 0. Also, yAd=0,s0c—1y > d, and
hence ¢ — y = ¢ and y = 0. U
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Definition 7.6. Let A be a Boolean algebra. We say that D is a simple extension of A if it
is of the form (...(A%)...)%  where for each i < k, ¢; € (...(A%)..)% 1. Let K* be the age
of simple extensions of A, viewed as £A-structures.

Lemma 7.7. The age KA satisfies the conditions of Theorem 7.2.

Proof. Let us start by proving condition (2). Let C C D be finite Boolean algebras, and suppose
C C A. Suppose first that D is generated by only one element d over C, and moreover, that d
is below some atom c of C. Then, A€ is an exact amalgamation of A and D. The general case
follows by induction.

Condition (1) is also not hard to prove. For H P, consider (z,y) € A°. Then the subalgebra
generated by (z,y) over A C A° is the same as the one generated by (x — y,y — x), because
(x Ny,z ANy) € A. Notice that (0,0) is the greatest element of A less than (z — y,y — x),
and (zAy,z/Ay) is the least element of A greater than (x — y,y — x). So, by Lemma 7.5,
the sub-Boolean algebra of A° generated by (z,y) over A is isomorphic to A**Y. For JEP
and AP use the fact that (...((...(A%)...)%)% )% is an amalgamation of (...(.A%)...)% and
(...(A%).. )b,

For condition (3), K clearly has an .A-computable representation, K. To prove the A-
computable extension property, note that given D € K4 and a formula (¢, ) consistent with
D, we can just search for a simple extension of D satisfying Jxp(c, x). O

As a corollary we obtain the following theorem.

Theorem 7.8. The countable atomless Boolean algebra is spectrally universal.
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