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Abstract. Toward establishing the decidability of the two quantifier theory

of the ∆0
2 Turing degrees with join, we study extensions of embeddings of

upper-semi-lattices into the initial segments of Turing degrees determined by
computably enumerable sets, in particular the degree of the halting set 0′. We

obtain a good deal of sufficient and necessary conditions.
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1. Introduction

Since the introduction of the structure of the Turing degees D by Kleene and Post
[KP54], one of the main interests of computability theory has been to understand
its order-theoretic and algebraic properties; this pursuit was extended to many
other degree structures as well. Particular attention was paid to countable classes
of Turing degrees, with the ordering inherited from D. These are usually classes
which consist of the degrees of sets which are definable in arithmetic by formulas
of some fixed complexity. For example, classes which were investigated extensively
were the classes of computably enumerable degrees, of arithmetic degrees, and of
hyper-arithmetic degrees.

In this paper we concentrate on another important such collection, which is also
a principal initial segment of this structure: the upper-semi-lattice of the degrees
computable from the greatest c.e. degree 0′, that we denote by D(≤0′). The sets
that are computable in 0′ are the ∆0

2-definable sets. They form a very natural
class of sets, one of the reasons being that they are exactly the sets that can be
computably approximated (see [Soa87, Limit Lemma III.3.3]).
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Extensions of embeddings. Much is known about the upper-semi-lattice D(≤0′),
but we are far from having a clear understanding of what the structure really looks
like. We do know it is a complicated structure; for instance we know that its
theory is undecidable [Eps79,Ler83]. Moreover, its theory is one-to-one equivalent
to true first order arithmetic (Shore [Sho81]). On the other hand, if we look only
at existential sentences, we can decide which such sentences hold in D(≤0′): every
existential sentence that does not obviously contradict the axioms of upper-semi-
lattices holds in D(≤0′) (this follows from results in [KP54]). In other words, the
one-quantifier theory of D(≤0′) is decidable.

In order to understand where the complexity of a certain structure lies, one natu-
ral question to ask is what fragments of its theory are decidable. It has always been
the case that answers to this question, by exposing either decidability procedures
or coding methods, have given us a good deal of information about the algebraic
properties of the structure. In Figure 1 we show the results know so far for D(≤0′).
We note that when dealing with fragments which are determined by few quanti-
fier alterations, it makes sense to enrich the structure by functions and relations
which are definable, but not by quantifier-free formulas. The work in this paper is
oriented towards addressing the one question-mark left in the table: whether the
two-quantifier theory of D(≤0′), expanded by adding the join (least upper bound)
operation, is decidable or not.

These investigations have also been done for the whole structure D of the Turing
degrees, for the structure R of the computably enumerable degrees, and for many
other structures. We refer the reader to [Sho06] for a recent survey of known results.

Decidability results of ∃-theories and ∀∃-theories are closely related to embed-
dability results. Given a finite relational language L and an L-structure A, the
∃ThL(A) is decidable if and only if the the set of finite L-structures P which em-
bed into A is computable; the ∀∃ThL(A) is decidable if and only if given a finite
tuple of L-structures (P,Q1, ...,Qm) with P ⊆ Qi for all i 6 m, it is decidable
whether every embedding P ↪→ A has an extension Qi ↪→ A for some i. The
extensions-of-embeddings problem for A is the restriction of this latter problem to
the case m = 1. Hence, in terms of computational complexity, the extensions-of-
embedding problem for A lies between the ∃-theory and the ∀∃-theory of A.

For a recent survey of embeddability results in the Turing degrees see [Mon].

Definition 1.1. An upper-semi-latice (usl) is a partial ordering in which every pair
of elements has a least upper bound. We denote the least upper bound of a and b
by a ∨ b. All the usls we consider will have a top element 1 and a bottom element
0. A usl embedding has to preserve not only the ordering, non-ordering, and join
operation, but also the top and bottom elements. When we write P ⊆ Q we mean
that the the top and bottom elements of P and Q coincide, that is, the identity on
P is a usl embedding into Q.

Let E be the set of pairs of usls (P,Q), such that P ⊆ Q and such that every
usl embedding of P into 〈D(≤0′),≤,∨,0,0′〉, can be extended to an embedding
of Q into 〈D(≤0′),≤,∨,0,0′〉. Thus E is the extensions-of-embeddings problem for
D(≤0′).

In order to find a procedure for deciding ∀∃Th(D(≤0′),≤,∨) we definitely have
to start by solving the extensions-of-embeddings problem for this structure, that
is, by showing that E is a computable set.
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∃ ∀∃ ∃∀∃
(D(≤0′),≤T ) decidable decidable undecidable
(D(≤0′),≤T ,∨) decidable ? undecidable
(D(≤0′),≤T ,∨,∧) decidable undecidable undecidable

Figure 1. The decidability of ∃Th(D(≤0′),≤T ,∨) follows from
the work of Kleene and Post [KP54]. The decidability of
∃Th(D(≤0′),≤T ,∨,∧), where ∧ is the partial binary operation that
is the greatest lower bound operation, follows from the Lachlan and
Lebeuf lattice embedding theorem [LL76]. The undecidability of
∃∀∃Th(D(≤0′),≤T ) is due to Schmerl and Lerman [Ler83]. The de-
cidability of ∀∃Th(D(≤0′),≤T ) is due to Lerman and Shore [LS88].
The undecidability of ∀∃Th(D(≤0′),≤T ,∨,∧), where ∧ is any total
binary operation that is the greatest lower bound operation when
this exists, is due to R. Miller, Nies and Shore [MNS04].

Conversely, in some occasions, deciding the extensions-of-embeddings problem
has been sufficient to show the decidability of ∀∃-theories. This was the case with
the decidability of ∀∃Th(D,≤,∨) by Jockusch and Slaman [JS93] and the decidabil-
ity of ∀∃Th(D(≤0′),≤T ) by Lerman and Shore [LS88]. The extension-of-embedding
problem for (R,≤T ), proved decidable by Slaman and Soare [SS01], was the first
one whose decision procedure was not trivial. This result did not produce a decision
procedure for ∀∃Th(R,≤). We expect a similar behavior for D(≤0′), in the sense
that solving the extension of embeddings problem for D(≤0′) will not be enough to
decide its ∀∃-theory. We will give evidence for this suspicion in Subsection 1 below.

We have not yet found a decision procedure for the extension-of-embedding prob-
lem for D(≤0′). However, we have found a good deal of necessary and sufficient
conditions that we expect will eventually lead to a solution of the problem. Many
of the theorems we proved for this purpose are interesting in their own right, and
provide a better understanding of the structure D(≤0′).

Known results. Let us start analyzing whether (P,Q) ∈ E for the simplest cases.
Suppose P = {0 < a < 1} is a 3-element chain, and that Q ⊃ P is generated
from P by adding a single element x; we write Q = P[x]. We identify P with its
image under an embedding of P into D(≤0′), so 1 = 0′. There are four different
possibilities for Q.
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First, if a < x < 1, since 0′ is c.e. over a, by the downwards density of the c.e.
degrees (Sacks Splitting Theorem [Sac63]), we know that 0′ is not minimal over a.
Therefore, there is a degree x as wanted, and every embedding of P into D(≤0′)

can be extended to an embedding of Q into D(60′).
Second, suppose that a and x are incomparable and x∨ a = 1. In this case, the

extension is possible by the following theorem.
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Theorem 1.2 (Robinson [Rob72], Posner and Robinson [PR81]). For every degree
a < 0′, there exists x < 0′ such that a ∨ x = 0′.

Third, comes the case where a and x are incomparable but x ∨ a < 1. Since 0′

is c.e. over a, there is a 1-a-generic degree x below 0′ (see [Soa87, Ex. VI 3.9]).
Therefore, x is incomparable to a and x ∨ a does not compute 0′ (as it does not
compute any a-c.e. set). So the extension is possible.

The last case is 0 < x < a. In this case the extension will not be possible
when a is a minimal degree, and we know there are minimal degrees below 0′

(Sacks [Sac61]). The analysis for this last case can be extended to a much more
general setting:

Definition 1.3. If P ⊆ Q are usls, we say that Q is an end extension of P, if no
element of Q \ P lies below an element of P, with the obvious exception of 1.

Lemma 1.4. If (P,Q) ∈ E, then Q is an end extension of P.

Proof. Suppose Q is not an end extension of P. An embedding of P, where P \1 is
an initial segment below 0′, would not have an extension toQ. The existence of such
an embedding of P was proved by Lerman and Shore [LS88]. So, (P,Q) 6∈ E �

There is another necessary condition for extension-of-embeddings of a different
nature that follows from known results. Here is the key theorem.

Theorem 1.5 (Cooper [Coo89], Slaman, Steel [SS89]). There are c.e. degrees 0 <
b < c such that for no x < c do we have b ∨ x = c.

We say that c fails the join property, witnessed by b. Using Jockusch and Shore’s
pseudo-jump inversion theorem [JS83], we obtain a c.e. degree a, relative to which
0′ fails the join property: there is some b, strictly between a and 0′, such that
there is no x strictly between a and 0′ such that b ∨ x = 0′.

Therefore, if P = {0 < a < b < 1} and Q = P[x] where a < x < 1 and
b ∨ x = 1, then (P,Q) 6∈ E.

We will see that if (P,Q) ∈ E, then the configuration we just described cannot
appear inside (P,Q) in a sense we will specify later. We will also extend Theo-
rem 1.5 and get other necessary conditions to have the extensions-of-embeddings
property.

The ∀∃-theory. When Jockusch and Slaman [JS93] proved the decidability of
∀∃Th(D,≤,∨), they proved that a pair or usls P and Q (with a bottom element,
but without a top element) has the extensions-of-embedding property if and only
if Q is an end extension of P. The fact that this condition is necessary follows
from the fact that any usl can be embedded as an initial segment of the Turing
degrees. It then follows that given (P,Q1, ...,Qk) with P ⊆ Qi, we have that every
embedding of P into (D,≤,∨) has an extension to some Qi if and only if some Qi is
an end extension of P. Hence, ∀∃Th(D,≤,∨) is decidable. A very similar behavior
occurred with Lerman and Shore’s proof of the decidability of ∀∃Th(D(≤0′),≤T ).
The following example shows that proving the decidability of ∀∃Th(D(≤0′),≤T ,∨)
will require more work than just solving the extensions-of-embedding problem.

Example 1.6 (Montalbán [Mon]). Let P = {0 < a < b < 1}; let Q1 be the one
element extension P[x], where 0 < x < a; let Q2 be the one element extension
P[x], where a < x < 1 and x ∨ b = 1. See Figure 2. By our observations above,
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we see that there is an embedding of P which has no extensions to Q1, namely
the one where a is a minimal degree. Also, there is an embedding of P which
has no extension to Q2, namely the one we obtained by inverting the pseudo-jump
operator given by the Cooper or the Slaman-Steel constructions, making 0′ fail the
join property relative to a, as witnessed by b. However, every embedding of P into
D(≤0′) can be extended to either Q1 or Q2: On the one hand, if a is not minimal,
then we can extend to Q1; on the other hand, if a is minimal, then a is low2, and
hence 0′ is high over a, and hence we can get x by Posner’s [Pos77] join theorem.
Posner’s theorem is the generalization of Theorem 1.2 to any high degree in place
of 0′.
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Figure 2. The ∀∃Th(D(≤0′),≤,∨) is not immediately com-
putable from the extensions-of-embeddings problem.

We show in this paper how Posner’s Theorem and Theorem 1.2 can be extended
to any non-low2 degree, furthermore, to any non-generalized-low2 degree.

Theorem 1.7. Let c be a non-GL2 degree. Then for every non-zero degree a < c
there is some x < c such that a ∨ x = c.

We will prove this theorem in Section 7, using ideas from Slaman and Steel’s
[SS89] uniform proof of the join theorem for 0′. We believe that this theorem, and
maybe other theorems regarding non-low2 degrees, will be important to solve the
decidability of ∀∃Th(D(≤0′),≤,∨), as illustrated in the following example.

Example 1.8. Let P = {0 = a0 < b1 < a1 < b2 < ... < an = 1}; for each
i = 1, ..., n, let Qi be the one element extension P[x], where ai−1 < x < ai and
bi∨x = ai. See Figure 3, which illustrates the case n = 3. Then, as in the previous
example, we can show that for each i, there is an embedding of P which has no
extension to Qi. However, for every embedding of P there is some i such that the
embedding extends to Qi. The reason is that for some i we have to have that ai is
non-low2 over ai−1, because otherwise 0′ = an would be low2 over 0 = a0. Then
we apply Theorem 1.7 relative to ai−1.

Extensions below a c.e. set. In computability theory, most of the proofs are
relativizable, and one would expect that the solution of the extension of embedding
problem (if decidable) will also be relativizable. So, it makes sense to study the
following extension-of-embeddings set, as it is possible it might end up being equal
to E.
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Figure 3. Example 1.8

Definition 1.9. Let Ejump = {(P,Q) finite usls: every embedding h : P ↪→ D
with h(1) ≡T h(0)′, has an extension to Q ↪→ D }.

The method of pseudo-jump inversion used in Example 1.6 suggests that it will
also be useful to study the extension-of-embeddings problem below any c.e. degree:
essentially, given any c.e. degree c, there is some degree a < 0′ such that relative
to a, 0′ behaves like c.

Definition 1.10. Let Ec.e. = {(P,Q) finite usls: every embedding h : P ↪→ D
where h(1) is c.e. in h(0), has an extension to Q ↪→ D }.

It is not hard to see that

(P,Q) ∈ Ec.e. =⇒ (P,Q) ∈ Ejump =⇒ (P,Q) ∈ E.
The first of these implications cannot be reversed: take P = {0 < a < 1} and
Q = P[x] where a ∨ x = 1. By Theorem 1.5, (P,Q) 6∈ Ec.e., but, using Therorem
1.2 we get (P,Q) ∈ Ejump.

However, there is a restatement of the implication above that might be reversible.
Given a usl P, let P∗ be P ∪ {0∗} were 0∗ is strictly below all the elements of P.
If Ec.e.,Ejump and E are decidable, and proofs are relativizable, the pseudo-jump
inversion technique would lead us to expect the following equivalence:

(P,Q) ∈ Ec.e. ⇐⇒ (P∗,Q∗) ∈ Ejump ⇐⇒ (P∗,Q∗) ∈ E.
We thus believe that understanding Ec.e. is key to understand E. The rest of the
paper is dedicated to the study of Ec.e..

Necessary conditions. We have already shown that if (P,Q) ∈ E, then Q is an
end extension of P. Since Ec.e. ⊆ E, the same holds for Ec.e.. So, from now on, we
will always assume that Q is an end extension of P.

The other negative extension-of-embeddings result we have mentioned is Theo-
rem 1.5. We would like to get a result saying that if (P,Q) contains a configuration
similar to the one of that theorem, then (P,Q) 6∈ Ec.e..

The first extension of Theorem 1.5 that we obtain is the following one.

Theorem 1.11. There are c.e. degrees a,b and c such that 0 < a < b < c, and
for every x ≤ c, if b 6≤ x, then b 6≤ x∨a. That is, in D(6c), no degree non-trivially
joins b above a.
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This theorem follows from the following two lemmas, that use a notion similar to
contiguity. Recall that a degree a is strongly contiguous if any two sets A,B ∈ a are
weak truth-table equivalent. This notion was defined by Downey [Dow87], based on
work by Ladner and Sasso [LS75]. We will not use contiguous degrees, but rather,
the similar notion of a contiguous pair, which is a pair as in the following lemma,
which we will prove in Subsection 2.1.

Lemma 1.12. There exist c.e. sets B and C such that ∅ <T B <T C, and such
that for every set X such that B ≤T X ≤T C, we have B 6wtt X.

Then, we will use the global-anti-cupping theorem for the weak truth-table de-
grees.

Lemma 1.13 (Downey [Dow87]). For every noncomputable c.e. set B, there exists
a noncomputable c.e. set A <T B such that for every set X,

X ⊕A ≥wtt B =⇒ X ≥T B.

To prove Theorem 1.11, let B and C be the sets guaranteed by Lemma 1.12, and
let A be the anti-cupping witness for B given by Lemma 1.13, and let a = degT (A),
b = degT (B), and c = degT (C).

Now, suppose that P ⊆ Q are two usls, and suppose that there are a < b in P
and some x ∈ Q \P which in Q non-trivially joins a above b; that is, in Q, x 6≥ b,
but a∨x > b. We would like to use Theorem 1.11 to deduce that (P,Q) 6∈ Ec.e.. In
order to do this, we would like to find an embedding of P into D(6c) for some c.e.
degree c, where the images of a and b satisfy the non-join property in D(6c) as in
Theorem 1.11; this would preclude an extension of this embedding to Q. However,
this plan is impossible if already in P there is some y which non-trivially joins a
above b.

Example 1.14. Suppose P = {0 < a0,a1 < b < 1} where a0 ∨ a1 = b, and that
Q = P[x] where a0 ∨ x > b and a1 ∨ x > b. As we said above, we will not
be able to get an embedding of P where for no x 6≥ b we have that a0 ∨ x > b
because a1 already has this property. However, by merging the proofs of the next
lemma and Lemma 1.12 we can get an embedding of P such that for no x 6≥ b we
simultaneously have that a0 ∨ x > b and a1 ∨ x > b, and so nonetheless we get
(P,Q) /∈ Ec.e.. We will merge these proofs and other proofs in Theorem 1.17.

Lemma 1.15. There exist Turing incomparable, disjoint c.e. sets A0 and A1 such
that for every set X ⊆ ω,

X ∨A0 ≥wtt B & X ∨A1 ≥wtt B =⇒ X ≥T B,

where B = A0 ∪A1.

(We recall that degT (B) = degT (A0) ∨ degT (A1).)
We will prove this lemma in Subsection 2.2. Of course, instead of having B split

into two sets A0 and A1, we could split B into as many sets as we want.
We will exploit Example 1.14 and show that if a similar configuration occurs

inside a pair (P,Q), then (P,Q) 6∈ Ec.e.. Let us describe this in more detail.

Definition 1.16. Let P be an usl and Q be an extension of P. We say that (P,Q)
satisfies the anti-cupping condition, and write (P,Q) |= ACC, if for every x ∈ Q\P
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and for every b ∈ P such that b 6≤ x, there exists c ∈ P (c might be 0) such that
c 6≥ b and for every a < b in P we have that

x ∨ a ≥ b =⇒ c ∨ a ≥ b.

In Section 3 we will prove the following theorem that says that this is a necessary
condition.

Theorem 1.17. Let P be a usl, and let Q = P[x] be an extension of P generated
by a single element. If (P,Q) ∈ Ec.e., then (P,Q) |= ACC.

However, we do know that this condition is not sufficient. The reason is the
following surprising theorem.

Theorem 1.18. There exist c.e. sets A,B,C,D and E such that A,B,D and E
are all Turing reducible to C and pairwise incomparable, and such that any ∆0

2 set
X which is computable in C and joins A above B also joins D above E.

Theorem 1.18 implies that there is a pair (P,Q) such that Q = P[x] and such
that (P,Q) |= ACC (and Q is an end-extension of P) but (P,Q) /∈ Ec.e.. Let A, B,
C, D, E be the sets given by Theorem 1.18, and let a = degT (A), b = degT (B),
etc. Let P be the sub-usl of D(≤c) generated by the degrees a, b, d and e. Let
Q = P[x] be such that x > b, and of course x < c, but no further inequalities
hold between x and the elements of P. Then certainly x ∨ a > b, but x ∨ d � e;
so there is no extension of the identity embedding of P to an embedding of Q into
D(≤c). (P,Q) |= ACC holds vacuously, because the only non-trivial join involving
x is caused by x > b.

Theorem 1.18 says, in a sense, that if X ≤T C joins A above B, then there is
a certain amount of information encoded in X, and this information is enough to
join D above E. The natural question that follows is whether this information can
compute some non-zero degree.

Question 1.19. Is there a c.e. set C, incomparable sets A,B <T C and a non-
computable set E such that for any ∆0

2 set X which is computable in C, if X joins
A above B, then X computes E?

Sufficient Conditions. There are some cases where we know we always have the
extensions-of-embeddings property. We start by looking at free extensions.

Definition 1.20. We say that Q is a free extension of P if Q = P[F ] for some finite
set F , and given given p0 ∨

∨
A0 and p1 ∨

∨
A1 with p0, p1 ∈ P, and A0, A1 ⊆ F ,

we have that

p0 ∨
∨
A0 ≤ p1 ∨

∨
A1 ⇐⇒ p0 ≤ p1 & A0 ⊆ A1

Lemma 1.21. Every free extension belongs to Ec.e..

To prove this lemma it is enough to consider F with one element. Because if
F = {x1, ...,xk}, then P[F ] = P[x1][x2]....[xk], where each of these 1-generator
extensions is free.

In the case where P has one element, that we discussed above, we used a 1-a-
generic set to get the free extension and the fact that there are 1-generic degrees
below any c.e. set. When P has more elements, we would like to get a set G,
computable from 1, that is 1-generic relative to all the elements of P \ {1}. This
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set G is easily obtainable if P \ {1} has a maximal element. However, we prove
that we can get such a set G even if this is not the case.

Theorem 1.22. Let C be a c.e. set and let {Ai : i ∈ ω} a uniformly C-computable
list of sets. Then, there exists a set G ≤T C such that G is 1-generic relative to
Ai, for every i ∈ ω such that Ai <T C.

Lemma 1.21 follows from Theorem 1.22 using two basic properties of 1-generic
sets: 1-generic sets do not compute c.e. degrees; and if A <T B and G is 1-B-
generic, then A⊕G 6≥T B [Joc80].

Let us now go back to the extension of Theorems 1.5 and 1.11. Suppose we have
0 < a < d < c where c is c.e., and we want to get x ≤ c such that

d 6≤ x & d ≤ x ∨ a.

Theorem 1.11 tells us that we might find a,d, c such that no such x exists. Suppose
now that we know there is some b < d such that a ∨ b = d. In this case we can
find x as above just by letting x = b. However, suppose we do not want to cheat,
and we want to get such an x that is not above b. Can we still find a,b,d, c so
that there is no such x? In other words, is it possible that b is the least degree
below c such that a ∨ b ≥ d? The answer is no.

Theorem 1.23 (No-least-join theorem). Let c be a noncomputable c.e. degree. Let
a,b < c such that a � b and b > 0. Then there is a degree x ≤ c such that
a ∨ x ≥ b but x 6≥ b.

Figure 4 reflects the situation of the theorem in the particular case when a∨x < c
and a and b are incomparable.)

c

a ∨ x

a ∨ b
ooo

b ∨ x
OOO

a
vvv

b
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NNNN
x

III

Figure 4. No least join

The restricted difference Filter. The questions we have raised in this paper
indicate that an important object that we need to understand better is the following.

Definition 1.24. Given Turing degrees b and a, we define the difference filter as

a→ b = {x ∈ D : x ∨ a ≥ b}.

For the work in this paper, a more interesting notion is the restricted difference
filter

a→c b = {x ≤ c : x ∨ a ≥ b},
where c is a c.e. degree.
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We call this set a filter just because it is closed upwards.
The following are known observations about the difference Filter. Let a 6≥ b.

Then a→ b is never an upper cone. Moreover, it always contains 1-generic degrees
and minimal degrees. To see this let d = b∨0′. It follows from Slaman and Steel’s
proof of the join theorem for 0′ [SS89] that there are 1-generic degrees x such that
x ∨ a = d ≥ b. Using the minimal complementation theorem [Lew05], we get a
minimal degree x with x ∨ a = d ≥ b.

Jockusch and Slaman [JS93] proved the following result (stated in a different
way):

a→ b ⊆ d→ e ⇐⇒ either e ≥ a & d ≥ e ∨ b, or e ≥ d
The behavior of the restricted difference filter is rather different. Theorem 1.11

states that there are c.e. degrees 0 < a < b < c such that a →c b is the cone of
degrees above b, of course, restricted to D(≤c). On the other hand, the no-least-join
theorem 1.23 states that if 0 < a,b < c, c is c.e. and a|b, then a→c b is never an
upper cone.

Jockusch’s and Slaman’s condition does not hold anymore for the restricted
filter: Theorem 1.18 provided c.e. degrees a,b,d, e, all incomparable and below a
c.e. degree c, such that a→c b ⊆ d→c e.

Background and Notation. Our notation is standard and mostly follows [Soa87].
Many of our constructions will be organized on a tree of strategies. We assume

the reader is familiar with this type of construction. See [Soa87, Chapter XIV] for
background on tree constructions. Let us very quickly refresh the reader about
the notation on this type of construction: Each node α in the tree of strategies is
assigned a requirement Rα. These requirement have certain possible outcomes, and
for each of these outcomes o, α_o is another node in the tree of strategies. The idea
is that each node in the tree of strategies codes the outcomes of the requirements
of higher priority. The set of outcomes is linearly ordered, and this induces a
lexicographic partial ordering <L on the whole tree, where nodes comparable under
⊆ are incomparable under <L. Nodes to the left have higher priority than nodes to
the right. Also, nodes that are initial segments of other nodes have higher priority.
At each stage s we will pick a node αs in the tree to be our current approximation
to the true path. At this stage we will act for each requirement Rα for α ⊆ αs. If
α ⊆ αs, we say that α is accessible at s, and that s is an α-stage. The true path of
a construction is the leftmost path visited infinitely often. At the end, we will only
worry about satisfying requirements Rα for α in the true path.

A set G is 1-A-generic if for every c.e. set of strings We, there exists σ ⊂ G such
that either σ ∈ WA

e , or no extension of σ is in WA
e . If G is 1-A-generic, then G

does not compute any A-c.e. set and if D <T A, then D ⊕G 6≥T A.
A degree c is GL2 if (c ∨ 0′)′ ≥ c′′. If f1 is computable in c ∨ 0′, and c is not

GL2, then there exists a c-computable function f2 that is not dominated by f1.

2. Almost contiguity and the global anti-cupping property

In this section we prove Lemmas 1.12 and 1.15 getting Example 1.14 as a corol-
lary. The ideas used in the proofs will be used in later sections.

2.1. An almost contiguous pair. As we said in the introduction, a degree a is
strongly contiguous if any two sets A,B ∈ a are wtt-equivalent. Downey [Dow87]
used these degrees to transfer properties about the structure of wtt-degrees to the
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structure of Turing degrees. We use the same idea here. However, we do not need
to use strongly contiguous degrees. We just need the following lemma.

Lemma 2.1 (Lemma 1.12). There exist c.e. sets B,A, such that 0 <T B <T A
such that for every set X with B ≤T X ≤T A, we have B 6wtt X.

Proof. We have three types of requirements:

PB,A
e : ΨB

e 6= A,

P∅,Be : Ψe 6= B,

Me : Φe(A) = X total ∧ Γe(X) = B =⇒ B 6wtt X.

The requirements will be arranged on a tree of strategies as usual. To each node
σ in the tree of strategies we assign a requirement Rσ. If |σ| = 3e then we let
Rσ = Me, if |σ| = 3e+ 1 let Rσ = PB,A

e and if |σ| = 3e+ 2 let Rσ = P∅,Be .
We also need to make sure that B ≤T A. To this end, every time we enumerate

a number x into B, we also enumerate it into A.

2.1.1. Requirements PB,A. We use Friedberg-Muchnick’s strategy [Fri57, Muc56].
These requirements have two possible outcomes sat for satisfied, and wait for
waiting. We order the outcomes by sat < wait. They will choose a follower x and
wait until ΦBe (x) ↓ [s] = 0. If this ever happens, they will enumerate x into A and
preserve the computation by initializing weaker priority requirements that wanted
to enumerate followers into B. Furthermore, every time a requirement PB,A acts,
by either appointing a follower or enumerating a follower, all the P requirements
of weaker priority are initialized and we move on to the next stage s+ 1.

2.1.2. Requirement P∅,Be . They work in the same way as PB,A.

2.1.3. Requirements Me. The possible outcomes of these requirements are ∞ <
fty. Requirement Me will be monitoring the length of agreement between Γe(Φe(A))
and B. When this length of agreement grows large enough, we take the infinite out-
come; we call these stages expansionary stages. More precisely: suppose Rσ = Me;
the first σ-stage is a σ-expansionary stage, and every time this length of agreement
goes beyond the largest number ever seen in the previous σ-expansionary stage,
we have another σ-expansionary stage. At σ-expansionary stages we take the ∞
outcome and at the non-expansionary stages we take the finite outcome. There is
no action performed by these requirements other than deciding what is the next
node in the tree of strategies to be visited. This decision might have the effect of
cancelling a whole bunch of followers, and therefore preserving A and B.

At every σ-stage we initialize all the requirements Rτ for σ <L τ . We appoint
at most one follower at every stage. We enumerate at most one element at every
stage.

2.1.4. Verifications. The tree of strategies is finitely branching. So there is a left-
most path that we call the true path.

Suppose first that σ is on the true path and Rσ = PB,A
e . Let s be a stage

after which we never go to the left of σ and such none of the positive requirements
Rτ with τ ( σ act ever again. The next time PB,A

e is active, we will choose
a follower x for it, if we have not yet. This follower will never be cancelled and
hence, if ΦBe (x) ↓= 0, the follower will eventually go into A. When this happens, all
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followers of weaker priority will be cancelled. Since none of the followers of stronger
priority will enter B, we have that nobody below the use of this computation will
enter B.

If σ is in the true path and Rσ = P∅,Be , a similar argument applies.
Suppose now that σ is in the true path and Rσ = Me. Also, suppose that

Φe(A) total , X = Φe(A) and Γe(X) = B. So, there will be infinitely many σ-
expansionary true stages and hence σ_∞ will be in the true path. We need to
show that B 6wtt X. Fix n; we want to decide whether n ∈ B. Wait for the first
σ-expansionary stage s where the length of agreement is larger than n. Let v(n)
be the X use for computing this length of agreement at that stage and let u(n)
be the A use for computing this length of agreement. Using use v(n) we want to
X-compute B(n). Let t > s be the least σ-expansionary stage where X is correct
up to v(n). We claim that n ∈ B if and only if n ∈ Bt. If X did not change below
v(n) between stages s and t, then B(n)[t] = ΓXe (n)[t] = ΓXe (n) did not change
either and will not ever change. If it did it is because some number got enumerated
into A below u(n), and maybe also into B. If this number is below n, then the
follower n would have been cancelled and hence never enumerated into B. On the
other hand, when follower n was appointed, all the weaker priority followers were
cancelled, and at the σ-expansionary stage s, all the followers to the right of the
true path were cancelled again. The next follower appointed after s is greater than
s, and s is greater than u(n). So, nobody below u(n) is enumerated into A between
stages s and t without cancelling n. �

2.2. Global anti-cupping property.

Lemma 2.2 (Lemma 1.15). There exist incomparable disjoint c.e. sets A0, A1 such
that for every set X,

X ∨A0 ≥wtt B & X ∨A1 ≥wtt B =⇒ X ≥T B,

where B = A0 ∪A1.

Proof. We have three types of requirements:

PA0,A1
e : ΨA0

e 6= A1,

PA1,A0
e : ΨA1

e 6= A0,

Ne : Φ̂e(A0 ⊕X) = Φ̂e(A1 ⊕X) = B =⇒ X ≥T B,

where we use Φ̂e to denote a wtt-Turing functional with use ϕe. Notice that ϕe
might not be total, in which case Φ̂e will not be a wtt-turing functional. But it will
otherwise.

The requirements are ordered by priorities in some way and put in a tree of
strategies.

The positive requirements PA0,A1
e and PA1,A0

e work exactly as PB,A in the pre-
vious construction.

We also have that every time a requirement PB,A acts, by either appointing a
follower or enumerating a follower, all the positive requirements of weaker priority
are initialized and the stage is stopped. Furthermore, every requirement to the
right of the current approximation to the true path is also initialized.
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2.2.1. Requirements Ne. All these requirements do is to impose a restraint on the
P requirements of weaker priority. Actually, rather than imposing restraint, these
requirements will decide part of the true path and hence play a roll initializing
requirements to the right of the true path.

Requirement Ne guesses whether the use function ϕe is total or not. So, they
have two outcomes ∞ < fty; the former guessing total and the latter non-total.
Given σ in the tree of strategies with Rσ = Ne, we define a set of σ-expansionary
stages as we did for requirement Me in the previous construction. The first σ-
stage is a σ-expansionary stage. A σ-stage s is σ-expansionary if ϕe[s] converges
at the largest number ever seen in the previous σ-expansionary stage (and it also
converges on all the numbers below it). At σ-expansionary stages we output ∞,
and we output fty otherwise.

Again, at every σ stage we initialize all the requirements Rτ for σ <L τ and
either we appoint at most one follower at every stage or enumerate at most one
element.

We now show how this is enough to satisfy Ne. Let σ be in the true path such
that Rσ = Ne. Suppose that ϕe is total and Φ̂e(A0 ⊕X) = Φ̂e(A1 ⊕X) = B for
some real X. We claim that X ≥T B. Wait until a stage after which σ is never
injured, and after which all the requirements of higher priority had acted already.
Pick n ∈ ω; we want to X-compute B(n). Wait until we have (inductively) decided
B �n. Wait a bit longer until a σ_∞-stage s at which n is appointed as a follower
or we know n will never be appointed as a follower. So, n has been appointed by
τ ⊇ σ_∞ and suppose that n is a follower directed to enter A1 and not A0. After
the following σ_∞-stage s1, we will never enumerate anything else in A0 smaller
than ϕe(n). Notice that we know that nothing below n will ever get enumerated in
A0 because B �n has reached it final value already and A0 ⊆ B. Wait until the first
σ_∞-stage s2 ≥ s1 such that Φ̂A0⊕X

e = B �n + 1[s2]. We claim that if n has not
been enumerated by then, it will not be enumerated ever. This holds because if n is
enumerated in B, then, since we will never enumerate anything else in A0 smaller
than ϕe(n), we will have Φ̂A0⊕X

e 6= B �n+ 1. Therefore, B(n) = Φ̂A0[s2]⊕X
e (n). �

3. The generalized anti-cupping condition

This section is dedicated to proving Theorem 1.17.

3.1. Upper-semi-lattice embeddings into the c.e. degrees. We start by de-
scribing the standard method of embedding a usl in the c.e. degrees. We include
the proof here because we will use a modification of it later. Also, we describe it in
a way that is compatible with this modification.

Lemma 3.1 (Friedberg-Muchnik [Fri57,Muc56]). Every finite usl can be embedded
into the c.e. degrees.

Proof. Let P be a finite usl. We build c.e. sets Aa for each a ∈ P such that the
map a 7→ Aa is a usl-embedding.

Let P be a usl. A subset F of P is said to be a filter if it is closed upwards and
whenever a ∨ b ∈ F , at least one of a or b is in F .

When a ≤ b, we need to get Aa ≤T Ab. For this purpose, we impose the
condition that whenever we enumerate some x into Aa we also enumerate it in Ab.
When a∨b ≥ c we want to have that Aa⊕Ab ≥T Ac. For this purpose, we impose
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the condition that whenever we enumerate some x into Ac, we also enumerate it
into either Aa of Ab. We summarize these two conditions into one:

(F1) Whenever some number x is enumerated into some set, there is a filter F
such that x is enumerated in every set Aa for a ∈ F .

It is not hard to see that if this condition is satisfied by our construction, then
we will get that Aa ≤T Ab whenever a ≤ b, and that Aa ⊕ Ab ≥T Ac whenever
a ∨ b ≥ c. We will only use filters of the form

Fd = {z ∈ P : z 6≤ d}.

The next thing we need is that whenever d 6≥ e, Ad 6≥T Ae. Note that since P
is an upper-semi-latice, e ∨ d ∈ P and it is enough to get Ad 6≥T Ae∨d. Hence, it
is enough to satisfy the following requirements. For each d, e ∈ P with d < e, and
each e ∈ ω, we have a requirement

Pd,e
e : ΨD

e 6= E.

These requirements are assigned priorities in some way as usual, and put into a
tree of strategies.

3.1.1. Requirements Pd,e. These requirements work in a very similar way to the
requirements in §2.1.1, except that they will enumerate their followers into a filter
rather than into a single set. They have two outcomes sat < wait. Let σ be a node
in the tree of strategies and Rσ = Pd,e. The first time we are in a σ-stage since
Rσ has been initialized, we appoint a follower x greater than every number seen
before. At every following σ-stage s, we check whether ΦA

d

e (x) ↓ [s] = 0. If not, we
output wait, declare s to be a σ_wait-stage and go to the module for Rσ_wait. If
yes, we enumerate x into Az for every z ∈ Fd, and in particular into Ae and stop
the stage. At every following σ-stage, so long as Rσ is not initialized, we output
sat and move directly to the module of Rσ_sat.

Every time a requirement Pd,e
e acts, by either appointing or enumerating a fol-

lower, all the P requirements of weaker priority are initialized.
Let us now verify that each Pd,e

e is satisfied. Let σ be the node in the true path
of the construction such that Rσ = Pd,e

e . Since σ is in the true path, there is a
first σ-stage s, after which Rσ is never initialized again. At s, Rσ will enumerate
a follower x. If ΦA

d

e (x) ↓ [t] = 0 is ever true at a σ-stage t, then we will have
Ae(x) = 1. Since Rσ is never initialized again, nobody of higher priority than Rσ

enumerates anything ever again. Since all the requirements of weaker priority than
Rσ are initialized, there will be no new followers below the use of this computation.
Therefore, the computation ΦA

d

e (x)[t] = 0 is preserved for ever. �

3.2. A negative condition. In this subsection we put together the constructions
of the previous three subsections and prove Theorem 1.17. So, let us consider a
pair of usls P ⊂ Q such that (P,Q) 6|= ACC. There has to be some x ∈ Q \ P and
a b ∈ P, b 6≤ x such if a1, ...,ak are the P-minimal elements below b such that
ai ∨ x ≥ b, then for every c with c 6≥ b, there exists some i such that ai ∨ c 6≥ b.

We want to construct an embedding of P which has no extensions to P[x]. We
build c.e. sets Aa for each a ∈ P such that the map a 7→ Aa is an usl-embedding.
We use A to denote A1 and B to denote Ab. Moreover, we build this embedding so
that there is no X ≤T A such that X 6≥T B and for every i = 1, ..., k, X⊕Aai ≥T B.
For this purpose, we build B and A such that for every Y , if B ≤T Y ≤T A, we
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have B ≤wtt Y and such that for every X, if for every i = 1, ..., k, X ⊕Aai ≥wtt B,
then X ≥T B.

For each d, e ∈ P with d < e, we have requirements:

Pd,e
e : ΨAd

e 6= Ae,

Me : Φe(A) total ∧ Γe(Φe(A)) = B =⇒ B 6wtt Φe(A),

Ne : ∀i = 1, ..., k Φ̂e(Aai ⊕X) = B =⇒ X ≥T B.

Also, if d, e ∈ P with d ≤ e, we need to get that Ad ≤T Ae. We will obtain this
as a feature of our construction using a condition similar to (F1).

The requirements are ordered by priorities in some way and assigned nodes in a
tree of strategies as usual.

3.2.1. Requirement Me. This requirement works exactly like the M requirements
in the construction of Section 2.1. It monitors the length of agreement between
Γe(Φe(A)) and B. When this length of agreement goes beyond the largest number
ever seen in the previous σ-expansionary stage, we have another σ-expansionary
stage and we output ∞.

At every σ stage we initialize all the requirements Rτ for σ <L τ . We appoint
at most one follower at every stage. We enumerate at most one element at every
stage.

The verification works exactly as in 2.1.4.

3.2.2. Requirement Pd,e
e . We relax condition (F1) a bit so we do not injure lower

priority Ni requirements.
(F2) Whenever some number is enumerated into some set, there are two filters

F0 ⊆ F1 and numbers x0 ≤ x1 such that x0 is enumerated in every set Aa

for a ∈ F0 and x1 is enumerated in every set Aa for a ∈ F1 \ F0. Also,
b ∈ F0 and for some i, ai 6∈ F0.

We call x1 a follower and x0 an agitator.
Notice that this type of permitting is still enough for our purposes: Suppose

a < c and suppose we enumerate a number x into Aa. Then x is either x0 or x1

of condition (F2). If x = x0 and a ∈ F0, then c ∈ F0, and x0 is enumerated into
Ac. If x = x1, and a ∈ F1 \ F0, then c ∈ F1 and either x0 or x1 is enumerated into
Ac. In either case, something less than or equal to x is enumerated Ac, and hence
Aa ≤T Ac. Suppose now that f ≤ a ∨ c and that x is enumerated into Af , where
x is either x0 or x1 of condition (F2). If x = x0 and f ∈ F0, then either a ∈ F0 or
c ∈ F0, and x0 is enumerated into either Aa or Ac. If x = x1 and f ∈ F1 \F0, then
either a ∈ F1 or c ∈ F1, and either x0 or x1 is enumerated into either Aa or Ac.
In any case, something less than or equal to x is enumerated into either Aa or Ac,
and hence Af ≤T Aa ∨Ac.

Now we show how we can always find filters as needed for either (F1) or (F2),
maybe with F0 = F1.

Lemma 3.2. For every d < e, one of the following holds.
(1) There exists a filter F such that d,b 6∈ F , e ∈ F ;
(2) There exists a filter F such that d 6∈ F , e,b ∈ F but for some i, ai 6∈ F ;
(3) There exists filters F0 and F1 as in condition (F2) such that d 6∈ F0, F1,

e ∈ F1, and F0 omits some ai but contains b.
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Proof. First, if b ∨ d 6≥ e, then we can let F = {z : z 6≤ b ∨ d}. Second, if for
some ai, ai ∨ d 6≥ e, we can let F = {z : z 6≤ ai ∨ d}. Otherwise we go for the
third option. Let F1 be {z : z 6≤ d}. Note that since b ∨ d ≥ e ∈ F1 and d 6∈ F1,
we have b ∈ F1. Also, since b ∨ d ≥ e, we cannot have d ≥ b, because otherwise
d = b ∨ d ≥ e > d. Since (P,P[x]) 6|= ACC, there is an ai0 such that d ∨ ai0 6≥ b.
Let F0 = {z : z 6≤ d ∨ ai0}. �

Now we describe how Pd,e
e acts. If (3) of the lemma above applies, let F0 and F1

be as given there. If either (1) or (2) apply, let F0 = F1 = F . Suppose Rσ = Pd,e
e .

The first time we are at a σ-stage after initialization we pick a large agitator x that
is going to go into F0 and we stop the stage. The second time we are at a σ-stage we
pick a large follower y for F1 \ F0 and stop the stage. At every subsequent σ-stage
we check whether ΦBe (y) ↓ [s] = 0. If not, we output wait and pass control to the
module for Rσ_wait. If yes, we enumerate y into F1 \F0 and x into F0 and we stop
the stage. Recall that d does not belong to F1, and hence nothing is enumerated in
Ad. At any following σ-stage we output sat, unless the requirement is initialized,
in which case we have to start over. Every time a P requirement acts, by either
appointing or enumerating an agitator or a follower, all the P requirements of
weaker priority are initialized.

3.2.3. Requirement Ne. These requirements work like the Ne requirements in §
2.2.1. The only difference is that now the P requirements are respecting condition
(F2).

Ne is guessing whether the use function ϕe is total or not. So, they have two
outcomes ∞ < fty; the former guessing total and the latter non-total. Given σ in
the tree of strategies with Rσ = Ne, we define a set of σ-expansionary stages as
before. The first σ-stage is a σ-expansionary stage. A σ-stage s is σ-expansionary
if ϕe[s] converges at the largest number ever seen in the previous σ-expansionary
stage (and it also converges on all the numbers below this one). At σ-expansionary
stages we output ∞, and we output fty otherwise. Again, at every σ-stage we
initialize all the requirements Rτ for σ <L τ and either we appoint at most one
agitator or follower at every stage or enumerate at most one element.

We now show how this is enough to satisfy Ne. Let σ be in the true path such
that Rσ = Ne. Suppose that ϕe is total ∀i = 1, ..., k Φ̂e(Aai ⊕ X) = B for some
real X. We claim that X ≥T B. Pick n ∈ ω; we want to X-compute B(n). Wait
until a stage after which σ is never injured, and after which all the requirements of
higher priority had acted already. Also wait until we have decided B �n. Wait even
a bit longer until a σ_∞-stage s at which n is either appointed as an agitator for
B or we know n will never be appointed to potentially enter B. (Note that if n is
appointed as a follower, then something smaller than or equal n would be appointed
as a agitator, so we only need to worry about the case when n is an agitator.) So,
n has been appointed by τ ⊇ σ_∞ and suppose ai0 is not in the filter enumerating
n. After the following σ_∞-stage s1, we will never enumerate anything else in
Aai0 smaller than ϕe(n). Notice that nothing below n will be enumerated into Aai0

because B �n has already reached its final state and Aai0 ⊆ B. Wait until the first
σ_∞-stage s2 ≥ s1 such that Φ̂A

ai0⊕X
e = B �n+ 1[s2]. We claim that if n has not

been enumerated by then, it will not be enumerated ever. This holds because, if
n is enumerated, then, since we will never enumerate anything else in Aai0 smaller
than ϕe(n), Φ̂A

ai0⊕X
e 6= B �n+ 1. Therefore, B(n) = Φ̂A

ai0 [s2]⊕X
e (n).
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4. Joins that imply other joins

In this section we prove the following theorem.

Theorem 4.1 (Theorem 1.18). There exist c.e. sets A,B,C,D and E such that
A,B,D and E are all Turing reducible to C and pairwise incomparable, and such
that any ∆0

2 set X which is computable in C and joins A above B also joins D
above E.

The proof is also compatible with the usl embedding proof of Section 3. So,
one could extend this theorem and get a more general necessary condition on pairs
(P,Q) to have the extensions-of-embeddings property.

We have to satisfy two types of requirements. For every e let Ye and Ze be
distinct elements of {A,B,D,E} and let

PZe,Ye
e : Ye 6= Ψe(Ze).

Mi : (ΨC
i = X and ΨA,X

i = B) ⇒ X ⊕D ≥T E,
We shall ensure that A,B,D and E are all Turing reducible to C simply by

putting C = A ⊕ B ⊕D ⊕ E. At any stage we let σi be the longest finite binary
string which is an initial segment of Ψi(C). The only role of C here is that, by
fixing long initial segments of A,B,D and E, we can fix long initial segments of σi.

4.1. Requirement PZ,Y
e . These requirements work in a similar way to the require-

ments Pd,e
e in the previous construction. Suppose PZ,Y

e = Rσ. At the first σ-stage
(after initialization) we pick a large number m that we will use as an agitator, to
make sure we do not injure lower priority M requirements, and then we stop the
stage. The next time we are at a σ-stage we pick an even larger follower n for Y
and stop the stage. At every subsequent σ-stage we check whether ΦZe (n) ↓ [s] = 0.
If not, we output wait and pass control to the module for Rσ_wait. If yes, we enu-
merate n into Y and m into D, unless Z = D, in which case we enumerate m into
B. At any following σ-stage we output sat, unless the requirement is initialized, in
which case we have to start over. Every time a P requirement acts, by either ap-
pointing or enumerating a follower or an agitator, all the P requirements of weaker
priority are initialized. The verification that this strategy works is exactly as in
previous constructions.

4.2. Requirement Mi. This requirement works in a similar way to the require-
ments M and N of the previous construction. It will be monitoring the length of
agreement between ΨA,σi

i and B, and will outcome ∞ at expansionary stages and
fty at non-expansionary stages. That is all these requirements do.

Let us verify that they work. Suppose ΨC
i = X and ΨA,X

i = B, and that
Mi = Rσ, with σ in the true path. So, σ has ∞ outcome in the true path. Let s0

be a stage after which we never go to the left of σ and such that by this stage all
the requirements of higher priority that ever act, have already done so. Now, we
want to compute E(x) using X and D. Let s1 > s0 be the first σ_∞-stage after
which either x has been appointed as a follower for E, or we know it will never be
appointed as one. Let s2 > s1 be a σ_∞-stage such that we have already decided
E �x, D is correct up to x andX is correct up to its use computing ΨA,X

i = B �x[s2].
We claim that x ∈ E if and only if x ∈ Es2 . Suppose x gets enumerated into E at
some later stage s3, as the follower n of some requirement PY,E

e . Then, the agitator
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m < n for that requirement enters either D or B. It cannot enter D, because we
are assuming D �x was already correct at stage s2. So, m enters B �x. This is
going to lead us to a contradiction. Since at stage s2, X is correct up to the use of
ΨA,X
i = B �x[s2], we have that A needs to change at some time after s2. Let a be

the least number that enters C = A⊕B⊕D⊕E after stage s2 as a follower. Since
a ≤ x is less than the use of ΨA,X

i = B �x[s2], a was appointed as a follower by
some requirement PY,Z

e , before stage s2. Since it was not cancelled at s2, we have
that PY,Z

e = Rτ for some τ ⊇ σ_∞. The same requirement Rτ had previously
chosen an agitator b to enter either D or B. Since D is correct up to x at stage s2,
we have that b had to enter B. Since τ ⊇ σ_∞, we have that a has been picked at a
σ_∞-stage following the σ_∞-stage at which b was picked. Therefore, a is larger
than the use of ΨA,X

i = B(b) at that stage, and also larger than the C use used to
compute the part of X necessary in that computation. Since a was not cancelled
by stage s2, nobody below it has been enumerated anywhere. So, at s2, both A

and X have been preserved below a, and hence ΨA,X
i = B(b) has been preserved.

Moreover, A is going to be preserved for ever below a since a is the least number
we enumerate in C after s2. Also, X is correct up to a because we chose s2 so that
X was correct up to the use of ΨA,X

i = B �x[s2]. Therefore, when b is enumerated
into B we loose the agreement ΨA,X

i = B(b) for ever.

5. Multi-generic

This section is dedicated to prove the following theorem.

Theorem 5.1 (Theorem 1.22). Let C be a c.e. set and let {Ai : i ∈ ω} a uniformly
C-computable list of sets. Then, there exists a set G ≤T C such that G is 1-generic
relative to Ai, for every i with Ai <T C.

We have to satisfy the following genericity requirements.
Re,i: There is some σ ⊂ G such that either σ ∈ WAi

e or no extension of σ is
in WAi

e .
If such a σ exists, then, in the former case we say that Re,i has been satisfied

by forcing inside WAi
e , and in the latter case we say we have forced outside WAi

e .
During the construction we use a computable enumeration of C, and use this

enumeration of C to obtain uniform computable approximations 〈Ai[s] : s ∈ ω〉 of
the sets Ai. The requirements are associated with levels of the tree of strategies
as usual. The requirements will work roughly as follows. Suppose α is in the
tree of strategies and Re,i = Rα. Requirement Rα monitors WAi

e , looking for
possible σ ∈ WAi

e so that we can make σ an initial segment of G and satisfy the
requirement by forcing inside WAi

e . But not every σ ∈ WAi
e will be eligible to be

an initial segment of G. First, we have to respect the work done by higher priority
requirements, and hence these strings σ will have to extend a string that we will call
r(α) given to Rα as its input by the requirement of immediately higher priority.
Second, since we want to get G ≤T C, we will only consider stings σ that are
permitted by C in a sense we will specify later. Third, even if we see that σ ∈WAi

e

at a stage s, our approximation Ai might change later, and σ might be removed
from this set. So, the plan for Rα is to collect, into a set P (α), pairs (τ, σ), where
σ ∈W τ

e , τ is a potential initial segment of Ai, and σ is eligible according to certain
conditions we will specify later. Then, if we see that one of these τ is actually an
initial segment of Ai, we will try to make σ an initial segment of G.
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As we mentioned above, requirement Rα will be given an input string r(α) that
Rα must keep as an initial segment of G. The possible outcomes of Rα are ∞ or
a pair (τ, σ) ∈ (2<ω)2. The outcome ∞ means that Rα will be satisfied by forcing
outside of WAi

e . In this case, the next requirement Rα_∞ will receive input r(α)
too. An outcome (τ, σ) ∈ (2<ω)2 codes that σ ∈W τ

e , that τ ∈ Ai, and that σ is an
initial segment of G. Therefore, it is coding that Rα is being satisfied by forcing
inside WAi

e . In this case, the next requirement Rα_(τ,σ) will receive input σ.
Let us now describe the construction in more detail.
The tree of strategies consists of those finite strings α such that:

• For all i < |α|, either α(i) =∞ or α(i) ∈ (2<ω)2;
• If i < j < |α|, α(i) = (τ1, σ1) and α(j) = (τ2, σ2), then σ1 ⊆ σ2.
• If i < |α|, α(i) = (τ, σ) and α(i) works for requirement Re,j , then σ ∈W τ

e .
The restraint r(α) imposed on a node α is the union of all strings σ where for

some τ and some i < |α|, α(i) = (τ, σ).
Each node α keeps track of a finite set of possible outcomes P (α) ⊂ (2<ω)2. This

is the set of outcomes which have been permitted by C.

5.1. Construction. At each stage s we will define an approximation αs to the
true path, where αs is a string in the tree of strategies of length s. We will use
r(αs) as our stage-s-approximation to G.

Stage 0. Only the root 〈〉 is accessible, so α0 = 〈〉. We do not do anything else.
Stage s > 0. We start by defining αs. Suppose that we have already declared

that α of length less than s is accessible at stage s. Suppose that α works for Re,i.
If s is the first α-stage greater than |α|, then we let αa∞ be accessible.
Otherwise, there are two possible choices:
• If there is some (τ, σ) ∈ P (α) such that τ ⊂ Ai[s], then we let αa(τ, σ) be

accessible.
• If there is no such (τ, σ) , we let αa∞ be accessible.

We keep on defining this list of accessible nodes at s until we get to α of length
s, which we call αs. Before moving to the next stage we may also update P (α) for
every α such that α_∞ is accessible at s:

We add (τ, σ) to P (α) in case there is some αa∞-stage r 6 s such that:
• τ ⊂ Ai[r], Ai[s] and |τ | < r;
• σ ∈W τ

e ;
• σ ⊃ r(α);
• If n 6 |σ| and C � n [r] = C � n [s] then σ ⊇ r(αr) � n.

The last condition says we need to have permission from C for σ to be eligible
as a potential initial segment of G: If at some αa∞-stage we see σ ∈ W τ

e that is
potentially eligible, and n is the least such that σ(n) 6= r(αt)(n), then we have to
wait until something less than or equal to n gets enumerated in C to be able to
enumerate (σ, τ) ∈ P (α).

5.2. Verifications.

Lemma 5.2. A true path exists: if α is accessible infinitely often, then either
αa(∞) is accessible infinitely often (and for no (τ, σ) is αa(τ, σ) accessible infinitely
often), or there are strings τ, σ such that from some stage, whenever α is accessible,
so is αa(τ, σ).
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Proof. If for some (τ, σ) ∈ P (α) we have τ ⊂ Ai, then once the approximation to
Ai settles on τ , at every α-stage will have that αa(τ, σ) is accessible. Otherwise, for
every (τ, σ) ∈ P (α), there will be a point after which αa(τ, σ) is never accessible.
Therefore, for every given s, there is a later stage t that is not αa(τ, σ) accessible
for any (τ, σ) ∈ P (α)[s]. So, there has to be some α_∞-stage after s, for every
given s. Hence αa(∞) is accessible infinitely often and for no (τ, σ) is αa(τ, σ)
accessible infinitely often. �

We define
G =

⋃
{r(α) : α ∈ true path}.

(To show that G is actually an infinite string one can use the fact that for every
n there exists an e such that for every X, WX

e = 2>n, and we will always be able
to force inside this set.)

Lemma 5.3. Suppose that Re,i fails. Then Ai >T C.

Proof. Let α on the true path work for Re,i. So αa∞ is on the true path as well,
because otherwise we would have forced inside WAi

e and satisfy Re,i.
Suppose that at an αa∞-stage r, there is some τ ⊂ Ai[r], Ai and some σ ⊇

r(αr) � n, r(α) in W τ
e . Then we know that C � n = C � n[r], because otherwise at

some later stage we would add (τ, σ) to P (α).
On the other hand, there are infinitely many such stages (with arbitrarily large

n) because WAi
e is dense around G. We can then use Ai to find these stages and

compute C. �

The main difficulty in proving that G is computable from C comes from the fact
that the true path is not necessarily computable from C. This is the most interesting
part of the proof. The global idea, is that to compute G �n using C, we will wait
until a stage s where we are sure that for every stage t > s, r(αs) �n = r(αt) �n,
and hence G �n = r(αs) �n.

Definition 5.4. We say that a stage s is n-correct if, for every β ⊂ αs �n the
following conditions hold, where γ = r(αs �n) and |β| = 〈e, i〉:

(1) C � |γ| = Cs � |γ|.
(2) If there exists (τ, σ) ∈ P (β)[s] with τ ⊆ Ai, then ∀t ≥ s, τ ⊆ Ai[t], and

β_(τ, σ) ⊆ αs.
(3) If there is no such (τ, σ), then for every (τ, σ) ∈ P (β)[s],

(a) either σ ⊇ γ,
(b) or ∀t ≥ s, τ 6⊆ Ai[t].

Since C computes the sets Ai, and the approximation to these sets is built using
these C-computations, C can decide whether a stage s is n-correct or not. We now
have to prove that such stages exists, and that if s is n-correct then r(αs �n) is an
initial segment of G.

Lemma 5.5. Suppose that s is n-correct. Then for every t ≥ s, r(αt �n) =
r(αs �n).

Proof. Let γ = r(αs �n). By induction on i ≤ n we prove the following statement:

Then for every (αs �n− i)-stage t ≥ s, r(αt) ⊇ γ.
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Note that this is enough, since every t is an 〈〉-stage, and 〈〉 = αs �n − n. For the
induction basis i = 0, it is clear that at every (αs �n)-stage t we have αs �n ⊆ αt,
and hence r(αt) ⊇ r(αs �n). For the induction step, let β = αs �n− i, and suppose
we have proved the claim for αs �n−i+1. Let t ≥ s be a β-stage and let 〈e, i〉 = |β|.
Suppose first there is no (τ, σ) ∈ P (β)[t] with τ ⊆ Ai[t], and that t is a β_∞-
stage. Then, there was no such (τ, σ) at stage s either, because s is n-correct. So,
β_∞ ⊆ αs and hence t is an αs �n − i + 1-stage. But then, by the induction
hypothesis, r(αt) ⊇ r(αs �n). Second, suppose that we have (τ, σ) ∈ P (β)[t] with
τ ⊆ Ai[t] and that t is a β_(τ, σ)-stage. If s was also a β_(τ, σ)-stage, then, by
the induction hypothesis, r(αt) ⊇ r(αs �n). So, suppose β_∞ ⊆ αs. If (τ, σ) was
already in P (β)[s], since τ ⊆ Ai[t], we have to have that σ ⊇ γ where γ = r(αs �n),
and hence r(αt) ⊇ σ ⊇ γ. If not, we could have enumerated (τ, σ) into P (β) at
some β_∞-stage s1 between s and t. As we mentioned above, at every β_∞-stage
s1 we have r(αs1) ⊇ γ. Since C � |γ| = Cs � |γ|, we could have only enumerated
(τ, σ) into P (β)[s1] if σ ⊇ r(αs1) � |γ| = γ. Therefore r(αt) ⊇ σ ⊇ γ as wanted. �

Lemma 5.6. For every n there exists an s that is n-correct.

Proof. Let α be the node of length n that is in the true path. Let γ = r(α).
By induction on i ≤ n we prove the following statement:

There exists a stage si such that for every (α �n − i)-stage t ≥ si,
r(αt) ⊇ γ.

For i = 0, this is clearly true. For convenience, let s0 be such that C � |γ| = Cs0 � |γ|.
Let β = α �n− i and suppose we have showed the claim for i− 1. Let 〈e, i〉 = |β|.
If β_(τ, σ) ⊆ α, then, let si > si−1 be such that for every t ≥ si, τ ⊆ Ai[t]. Then,
every β-stage t ≥ s1 is a β_(τ, σ)-stage, and hence by the induction hypothesis,
r(αt) ⊇ γ. Suppose now that β_∞ ⊆ α. Let si > si−1 be such that for every
(τ, σ) ∈ P (β)[si−1]

(1) either σ ⊇ γ,
(2) or ∀t ≥ si, τ 6⊆ Ai[t].

By the induction hypothesis we know that at every β_∞-stage t we have r(αt) ⊇ γ.
Therefore, since C � |γ| = Ct � |γ|, at every β_∞-stage t ≥ si−1, every new pair
(τ, σ) that is enumerated into P (β)[t] has to have σ ⊇ γ. Hence, if t ≥ si is a
β_(τ, σ)-stage for some (τ, σ) ∈ P (β)[t], then r(αt) ⊇ σ ⊇ γ. This finishes our
induction.

It is not hard to see from the construction above, that we also have that for
β = (α �n − i) we have that for every β-stage t ≥ si the conditions of Definition
5.4 hold. So, every α-stage s after sn is n-correct. �

To compute G, all we need to do is use C to find n-correct stages s and then we
know that r(αs �n) ⊆ G.

6. No least join

Theorem 6.1 (Theorem 1.23). Let A and B be ∆0
2 sets; assume that B is non-

computable and that B does not compute A. Suppose that C is a c.e. set which
computes both A and B. Then there is some X 6T C which does not compute B,
but such that B 6T A⊕X.
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6.1. Discussion. The heart of the argument is its reliance on non-uniformity. That
is, we build two sets X0 and X1, one of which will satisfy the conditions required
of the set X of the theorem. To explain why we are driven to this non-uniformity,
we first describe a näıve, uniform plan, and show the problem with carrying it out.

So, suppose that we computably approximate a ∆0
2 set X such that B 
T X

but B 6T A⊕X. To ensure that B 
T X we meet, for each e, the requirement
Re: Ψe(X) 6= B,

where 〈Ψe〉 is an effective enumeration of all Turing functionals. Here is a plan to
meet a single requirement Re. Let 〈As〉 and 〈Bs〉 computable approximations for
A and B, respectively.

Suppose that the work we do to meet Re′ for e′ < e certifies that α ⊂ A, β ⊂ B,
and forces us to make ξ ⊂ X for some finite binary strings α, β and ξ; for simplicity,
assume that |α| = |β|. Let n = |α|.

Suppose that for a long time, we see that As(n) = i, and that Bs�n+1 has also
been stable for a while. A certification of A(n) = i will come in the form of a pair
of strings σ and τ , possible initial segments of X, which both extend ξ, and which
form a Ψe-splitting : Ψe(σ) ⊥ Ψe(τ). If we do not find such a splitting, then we
argue that Re is met without work; for if Ψe(X) = B, the assumption that B is
not computable will ensure the existence of such a splitting.

Given such certification, we can make a computable promise, that if Bs�n+1⊂ B,
then A(n) = i. For then we have two possibilities: if A(n) 6= i, then a subsequent
change in As �n+1 will force a change in C, which will allows us to ensure that
either σ ⊂ X or τ ⊂ X, choosing so that we can make Ψe(X) ⊥ B and meet the
requirement Re (while placing only finitely much restraint on weaker requirements).
And if A(n) = i, then we record this fact, and move to try to compute A(n + 1)
with oracle B in the same fashion. Since we assume that A 
T B, this process
must stop after finitely many iterations.

Now here is the difficulty. To ensure that B 6T A⊕X, we enumerate a Turing
functional Γ and intend that Γ(A,X) = B. The challenge is to keep Γ a consistent
functional. Suppose that we discover a Ψe-splitting σ and τ , and receive permission
to direct X to extend, say σ. But in a past life, a different requirement, possibly
weaker than Re, has asked X to extend σ, and has enumerated an axiom into Γ
which is compatible with σ and the new version of A, but which outputs a pre-
historic, and incorrect, version of B. This would make σ ineligible for usage, and
derail our strategy.

Indeed, we are not familiar with any direct way to prevent this occurrence. This
is where the non-uniformity gives a way to overcome the problem. We now build
X0 and X1. We ensure that for both j < 2, we have Xj 6T C and B 6T A⊕Xj ;
and we make sure that either B 
T X0 or B 
T X1. Using a Posner-style trick, it
is sufficient to meet the following requirements:

Re: either Ψe(X0) 6= B or Ψe(X1) 6= B.
To meet Re, we follow the näıve strategy, threatening to compute A from B, but
this time we certify A-configurations using pairs of Ψe-splittings, one for each Xj .
Whenever we get permission to use one such split for Xj and diagonalize, we direct
the other X1−j through a fresh string not used before. This will eventually allow us
to argue that whenever we discover a pair of splittings, one of them will be eligible
for us to use and would not destroy the consistency of the corresponding functional
Γj .
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6.2. Preliminaries. As mentioned above, we are given computable approxima-
tions 〈As〉 and 〈Bs〉 for A and B respectively.

6.2.1. The role of C. the fact that C is computably enumerable means that we may
assume, by choosing appropriate computable approximations for A and B, that C
can compute a modulus function for A and B. Specifically, we let, for n < ω, m(n)
be the least stage s such that for all t > s, At�n+1= A�n+1 and Bt�n+1= B�n+1.
We pick approximations 〈As〉 and 〈Bs〉 so that m 6T C. From now, we avoid all
reference to C, and use the oracle m instead.

The function m : ω → ω has a left-c.e. approximation. For s < ω, let ms be
the stage s approximation for m: ms(n) is the greatest s̄ 6 s such that for all
t ∈ [s̄, s], we have At�n+1= As�n+1 and Bt�n+1= Bs�n+1. The approximation being
“left-c.e.” means that if s < t, µ ⊂ ms and µ ⊂ mt, then µ 6⊂ m, indeed µ 6⊂ mu

for any u > t; for all s, ms lies lexicographically to the left of ms+1. We have
ms�n 6= ms+1�n if and only if either As�n 6= As+1�n or Bs�n 6= Bs+1�n.

6.2.2. Functionals. Rather than defining X0 and X1 directly, we enumerate Turing
functionals Ξ0 and Ξ1, and in the end, let, for j < 2, Xj = Ξj(m). We mention
now that these functionals need not be, strictly speaking, consistent; but we will
show that Ξ0(m),Ξ1(m) ∈ 2ω. See the discussion in Section 6.2.7.

We also enumerate functionals Γ0 and Γ1, and will show that for both j < 2,
B = Γj(A,Xj); these functionals will be consistent.

For axioms, we use the following notation: µ 7→ η means that if µ is an initial
segment of the oracle, then the output extends η. As Γ0 and Γ1 use two oracles,
the axioms will be of the form (σ, η) 7→ β, where σ is an initial segment of the
first oracle, η is an initial segment of the second, and β is an initial segment of the
output.

We thus think, set-theoretically, of Γ0 and Γ1 as binary relations, and denote,
for j < 2, dom Γj , to be the collection of pairs (σ, τ) such that there is some axiom
(σ, η) 7→ β in Γj .

At stage s, we let Ξ0,s,Ξ1,s,Γ0,s and Γ1,s be the collection of axioms enumerated
into the corresponding functionals by the end of stage s.

We note that as the intended oracle of Ξj is m, at every stage s, we only enu-
merate into Ξj axioms of the form µ 7→ η where µ ⊂ ms.

6.2.3. Procedures. Recall that we try to meet the requirements

Re: Either Ψe(X0) 6= B, or Ψe(X1) 6= B.

To work toward meeting a requirement Re, we will, from time to time, appoint
a procedure p. The procedure may, at some times, call another procedure to work
on the next requirement; see Section 6.2.6. The procedure may also be cancelled
at a later stage.

The following pieces of information are attached to a procedure.

(1) A number ep; this is the index of the requirement toward meeting which
the procedure p works.

(2) A (computable) function αp. This functions records the attempt to compute
A from B; setting σ = αp(β) denotes that p has obtained certification that
if β ⊂ B, then σ ⊂ A. We will ensure that for all β ∈ domαp, |αp(β)| = |β|.



24 ROD DOWNEY, NOAM GREENBERG, ANDREW LEWIS, AND ANTONIO MONTALBÁN

(3) A finite string µp. The procedure p guesses that µp ⊂ m. Since 〈ms〉 is
left-c.e., whenever the guess seems incorrect, it is verified to be incorrect,
and the procedure is cancelled.

(4) The domain of αp will in fact be a tree of binary strings, with extensions
being one-bit extensions. The root of this tree will be a string denoted
by ρp; we will ensure that |ρp| = |µp|. If β ∈ domαp is not ρp, then
β− = β�|β|−1, the immediate predecessor of β in 2<ω, is also in domαp.

(5) Two binary strings ηp,0 and ηp,1. The procedure p declares that if it is
never cancelled, then ηp,0 ⊂ X0, and ηp,1 ⊂ X1.

(6) Suppose that β ∈ domαp and β 6= ρp. Then the reduction σ = αp(β) must
be certified. This certification comes in the following form: we define a
number kp(β) and some jp(β) < 2. For every binary string δ ⊃ β of length
kp(β), we appoint a binary string ζp(δ). The meaning of this is that if
β ⊂ B and αp(β) 6⊂ A, and β is minimal with respect to this property, then
we want ζp(δ) ⊂ Xjp(β), where δ is the unique extension of β of length kp(β)
which is an initial segment of B. This will be useful for diagonalization,
because we will require that Ψep(ζp(δ)) ⊥ δ. The choice of jp(β) indicates
that the strings ζp(δ) are eligible to be initial segments of Xjp(β), and that
such an appointment would not make the functional Γjp(β) inconsistent.

We remark that it seems that for definiteness, we should have used the notation
ζp,β(δ), rather than merely ζp(δ). The point is that we shall ensure that if β, β′ ∈
domαp are not ρp, then kp(β) 6= kp(β′); indeed, kp(β) will be chosen large at the
stage at which β is added to domαp, and at most one string is added to domαp
at each stage. Thus |δ| = kp(β) determines β, and there is no overlap between
δ ⊃ β of length kp(β) and δ′ ⊃ β′ of length kp(β′), and so no ill-definedness for the
expression ζp(δ).

6.2.4. Some notation for strings. For binary strings σ and τ , we let σ ⊆ τ denote
that σ is an initial segment of τ , and σ ⊂ τ denote that σ is a proper initial segment
of τ . We let σ ⊥ τ denote that σ and τ are incomparable.

For a non-empty string σ, we let ¬(σ) be the string of length |σ| which agrees
with σ on all but the last bit.

6.2.5. Free extensions. For any stage s, let #(s) be the largest number used or
observed at stage s. We may assume that for all s, #(s) < #(s+ 1). A number is
called large at stage s if it is greater than #(s− 1).

Whenever we choose a string ηp,j or ζr(δ) (as a potential initial segment of some
Xj), we always choose a string whose last digit is 1.

Definition 6.2. Let s < ω, and let η be any string. A free extension of η at stage
s is any string of the form ηa0k1, where k > #(s− 1).

Free extensions are useful because no old axioms apply to them:

Lemma 6.3. If η is a free extension of η̄ at stage s, and a string ζ was chosen as
a potential initial segment of some Xj (that is, as some ηp,j or ζr(δ)) at a stage
t < s, then ζ ⊆ η implies that ζ ⊆ η̄.

Proof. Since η̄ ⊂ η, if ζ ⊆ η then ζ 6⊥ η̄. Suppose that the lemma fails; then η̄ ⊂ ζ.
But |ζ| 6 #(s − 1), and the last bit of ζ is 1, so if k > #(s − 1) we must have
ζ ⊥ η̄a0k. Then ζ ⊥ η, contradicting our assumption. �
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Hence, if η is a free extension of η̄ at stage s, then for any σ, we have Γj,s−1(σ, η) =
Γj,s−1(σ, η̄).

6.2.6. The combined tree of procedures; activity. At the end of every stage, there
will be finitely many procedures running. These will be nested: apart from p0, the
first procedure (which is never cancelled), every procedure is called by the previous
procedure on the list. We write p < q to denote that p appears before q on the
list of procedures, and thus has stronger priority than q. We maintain this nested
structure of procedures by following two rules:

• If a procedure p is cancelled at a stage s, then every procedure weaker than
p is also cancelled at stage s.
• Only the weakest procedure running is allowed to call a new procedure.

Say that a procedure p called a procedure q. This calling will be done for the
benefit of one particular string β ∈ domαp; the idea is that q guesses that β
witnesses the success of the procedure p to meet its requirement Rep

. We will call
p the mother of q and β the father of q; and call q the child of p (and β). To sum
up this information up, we write parents(q) = (p, β).

The following will be useful notation. We let Ps be the collection of pairs (p, β)
such that p is a procedure which is running at the end of stage s, and such that
β ∈ domαp at the end of stage s. 1

On Ps we put a partial ordering, which we also denote by <. This is the transitive
closure of the following two cases:

(1) If β ⊂ γ, then (p, β) < (p, γ);
(2) If q is not the strongest procedure, then parents(q) < (q, ρq).

The fact that the priority ordering linearly orders domPs, the collection of proce-
dures which are running at the end of stage s, and that ancestry implies stronger
priority, implies that < is indeed a partial ordering on Ps. The fact that p < q iff
p can be obtained from q by a sequence of ancestries, implies that the image of <
under the projection map (p, β) 7→ p is exactly the priority ordering on domPs.

In fact, the map p 7→ (p, ρp) is an order-preserving injection of domPs into Ps.
So we sometimes identify p with (p, ρp).

We let Qs be the collection of pairs (p, β) in Ps such that β ⊂ Bs and αp(β) ⊂ As.
Recall that β guesses that β ⊂ B, and β and p guess together that αp(β) ⊂ A.
Thus Qs is the collection of pairs (p, β) ∈ Ps which seem, at stage s, to be guessing
correctly.

6.2.7. The pseudo-consistency of Ξj. Strictly speaking, the functionals Ξ0 and Ξ1

need not be consistent: it is possible, for example, that at some stage t, we enumer-
ate an axiom mt�k 7→ ζ into Ξj (j < 2), and at a later stage s such that ms�k 6= mt�k,
we enumerate an axiom ms�n 7→ ζ ′ into the same Ξj , with n < k, ms�n⊂ mt�k, and
ζ ′ ⊥ ζ.

The point is that the approximation 〈ms〉 of m is left-c.e.; since ms moved to
the right of mt�k, we know that mt�k is not an initial segment of m, and so at stage
s we can consider the axiom mt�k 7→ ζ as if it’s been discarded from Ξj . Formally,
what we will actually want is that Ξj(m) ∈ 2ω.

1For any t we let P<t =
S

s<t Ps, P<ω =
S

s Ps, etc.
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Lemma 6.4. Let j < 2. Suppose that for all s, Ξj,s(ms) ∈ 2<ω. Then Ξj(m) ∈
26ω.

Proof. Standard, for those familiar with working with left-c.e. oracles. Say for
i < 2, both axioms m�ni

, 7→ ζi are in Ξj . For sufficiently late s, for both i < 2,
m�ni

⊂ ms, and the axiom m�ni
7→ ζi is in Ξj,s. Thus ζ0, ζ1 ⊆ Ξj,s(ms), and hence

are comparable. �

We will need to prove that Ξj,s(ms) ∈ 2<ω during the verification (Section
6.4.5). However, we will need this consistency in order for the instructions of the
construction to make sense. Circularity will be avoided by a step-by-step induction.

To perform stage s of the construction,
we assume that Ξj,s−1(ms−1) ∈ 2<ω.

Lemma 6.5. If Ξj,s−1(ms−1) ∈ 2<ω, then Ξj,s−1(ms) ∈ 2<ω.

Proof. Since the approximation 〈ms〉 is left-c.e., and since at all stages t < s, we
only enumerate axioms of the form mt�n 7→ ζ into Ξj , we have

Ξj,s−1(ms) ⊆ Ξj,s−1(ms−1). �

For brevity, we let, for n < ω, ξj,t,n = Ξj,t(mt�n) and ξ∗j,t,n = Ξj,t−1(mt�n). The
proof of Lemma 6.5 shows:

Lemma 6.6. If Ξj,s−1(ms−1) ∈ 2<ω, then for all n, ξj,s−1,n ∈ 2<ω and ξ∗j,s,n ∈
2<ω; indeed ξ∗j,s,n ⊆ ξj,s−1,n.

6.3. Construction.
At stage 0, we call the first procedure p0, set ep0 = 0, µp0 = 〈〉, let ρp0 = 〈〉, and

define αp(〈〉) = 〈〉, and ηp0,0 = ηp0,1 = 〈〉.

Let s > 0. Stage s consists of three steps.

1. Cancelling procedures. We cancel every procedure p such that µp 6⊂ ms.

2. Extending trees. Let p ∈ domPs−1 be a procedure which is still running, i.e.,
was not cancelled at step 1, and suppose that it is not the weakest such procedure;
let q be the child of p. Let β be the longest initial segment of Bs in domαp such
that αp(β) ⊂ As.2 Let β+ = Bs �|β|+1= βaBs(|β|), and let α+ = As �|β|+1=
αp(β)aAs(|β|). Let j < 2 be such that there are no σ ⊇ ¬(α+) and ζ ⊆ ηq,j such
that (σ, ζ) ∈ dom Γj,s−1.3

Let k be large. The procedure p requires attention if (p, β+) /∈ Ps−1, and for
every γ ⊃ β+ of length k we can find a long string ζγ ⊃ ηq,j such that Ψep

(ζγ) ⊥ γ.
If there is a procedure which requires attention, let p be the strongest one. We

then do the following:
(1) Set kp(β+) = k and jp(β+) = j; for every γ ⊃ β+ of length k, let ζp(γ) = ζγ .

2β is the longest string such that (p, β) is in both Ps−1 and Qs, unless p is cancelled at stage

s. Lemma 6.12 ensures the existence of β.
3Corollary 6.37 ensures the existence of such j. We do not need to assume the lemma holds

for the construction to make sense; if there were no such j, p simply would not require attention.
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(2) Define αp(β+) = α+.
(3) Cancel all procedures weaker than p; end stage s.

3. Calling a new procedure. If no procedure requires attention, let p be the weakest
procedure running. Define β and β+ as in step 2.

We define an integer k as follows:
• If (p, β+) /∈ Ps−1, let t be the least stage such that (p, β) ∈ Pt, and for all
u ∈ [t, s], (p, β) ∈ Qu; let k = #(t) + 1.4

• Otherwise, we let k = kp(β+).
Let γ = Bs�k. We call a new procedure q, weaker than p. We set it up as follows:
(1) eq = ep + 1.
(2) µq = ms�k.
(3) parents(q) = (p, β).
(4) ρq = γ and αq(γ) = As�k.
(5) If (p, β+) /∈ Ps−1, then for both j < 2, we let ηq,j be some free extension of

ξ∗j,s,k.
(6) If (p, β+) ∈ Ps−1, then for j = jp(β+) we let ηq,j be some free extension of

ζp(γ); for j 6= jp(β+), we let ηq,j be some free extension of ξ∗j,s,|β|.
We also enumerate new axioms: for both j < 2, we enumerate the axiom µq 7→ ηq,j
into Ξj , and the axiom (αq(ρq), ηq,j) 7→ ρq into Γj .

6.4. Verification. We fix a stage s, and assume that for all t < s, for both j <
2, Ξj,t(mt) ∈ 2<ω. Hence the construction up to and including stage s can be
performed.

6.4.1. Basic facts.

Lemma 6.7. p0 is never cancelled.

Proof. We always have 〈〉 ⊂ ms. �

Lemma 6.8. For all (p, β) ∈ Ps, if β 6= ρp, then kp(β) > |β|.

Proof. kp(β) is chosen to be large, at a stage t 6 s such that (p, β) ∈ Pt−1. Hence
kp(β) > #(t− 1) > |β|. �

Lemma 6.9. Suppose that q 6= p0 and q ∈ domPs. Then the length of ρq is greater
than the length of the father of q.

Proof. Let (p, β) = parents(q); let t 6 s be the stage at which q is called; let
k = |ρq|. If (p, β+) ∈ Pt−1, then k = kp(β+) > |β+| > |β| by Lemma 6.8.
Otherwise, k > #(u) where u 6 t is a stage such that (p, β) ∈ Pu; so #(u) > |β|. �

Corollary 6.10. If (p, β), (q, γ) ∈ Ps and (p, β) < (q, γ), then β ⊂ γ.

Proof. We show that if β is the father of q then β ⊂ ρq; the rest is immediate. So
let q ∈ domPs, q 6= p0, and let (p, β) = parents(q). Let t 6 s be the stage at which
q is called. At stage t, we define ρq ⊂ Bt. We also have β ⊂ Bt. Since |β| < |ρq|
(Lemma 6.9), we get β ⊂ ρq. �

Lemma 6.11. If p, q ∈ domPs and p < q, then µp ⊂ µq.

4If t = s, then instead of #(s), we take the greatest number seen so far in the construction.
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Proof. Let t 6 s be the stage at which q is called. Since p ∈ domPt, we have
µp ⊂ mt; and we have µq ⊂ mt. We have |µp| = |ρp| and |µq| = |ρq|; by Corollary
6.10, ρp ⊂ ρq, so |ρp| < |ρq|. �

6.4.2. Comparability of α’s, and Qs.

Lemma 6.12. If p ∈ domPs, then (p, ρp) ∈ Qs.

Proof. For p = p0, we always have 〈〉 ⊂ Bs and 〈〉 ⊂ As.
Suppose that p 6= p0. Let t 6 s be the stage at which p was called; let k = |ρp|. At

stage t, we set ρp = Bs�k and αp(ρp) = As�k; and we set µp = ms�k. Suppose that
the lemma fails; let u be the least stage in (t, s] such that ρp 6⊂ Bu or αp(ρp) 6⊂ Au.
Then either Bu−1�k 6= Bu�k or Au−1�k 6= Au�k. In either case, we get mu−1�k 6= mu�k.
Hence µp 6⊂ mu; so p is cancelled at step 1 of stage u, contradicting p ∈ domPs. �

Lemma 6.13. If (p, β), (q, γ) ∈ Ps and (p, β) < (q, γ), then αp(β) ⊂ αp(γ).

Proof. We prove two cases:
(1) If parents(q) = (p, β), then αp(β) ⊂ αq(ρq);
(2) If β+ is an immediate successor of β in domαp, then αp(β) ⊂ αp(β+).

For (1), let t 6 s be the stage at which q was called. We have (p, β) ∈ Qt, so
αp(β) ⊂ At. We also define αq(ρq) = At�|ρq|. Since |αp(β)| = |β| and |ρq| > |β|
(Lemma 6.9), we get the desired result.

For (2), let t 6 s be the stage at which β+ was added to domαp. Again, we
have αp(β) ⊂ At and define αp(β+) ⊂ At; and we have |αp(β)| = |β|, whereas
|αp(β+)| = |β+| = |β|+ 1. �

Corollary 6.14. If (q, γ) ∈ Qs, (p, β) ∈ Ps, and (p, β) < (q, γ), then (p, β) ∈ Qs.

Proof. By Corollary 6.10, β ⊂ γ. By Lemma 6.13, αp(β) ⊂ αq(γ). Since γ ⊂ Bs
and αq(γ) ⊂ As, we get β ⊂ Bs and αp(β) ⊂ As. �

Thus, Qs is a linearly ordered initial segment of Ps.

Lemma 6.15. Suppose that q ∈ domPs, q 6= p0. Let (p, β) = parents(q). Then β
is the longest string such that (p, β) ∈ Qs.

Proof. By Corollary 6.14, because parents(q) < (q, ρq) and (q, ρq) ∈ Qs (Lemma
6.12), we get that parents(q) ∈ Qs.

Maximality is proved by induction on the stages since the stage t 6 s at which
q was called. This maximality holds by design at stage t. Suppose that s > t,
and that maximality holds at stage s − 1. If the corollary fails at stage s, then
(p, β+) ∈ Qs, where β+ = Bs�|β|+1.

If (p, β+) /∈ Ps−1, then q would be cancelled at step 2 of stage s, which we assume
is not the case. Hence (p, β+) ∈ Ps−1 \ Qs−1. The fact that (p, β+) ∈ Qs \ Qs−1

implies that ms�|β+| 6= ms−1�|β+|. Since |β| < |ρq| (Lemma 6.9) and |β+| = |β|+ 1,
we get ms�|ρq| 6= ms−1�|ρq|, which would imply that q gets cancelled at step 1 of
stage s. This is a contradiction. �
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6.4.3. Comparability of η’s.

Lemma 6.16. Let t < s. If p ∈ domPt, then for both j < 2, ηp,j ⊆ ξj,t,|ρp|.

Proof. For p = p0 this is immediate, so assume that p 6= p0. Let u 6 t be the
stage at which p is called. At stage u, we enumerate the axiom µp 7→ ηp,j into
Ξj . Since p is not cancelled at stage t, we have µp ⊂ mt, so since |µp| = |ρp|,
ηp,j ⊆ Ξj,t(mt�|ρp|) = ξj,t,|ρp|. �

Lemma 6.17. If p ∈ domPs−1,domPs, then for both j < 2, ηp,j ⊆ ξ∗j,s,|ρp|.

Proof. The assumption implies that ms �|ρp|= ms−1 �|ρp|= µp. Hence ξ∗j,s,|ρp| =
ξj,s−1,|ρp|. So the conclusion follows from Lemma 6.16. �

Lemma 6.18. Let p, q ∈ domPs, and suppose that p < q. Then for both j < 2,
ηp,j ⊂ ηq,j.
Proof. We prove the lemma by induction on s. Assuming the lemma holds at all
stages t < s, we need to prove that if q is called at stage s, and p is the mother of
q, then for both j < 2 we have ηp,j ⊂ ηq,j .

Let β be the father of q. There are two cases.
The first case is when ηq,j is chosen to be a free extension of ξ∗j,s,|β| or of ξ∗j,s,|ρq|.

We note that (p, β) ∈ Ps−1, so p ∈ domPs−1,domPs, so by Lemma 6.17, ηp,j ⊆
ξ∗j,s,|ρp|. Of course ξ∗j,s,|ρp| ⊆ ξ

∗
j,s,|β|, ξ

∗
j,s,|ρq|.

The second case is when ηq,j is chosen to be a free extension of ζp(ρq). Let
β+ = ρq�|β|+1= Bs�|β|+1; in this case we have (p, β+) ∈ Ps−1. Let t < s be the
stage at which β+ was added to domαp, and let q̄ be p’s child at stage t. By
induction, we have ηp,j ⊂ ηq̄,j . Chosen at stage t, ζp(ρq) is required to extend ηq̄,j ,
so ζp(ρq) extends ηp,j . Again we get the desired result. �

6.4.4. What happens when q ∈ domP<s \ domPs but µq ⊂ ms. Recall that we are
assuming that for all t < s, Ξj,t(mt) ∈ 2<ω. To complete the induction at stage s,
we need an extra piece of information.

Lemma 6.19. For all p ∈ domPs, ξj,s,|ρp| = ηp,j.

We assume that the lemma holds at every t < s.

In this section, we investigate a particular scenario. Suppose that t < s, q ∈
domPt and q /∈ domPs, but µq ⊂ ms.

Let r be the weakest procedure in domPt which is in domPs (of course r exists,
because p0 ∈ domPt,domPs). Since q /∈ domPs, we have r < q. Let q̄ be r’s
child at stage t, and let β be q̄’s father. So q̄ 6 q, and q̄ is cancelled at some stage
u ∈ (t, s].

By Lemma 6.11, µq̄ ⊆ µq. Hence µq̄ ⊂ ms; since µq̄ ⊂ mt, we must have
µq̄ ⊂ mu. It follows that q̄ was cancelled not at step 1 of stage u, but because at
stage u, some string is added to domαr.

By Lemma 6.15, β is the maximal string such that (r, β) ∈ Qt. Because |β| < |ρq|
(Corollary 6.10, as (p, β) < (q, ρq)), we get mt �|β|+1= mu �|β|+1= ms �|β|+1. It
follows that β is the longest string such that (p, β) ∈ Pu−1,Qu. Hence, at stage u,
the string β+ = Bu�|β|+1 is added to domαr. By the definition of αr(β+), we have
(r, β+) ∈ Qu. Since mu�|β|+1= ms�|β|+1, we get (r, β+) ∈ Qs.
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Claim 6.20. If a procedure p is called at stage s, then |ρp| > |ρq|

Proof. This is proved by induction on s > u. Note that at stage u, no new procedure
is called. Now suppose that p is called at stage s. Let p̄ be the child of r at stage
s; so p̄ 6 p. If p̄ < p, then, since p̄ was called after stage u but before stage s, we
have, by induction, |ρp̄| > |ρq|. By Corollary 6.10, we have ρp̄ ⊂ ρp, so we’re done
in this case.

Suppose then that r is p’s mother; let δ be p’s father. δ is the longest string such
that (r, δ) ∈ Qs. Since (r, β+) ∈ Qs, we have β+ ⊆ δ.

Let δ+ = Bs �|δ|+1, and let k = |ρp|. If (r, δ+) ∈ Ps−1, then k = kr(δ+).
Since δ+ is added to domαr after stage u, and kr(δ+) is chosen large, we have
kr(δ+) > #(u) > #(t) > |ρq| as required.

Suppose that (r, δ+) /∈ Ps−1. We have k = #(v) + 1 for some stage v such that
(r, δ) ∈ Pv. Again, since δ ⊇ β+, δ is added to domαr not before stage u; so v > u.
Again we get k > #(u) > #(t) > |ρq|. �

If follows that if p is called at stage s, then ρq ⊂ ρp (as they are both extended
by Bs), αq(ρq) ⊂ αp(ρp) (they are both extended by As), and µq ⊂ µp (they are
both extended by ms).

Claim 6.21. For both j < 2, ηq,j ⊆ ξ∗j,s,|ρq|.

Proof. Let j < 2. We first note that ξ∗j,s,|ρq| = ξj,t,|ρq|. If µ ⊂ mt�|ρq| and µ 7→ ζ is
in Ξj,t, then µ ⊂ ms, and so ζ ⊆ ξ∗j,s,|ρq|; so ξj,t,|ρq| ⊆ ξ∗j,s,|ρq|.

On the other hand, suppose that µp 7→ ηp,j is an axiom which is enumerated into
Ξj at a stage v ∈ (t, s). Claim 6.20, applied at stage v, implies that |µp| > |ρq|, so
this new axiom does not apply to the computation Ξj,s−1(ms�|ρq|). Hence we get
the desired equality.

Now by Lemma 6.16, ηq,j ⊆ ξj,t,|ρq|, which proves the lemma. �

Claim 6.22. If p ∈ domPs and (r, γ) = parents(p), then (r, γ) /∈ Pt.

Proof. Because (r, β+) ∈ Qs, and so (Lemma 6.15), β+ ⊆ γ. Since β+ was added
to domαr at stage u > t, γ must have been added at a stage no earlier than u. �

Claim 6.23. If (r, γ) ∈ Ps \ Pt and |γ| > |ρq|, then for all δ ⊃ γ of length kr(γ), we
have ζr(δ) ⊃ ηq,jr(γ).

Proof. Let v ∈ [u, s) be the stage at which γ is added to domαr. Let o be r’s child
at stage v − 1. Let j = jr(γ). Let δ ⊃ γ have length kr(γ). At stage v, we pick
ζr(δ) to extend ηo,j .

• By Claim 6.21, applied at stage v, ηq,j ⊆ ξ∗j,v,|ρq|.
• We have ξ∗j,v,|ρq| ⊆ ξj,v−1,|ρq| (and in fact we have equality, as mv �|ρq|=
mv−1�|ρq|).

• We have |ρo| > |γ| > |ρq|. Hence ξj,v−1,|ρq| ⊆ ξj,v−1,|ρo|.
• By Lemma 6.19, applied at stage v − 1 < s, we have ξj,v−1,|ρo| = ηo,j .

Hence overall we get ηq,j ⊆ ηo,j ⊂ ζr(δ). �

Claim 6.24. If p is called at stage s, then for both j < 2, ηq,j ⊂ ηp,j .

Proof. Let p̄ be the child of r at stage s. If p̄ < p, then the result follows by
induction on s, since p̄ ∈ domPs−1, and ηp̄,j ⊂ ηp,j (Lemma 6.18). So we assume
that r is p’s mother. Let δ be p’s father. By Claim 6.22, (r, δ) /∈ Pt.



EXTENSIONS OF EMBEDDINGS BELOW COMPUTABLY ENUMERABLE DEGREES 31

If ηp,j is chosen to be an extension of ξ∗j,s,|ρp|, then we note that |ρp| > |ρq|
(Claim 6.20); so by Claim 6.21, ξ∗j,s,|ρp| ⊇ ξ

∗
j,s,|ρq| ⊇ ηq,j .

Otherwise, (r, δ+) ∈ Ps−1, where δ+ = Bs�|δ|+1. We first argue that |δ| > |ρq|.
Let v be the stage at which δ+ is added to domαr. Since (r, δ) /∈ Pt, we have
u < v < s. We have (r, δ+) ∈ Qv, but (r, δ+) /∈ Qs (Lemma 6.15). Hence
ms�|δ+| 6= mv�|δ+|. As ms�|ρq|= mv�|ρq|, we get |δ+| > |ρq|, so |δ| > |ρq|.

Now if ηp,j is chosen as an extension of ξ∗j,s,|δ| (if j 6= jr(ρp)), then ηq,j ⊂ ηp,j
follows again from Claim 6.21.

Otherwise, j = jr(ρp), and ηp,j is chosen as an extension of ζr(ρp). The desired
result now follows from Claim 6.23. �

6.4.5. The consistency of Ξj(m).

Proposition 6.25. For both j < 2, Ξj,s(ms) ∈ 2<ω.

Proof. By Lemma 6.4, Ξj,s−1(ms) ∈ 2<ω. So suppose that a new axiom µp 7→ ηp,j
is enumerated into Ξj at stage s, due to p being called; we need to verify that
this new axiom does not contradict any other axiom in Ξj,s which applies to ms.
Suppose that µq 7→ ηq,j is another axiom in Ξj,s, and that µq ⊂ ms; we need to
show that ηq,j 6⊥ ηp,j . In fact, ηq,j ⊂ ηp,j .

For if q ∈ domPs, then q < p; by Lemma 6.18, ηq,j ⊂ ηp,j . And if q /∈ domPs,
then by Claim 6.24, ηq,j ⊂ ηp,j . �

The proof of Proposition 6.25 allows us to pay our other debt: Lemma 6.19 holds
at stage s.

Proof of Lemma 6.19. Let p ∈ domPs. If p ∈ domPs−1, then ms−1�|ρp|= ms�|ρp|.
Also, if a new axiom µ 7→ ζ is enumerated into Ξj at stage s, then |µ| > |ρp|, as
µ = µq for some q > p. Hence ξj,s,|ρp| = ξj,s−1,|ρp|, and so ηp,j = ξj,s,|ρp| follows by
induction.

Suppose then that p is called at stage s. By Lemma 6.16, ηp,j ⊆ ξj,s,|ρp|. By the
proof of Proposition 6.25, if µq 7→ ηq,j is any axiom in Ξj,s such that µq ⊂ ms, then
ηq,j ⊆ ηp,j . Hence ξj,s,|ρp| ⊆ ηp,j . �

6.4.6. What happens when domαr is extended. We work toward showing that for
both j < 2, the functional Γj is consistent. This will be proved by induction. We
fix s > 0 and assume, in this section and the next one, that Γj,s−1 is consistent.

In this section we investigate the following scenario. Assume that at stage s, a
string γ+ is added to domαr, where γ+ 6= ρr. So letting γ = γ+�|γ+|−1, we have
(r, γ) ∈ Ps−1,Qs, and γ+ = Bs�|γ|+1, indeed (r, γ+) ∈ Qs.

Let j = jr(γ+), and let δ ⊃ γ+ have length kr(γ+).
Let q be the child of r at stage s− 1. At stage s, we choose ζr(δ) ⊃ ηq,j .

Claim 6.26. (r, γ) = parents(q) and αr(γ+) ⊆ αq(ρq).

Proof. The point is that µq ⊂ ms, q ∈ domPs−1, but q /∈ domPs, so we may
apply the analysis of Section 6.4.4. r is the weakest procedure in domPs, and
r ∈ domPs−1, so r of Section 6.4.4 coincides with r of the present section. The
comments before Claim 6.20 indeed show that γ is the father of q. The fact that
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µq ⊂ ms implies that αq(ρq) ⊂ As. As mentioned, we have αr(γ+) ⊂ As as well.
Since |µq| > |γ| (Corollary 6.10) and |αr(γ+)| = |γ| + 1, |µq| = |αq(ρq)| we get
αr(γ+) ⊆ αq(ρq). �

Let (σ, ζ) 7→ β be an axiom in Γj,s−1, and suppose that ζ ⊆ ζr(δ). Since
ηq,j ⊂ ζr(δ), we have ζ 6⊥ ηq,j .

Claim 6.27. If σ 6⊇ αr(γ+), then ζ ⊆ ηq,j .

Proof. Let p be the procedure such that σ = αp(ρp), ζ = ηp,j , and β = ρp. Suppose
that ηq,j ⊂ ηp,j .

Let t < s be the stage at which q was called. Since ηq,j is chosen long at stage t,
we get that p is chosen at a stage u ∈ (t, s). Since q ∈ domPt,domPs−1, we have
q ∈ domPu, so q < p. This implies that αq(ρq) ⊂ αp(ρp) (Lemma 6.13). Since
αr(γ+) ⊆ αq(ρq), we get αr(γ+) ⊆ αp(ρp) = σ. �

Claim 6.28. If σ 6⊥ ¬(αr(γ+)), then Γj,s−1(σ, ζr(δ)) ⊆ γ.

Proof. Let β = Γj,s−1(σ, ζr(δ)). Let σ̄ ⊆ σ and ζ ⊆ ζr(δ) be strings such that the
axiom (σ̄, ζ) 7→ β is in Γj,s−1. We have σ̄ 6⊥ ¬(αr(γ+)), so σ̄ 6⊇ αr(γ+). By Claim
6.27, we have ζ ⊆ ηq,j .

By the choice of j at stage s, we know that there are no σ′ ⊇ ¬(αr(γ+)) and
ζ ′ ⊆ ηq,j such that (σ′, ζ ′) ∈ dom Γj,s. Hence we must have σ̄ ⊂ ¬αr(γ+), that is,
σ̄ ⊆ αr(γ).

The axiom (αq(ρq), ηq,j) 7→ ρq is in Γj,s−1, and is compatible with the axiom
(σ̄, ζ) 7→ β. By our assumption that Γj,s−1 is consistent, we have β 6⊥ ρq. As
σ̄ ⊆ αr(γ), we have |β| = |σ̄| 6 |γ|. Hence β ⊆ ρq�|γ|= γ. �

Claim 6.29. Let o ∈ domP<ω. If ηo,j ⊆ ζr(δ), then either ρo ⊆ γ, or αo(ρo) ⊥
¬(αr(γ+)).

Proof. Let u be the stage at which o is called. We have u 6= s, since at stage s, no
new procedure is called. Since |ηo,j | > #(t− 1) and #(s) > |ζr(δ)|, we have u < s.

Thus, the axiom (αo(ρo), ηo,j) 7→ ρo is in Γj,s−1. Suppose that ηo,j ⊆ ζr(δ) and
that αo(ρo) 6⊥ ¬(αr(γ+)). Claim 6.28, applied to σ = αo(ρo), implies that

ρo ⊆ Γj,s−1(σ, ζr(γ)) ⊂ γ
as required. �

6.4.7. Consistency of Γj.

Lemma 6.30. Suppose that p is called at stage s; let q ∈ domP<ω, and let j < 2.
If ηq,j ⊆ ηp,j then either αp(ρp) ⊥ αq(ρq), or ρq ⊆ ρp.

Proof. We prove the lemma by induction on s. Let q ∈ domP<ω. We first prove
the following:

(⊗) For all n < ω, if ηq,j ⊆ ξ∗j,s,n, then either As�n⊥ αq(ρq), or ρq ⊆ Bs�n.
To see this, suppose indeed that ηq,j ⊆ ξ∗j,s,n. Then there is some p̄ ∈ domP<s

such that µp̄ ⊂ ms and such that |ρp̄| 6 n and ηq,j ⊆ ηp̄,j . By the assumption that
the lemma holds before stage s, either αp̄(ρp̄) ⊥ αq(ρq), or ρq ⊆ ρp̄. In the first
case, we note that µp̄ ⊂ ms implies that αp̄(ρp̄) ⊂ As, so As�n⊇ αp̄(ρp̄). In the
second case, we note that µp̄ ⊂ ms implies that ρp̄ ⊂ Bs, so ρq ⊆ ρp̄ ⊆ Bs�n.
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Now we verify that the lemma holds at stage s. Suppose that p is called at stage
s, and let (r, β) = parents(p). Suppose that ηq,j ⊆ ηp,j . Assuming that p 6= q,
reasoning about the length of ηq,j as in the proof of Lemma 6.29, we can conclude
that q ∈ domP<s. There are two cases.

If ηp,j is chosen to be an extension of ξ∗j,s,|ρp| or of ξ∗j,s,|β|, then let n = |ρp|
or n = |β| accordingly. By the freeness of the extension, and by the fact that
q ∈ domP<s, we have ηq,j ⊆ ξ∗j,s,n. We have Bs�n⊆ ρp and As�n⊆ αp(ρp). By (⊗),
either As�n⊥ αq(ρq), or ρq ⊆ Bs�n. Hence either αp(ρp) ⊥ αq(ρq), or ρq ⊆ ρp.

Otherwise, for β+ = Bs �|β|+1 and α+ = As �|β|+1, we have ρp ⊃ β+, |ρp| =
kr(β+), j = jr(ρp); we have αp(ρp) ⊇ ¬αr(β+), and ηp,j is chosen to be a free
extension of ζr(ρp). Again by the freeness of the extension, ηq,j ⊆ ηp,j implies that
ηq,j ⊆ ζr(δ), where δ = Bs�kr(β+). Now by Claim 6.29, either ¬αr(β+) ⊥ αq(ρq),
whence αp(ρp) ⊥ αq(ρq), or ρq ⊆ β ⊂ ρp, as required. �

If we observe the definition of Γj , we get that Γj,s is consistent. This completes
the induction started in the previous section, and proves:

Proposition 6.31. For both j < 2, Γj is a consistent functional.

6.4.8. What happens to ξj when ζr(γ) is activated. In this section we investigate a
third scenario – in a sense, an extension of the second scenario. Suppose that at a
stage s, a procedure p is called, and suppose that, letting (r, γ) = parents(p) and
γ+ = Bs�|γ|+1, we have (r, γ+) ∈ Ps−1.

Let t < s be the stage at which γ+ was added to domαr.

Claim 6.32. |γ| is the greatest n such that At�n= As�n.

Proof. by definition, we have αr(γ+) ⊂ At, hence αr(γ) ⊂ At; since (r, γ+) /∈ Qs,
and γ+ ⊂ Bs, we have αr(γ+) 6⊂ As. On the other hand, αr(γ) ⊂ As. �

Claim 6.33. If q ∈ domP<s and µq ⊂ ms, then q ∈ domP<t.

Proof. We have γ+ ⊂ Bs and ¬(αr(γ+)) ⊂ As. Let u be the least stage such that
for all v ∈ [u, s] we have γ+ ⊂ Bv and ¬(αr(γ+)) ⊂ Av. We have u > t because
αr(γ+) ⊂ At.

The minimality of u implies that mu−1�|γ|+1 6= mu�|γ|+1.
The procedure r is the weakest procedure in domPt. To prove the claim, we

show that if q is a child of r which is called at some stage v ∈ (t, s), then µq 6⊂ ms.
Let q be such a child. There are two cases.
First suppose that v < u. Let β be the father of q. By Lemma 6.15, β is

the longest string such that (r, β) ∈ Qv. Now γ is the longest string such that
(r, γ) ∈ Qu. Hence, if β 6= γ, then mv�|β|+1 6= mu�|β|+1. If β = γ, then we already
concluded that mu−1�|β|+1 6= mu�|β|+1; since v < u, we get mv �|β|+1 6= mu�|β|+1.
Now |µq| > |β| (Lemma 6.9), and µq ⊂ mv, so µq 6⊂ mu. Hence µq 6⊂ ms.

The other case is that v > u. In this case we know that the father of q is γ.
Since p is a child of r which is called at stage s, and v < s, we know that q must
be cancelled at a stage w ∈ (v, s]. Since w > u, we know that Bw�|γ|+1= γ+; and
since w > t, we know that (r, γ+) ∈ Pw−1. So it is impossible that q is cancelled at
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step 2 of stage w: such a cancellation can only occur in order to add γ+ to domαr.
Hence µq 6⊂ mw, so µq 6⊂ ms. �

Again for brevity, let ξj,s = Ξj,s(ms) =
⋃
k ξj,s,k and ξ∗j,s = Ξj,s−1(ms) =⋃

k ξ
∗
j,s,k.

Claim 6.33 implies that for both j < 2, ξ∗j,s ⊆ ξj,t.

Claim 6.34. Let j < 2. Suppose that (σ, ζ) ∈ dom Γj,s−1 and either:
• ζ ⊆ ξj,t; or
• ζ ⊆ ζr(δ) for some δ ⊃ γ+ of length kr(γ+).

Then (σ, ζ) ∈ dom Γj,t.

Proof. Let q be any procedure which is called at a stage v ∈ (t, s). ηq,j is chosen
to be a free extension at stage v. |ξj,t|, |ζr(δ)| 6 #(t). Hence we cannot have
ηq,j ⊆ ξj,t or ηq,j ⊆ ζr(δ). �

6.4.9. The main lemma.

Lemma 6.35. Let p ∈ domP<ω and j < 2. There are no σ ⊃ αp(ρp) and ζ ⊆ ηp,j
such that (σ, ζ) ∈ dom Γj.

Proof. Let (σ, ζ) ∈ dom Γj ; there is some q ∈ domP<ω such that σ = αq(ρq) and
ζ = ηq,j . Suppose that ζ ⊆ ηp,j . By Lemma 6.30, either σ ⊥ αp(ρp) or ρp ⊆ ρq. In
the first case, certainly σ 6⊃ αp(ρp). In the second case, |σ| = |ρq| 6 |ρp| = |αp(ρp)|
so again we cannot have σ ⊃ αp(ρp). �

Here is the main lemma.

Lemma 6.36. Let s < ω. For every k > 0 there is some j < 2 such that there are
no σ ⊇ ¬(As�k) and ζ ⊆ ξj,s such that (σ, ζ) ∈ dom Γj,s.

Proof. The lemma is proved by induction on s. The lemma clearly holds for s = 0.
Let s > 0, and suppose the lemma holds at every t < s.

We first note that it is sufficient to show, for every k > 0, that there is some j < 2
such that there are no σ ⊇ ¬(As�k) and ζ ⊆ ξj,s such that (σ, ζ) ∈ dom Γj,s−1. The
reason is that such (σ, ζ) cannot be added to dom Γj at stage s, because at stage s
we only enumerate such axioms such that σ ⊂ As.

If there is a procedure which is called at stage s, call that procedure p; let
(r, γ) = parents(p), and let γ+ = Bs�|γ|+1.

There are three cases:
(1) No new procedure is called at stage s.
(2) (r, γ+) /∈ Ps−1.
(3) (r, γ+) ∈ Ps−1.

For each case, we use the inductive hypothesis relative to some previous stage t.
In cases (1) and (2), let t = s − 1. In case (3), let t be the stage at which γ+ is
added to domαr.

In all of the cases, let n be the length of the longest common initial segment of
As and At.

Let k 6 n. Since At�k= As�k, ¬(As�k) = ¬(At�k). By induction, there is some
j < 2 for which there are no σ ⊇ ¬(As�k) and no ζ ⊆ ξj,t such that (σ, ζ) ∈ dom Γj,t.
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We claim that the same j witnesses the lemma at stage s for k. Let ζ ⊆ ξj,s and
σ ⊇ ¬(As�k). We argue that (σ, ζ) /∈ dom Γj,s−1. Assume, for contradiction, that
(σ, ζ) ∈ dom Γj,s−1; so |ζ| 6 #(s− 1).

In case (1), we have ξj,s = ξ∗j,s ⊆ ξj,s−1, so ζ ⊆ ξj,t; so by induction, (σ, ζ) /∈
dom Γj,s−1.

In case (2), We have ξj,s = ηp,j , which is chosen, at stage s, to be a free extension
of ξ∗j,s,|ρp|. The assumption |ζ| 6 #(s− 1) implies that ζ ⊆ ξ∗j,s,|ρp| ⊆ ξ

∗
j,s ⊆ ξj,s−1.

So again by induction, (σ, ζ) /∈ dom Γj,s−1.
In case (3), there are two sub-cases, depending on the value of j. If j 6= jr(γ+),

then the argument is similar to that of case (2). We have ξj,s = ηp,j is chosen as
a free extension of ξ∗j,s,|γ|; |ζ| 6 #(s− 1) implies that ζ ⊆ ξ∗j,s,|γ| ⊆ ξ∗j,s. By Claim
6.33, we have ξ∗j,s ⊆ ξj,t, and by Claim 6.34, (σ, ζ) ∈ dom Γj,t, contradicting the
induction assumption.

Suppose that j = jr(γ+). Then ξj,s = ηp,j is chosen to be a free extension of
ζr(δ), for δ = Bs�kr(γ+). Again, |ζ| 6 #(s − 1) implies that ζ ⊆ ζr(δ). By Claim
6.34, (σ, ζ) ∈ dom Γj,t.

By Claim 6.32, n = |γ|; so k 6 n and σ ⊇ ¬(At�k) implies that σ 6⊇ αr(γ+). By
Claim 6.27, we have ζ ⊆ ηq,j , where q is the child of r at stage t−1; since µq ⊂ mt,
we have ηq,j ⊆ ξj,t. So ζ ⊆ ξj,t, contradicting the induction assumption.

Now let k > n. There is some j < 2 such that ξj,s = ξ∗j,s or ξj,s is chosen, at
stage s, as a free extension of an initial segment of ξ∗j,s: both j < 2 would do in
cases (1) and (2), and in case (3), we choose j 6= jr(γ+). We claim that such j
witnesses the lemma at stage s for k. Suppose that σ ⊇ ¬(As�k). Then σ ⊃ As�n.
Let ζ ⊆ ξj,s, and suppose, for contradiction, that (σ, ζ) ∈ dom Γj,s−1. The choice
of j implies that ζ ⊆ ξ∗j,s.

Now let q ∈ domP<s be a procedure such that µq ⊂ ms and ηq,j = ξ∗j,s. We
claim that |µq| 6 n. In cases (1) and (2), this follows from the fact that µq ⊆ ms

and ms �n+1 6= ms−1 �n+1. In case (3), Claim 6.33 states that q ∈ domP<t, so
|µq| 6 n follows from the fact that ms�n+1 6= mt�n+1.
|µq| 6 n implies that |αq(ρq)| 6 n; µq ⊂ ms implies that αq(ρq) ⊂ As, so

αq(ρq) ⊆ As�n⊂ σ. So ζ ⊆ ηq,j contradicts Lemma 6.35. �

Corollary 6.37. Let s > 0. Suppose that q 6= p0, q ∈ domPs−1 and µq ⊂ ms. Let
(p, β) = parents(q); let β+ = Bs�|β|+1 and α+ = As�|β|+1. Then there is some
j < 2 such that there are no σ ⊇ ¬(α+) and ζ ⊆ ηq,j such that (σ, ζ) ∈ dom Γj,s−1.

Proof. Let k = |β|+ 1; so α+ = As�k. Since q ∈ domPs−1 and µq ⊂ ms, we have,
for both j < 2, ηq,j ⊆ ξ∗j,s ⊆ ξj,s. The result now follows from the main Lemma
6.36 for k. �

6.4.10. Uncancelled procedures. The following is immediate:

Lemma 6.38. The following are equivalent for (p, β) ∈ P<ω:

(1) There are infinitely many s such that (p, β) ∈ Qs;
(2) For almost all s, (p, β) ∈ Qs;
(3) p is never cancelled, β ⊂ B and αp(β) ⊂ A.
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Let Q∞ denote the collection of pairs (p, β) which satisfy the conditions of
Lemma 6.38. We note that if (p, β) ∈ Q∞ then (p, γ) ∈ Q∞ for all γ such that
ρp ⊆ γ ⊆ β, and that if p is a procedure which is never cancelled, then (p, ρp) ∈ Q∞.

In this section, let p be some procedure which is never cancelled. Note that if
p ∈ domPs, then no procedure stronger than p requires attention at stage s, as the
strongest such would cancel p.

Claim 6.39. There are only finitely many strings β such that (p, β) ∈ Q∞.

Proof. This is because we assume that A 66T B. If the lemma fails, then for every
β ⊂ B such that |β| > |ρp| we have (p, β) ∈ Q∞, which implies that αp(β) ⊂ A;
thus A =

⋃
{αp(β) : ρp ⊆ β ⊂ B} which shows that A 6T B. �

Since p is never cancelled, we know that (p, ρp) ∈ Q∞ (and so ρp ⊂ B). Let β
be the longest initial segment of B such that (p, β) ∈ Q∞. Let β+ = B�|β|+1.

If β+ ∈ domαp, let s0 be a stage such that (p, β+) ∈ Ps0 ; otherwise, let s0

be a stage such that (p, β) ∈ Ps0 . Also, choose s0 sufficiently large such that
ms0�|β|+1⊂ m.

Claim 6.40. p doesn’t require attention after stage s0.

Proof. If (p, β+) ∈ P<ω, the conclusion follows from the fact that for all s > s0,
β+ = Bs �|β|+1. If (p, β+) /∈ P<ω, the conclusion follows from the fact that if
p required attention at some stage s > s0, then since (p, β) ∈ Qs, it would try
to add Bs�|β|+1= β+ to domαr; and then we’d have (p, β+) ∈ P<ω, contrary to
assumption. �

It follows that for all s > s0, if after step 1 of stage s, p does not have a child,
then such a child is called for p at stage s. So for all s > s0, p has a child in domPs.

Claim 6.41. There is some child of p which is never cancelled.

Proof. If (p, β+) ∈ P<ω, let k = kp(β+). Otherwise, let k = #(s0) + 1. Let s1 > s0

be a stage such that for all s > s1, ms�k⊂ m. If q is a child of p which is called
after stage s1, then |ρq| 6 k, and so the stability of ms�k after stage s1 ensures that
q is never cancelled. �

6.4.11. The end. We know that p0 is never cancelled (Lemma 6.7). By recursion,
given a procedure pe which is never cancelled, we let, by Claim 6.41, pe+1 be the
child of pe which is never cancelled. Note that epe

= e.
Let j < 2. Let Xj = Ξj(m). For every e, we have µpe ⊂ m, so ηpe,j ⊂ Xj . Since

ηpe,j ⊂ ηpe+1,j , we have Xj ∈ 2ω. We have Xj 6T m 6T C.
For every e < ω, since µpe

⊂ m, we have ρpe
⊂ B and αpe

(ρpe
) ⊂ A. Since

ηpe,j ⊂ Xj , and the axiom (αpe
(ρpe

), ηpe,j) 7→ ρpe
is in Γj , we have ρpe

⊆ Γj(A,Xj).
Since |ρpe

| < |ρpe+1 |, we have B =
⋃
e ρpe

. Hence B ⊆ Γj(A,Xj). Since Γj is
consistent, we have B = Γj(A,Xj). Hence B 6T A⊕Xj .

To complete the proof of the theorem, we need to show that for all e, the re-
quirement Re is met. To see this, we look at two cases. Let p = pe; define β, β+

and s0 as in the section above. Let q = pe+1, and let s1 > s0 be a stage by which
q has been called.
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If (p, β+) ∈ P<ω, let j = jp(β+). We know that Xj ⊃ ηq,j ⊃ ζp(ρq), that
β+ ⊂ B, and that Ψe(ζp(ρq)) ⊥ β+. Hence Ψe(Xj) 6= B.

Now suppose that (p, β+) /∈ P<ω, and suppose, for contradiction, that the re-
quirement Re fails: Ψe(X0) = Ψe(X1) = B. Since B is not computable, for both
j < 2 there is some string τj ⊃ ηq,j such that Ψe(τj) ⊥ B. Again for both j < 2,
let σj ⊂ Xj be a string such that σj ⊃ ηq,j and such that Ψe(σj) ⊥ Ψe(τj). Let
s > s1, |σ0|, |σ1|, |τ0|, |τ1|.

By Corollary 6.37, let j < 2 be such that there are no σ ⊇ ¬(As �|β|+1) and
ζ ⊆ ηq,j such that (σ, ζ) ∈ dom Γj,s−1. Let k be large at stage s. Let γ ⊃ β+ have
length k. If γ 6⊥ Ψe(σj), let ζγ = τj ; since |γ| = k > |Ψe(τj)|, we have Ψe(τj) ⊥ γ.
Otherwise, we let ζγ = σj . Then in either case, we have Ψe(ζγ) ⊥ γ. All the
conditions hold for p to require attention at stage s, contradicting Claim 6.40.

7. Join property below non-generalized-low2 degrees.

In this section we prove Theorem 1.7. That is, we wish to show that every
non-generalized-low2 degree satisfies the join property i.e. if d is not GL2 and
0 < a < d, then there exists b < d such that a ∨ b = d.

So suppose we are given D of degree which is not GL2, and A which is of non-
zero degree strictly below that of D. We want to construct B <T D such that
A ⊕ B ≡T D. Moreover, we will build B to be 1-generic. This will imply that
B 6≡T D, as 1-generic sets are GL1.

The general plan is that we construct B by finite approximations, first trying
to satisfy a genericity requirement, then coding one bit of D, then trying another
genericity requirement, and then another bit of D, etc... The property of non-GL2

sets we will use is the following: For every D ⊕ ∅′-computable function f1, there is
a D computable function f2 not dominated by f1 (see [Ler83]). We will use this
function to bound our searches when we are trying to force inside some c.e. set. To
get D ≤T A⊕ B, we will have to use a trick, due to Slaman and Steel [SS89]: We
will try to satisfy the genericity requirements in a way that can be decoded by A
so that A can read off the bits of B that are coding D.

Define
σn = 000 · · ·︸ ︷︷ ︸

n zeros

1.

We can assume that A is not computably enumerable (for instance by considering
either it or its complement).

Given any σ ∈ 2<ω and any e, s ∈ ω, let g(σ, e, s) be defined in the following
way. First, let n be the least such that:

n ∈ A ⇒ 6 ∃τ ∈We,s with τ ⊇ σ_σn;
n /∈ A ⇒ ∃τ ∈We,s with τ ⊇ σ_σn.

Note that the set of n such that ∃τ ∈ We,s with τ ⊇ σ ∗ σn is computable, and
hence different from A. So, there has to be an n as above. If n ∈ A define
g(σ, e, s) = σ ∗ σn. If n /∈ A then let g(σ, e, s) be the first string enumerated into
We,s with τ ⊇ σ ∗ σn. The function g(σ, e, s) is computable in A.

Given any f : ω → ω we define a set Bf that uses the function f to bound the
searches of the function g(σ, e, s). Let Bf =

⋃
s τf,s be defined as follows:

Stage 0. Define τf,0 = D(0).
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Stage t+ 1. Define τf,t+1 = g(τf,t, e, f(t))_D(t+ 1), where t = 〈e, s〉.

Note that Bf is computable in D⊕ f . We will show later how, if we use a large
enough function f , we get that Bf is 1-generic. That D is computable in A ⊕ B
follows using precisely the same argument as originally provided by Slaman and
Steel when proving that 0′ satisfies the join property. The point is that using B, A
can reconstruct the whole sequence τf,0 ⊂ τf,1 ⊂ τf,2 ⊂ ... as follows. Given τf,k, let
n be such that τf,k_σn ⊆ B. If n ∈ A, then we know that g(τf,t, e, f(t)) = τf,k

_σn.
If n 6∈ A, then g(τf,t, e, f(t)) is the least τ ∈We,s with τ ⊇ τf,k_σn. Then, we get
τf,k+1 by adding, at the end of the string g(τf,t, e, f(t)), the bit D(k + 1), that we
can read off from B. So D ≤T A⊕B.

Given σ and e, let 〈n, s〉 be the least pair such that one of the following conditions
hold.

n ∈ A, 6 ∃τ ∈We with τ ⊇ σ_σn, and s = 0,
n /∈ A, ∃τ ∈We with τ ⊇ σ_σn, and τ ∈We,s.

Note that the set of n such that ∃τ ∈We with τ ⊇ σ ∗σn is c.e., and hence different
from A. So, there has to exist an n and an s as above. Furthermore, A ⊕ ∅′ can
find them. Let g∗(σ, e) be the A⊕∅′-computable function that gives us such s. So,
we have that if t ≥ g∗(σ, e), then g(σ, e, t) is an extension of σ that either forces
inside We or forces outside We as we need for the genericity requirements.

Now for any t the set Πt = {τf,t | f : ω → ω} is finite and computable in D, so let
f0 be an increasing function computable in D⊕∅′ such that, for all t and all τ ∈ Πt,
f0(t) is greater than g∗(τ, e), where t = 〈e, s〉. Let h be a computable and increasing
function such that, for all t and all e ≤ t, there exists s with t < 〈e, s〉 < h(t). Define
f1(t) = f0(h(t)) for all t. Since D is not GL2, we may let f2 be an increasing func-
tion computable in D which is not dominated by f1 and then define B = Bf2 ≤T D.

It remains to show that B is 1-generic. In order to see this, fix e ∈ ω and let t > e
be such that f2(t) > f1(t). Then there exists t′ = 〈e, s〉 such that t < t′ < h(t). We
have that f2(t′) > f2(t) > f1(t) = f0(h(t)) > f0(t′), so that f2(t′) > g∗(τf2,t′ , e) as
required.
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