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UP TO EQUIMORPHISM, HYPERARITHMETIC IS RECURSIVE.
ANTONIO MONTALBAN

Abstract. Two linear orderings are equimorphic if each can be embedded into the
other. We prove that every hyperarithmetic linear ordering is equimorphic to a recursive
one.

On the way to our main result we prove that a linear ordering has Hausdorff rank less
than wch if and only if it is equimorphic to a recursive one. As a corollary of our proof we
prove that given a recursive ordinal «, the partial ordering of equimorphism types of linear
orderings of Hausdorff rank at most « ordered by embeddablity, is recursively presentable.

81. Introduction. Clifford Spector proved the following well known classical
theorem in Computable Mathematics.

THEOREM 1.1. [Spe55] Every hyperarithmetic well ordering is isomorphic to
a recursive one.

Recall that a set is hyperarithmetic if and only if it is Al. Then, for instance,
every arithmetic set is hyperarithmetic.

The direct generalization of Theorem 1.1 to the class of linear orderings does
not hold. It is not the case that every linear ordering with a hyperarithmetic
presentation is isomorphic to a recursive one. Feiner constructed in [Fei67] and
[Fei70] (see also [Dow98, Theorem 2.5]) a I1{ subset of Q that, as a linear order-
ing, is not isomorphic to a computable one. Other examples were given later.
It follows from the work of Lerman [Ler81] that for every Turing degree a such
that a” >7 0” there is a linear ordering of degree a without a recursive copy.
This result was later extended, first to any non-recursive recursively enumerable
degree a by Jockusch and Soare [JS91], then to any non-recursive AY degree a by
Downey [Dow98] and Seetapun (unpublished), and finally to any non-recursive
degree a by Knight [AK00]. Many other results have been proved about presen-
tations of linear orderings; we refer the reader to [Dow98] for a survey on the
effective mathematics of linear orderings.

But there are other ways in which we can generalize Theorem 1.1. We say that
two linear orderings are equimorphic if each one can be embedded into the other
one. Observe that if a linear ordering £ is equimorphic to an ordinal «, then £
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and « are actually isomorphic. (It is clear that two equimorphic well orderings
are isomorphic. Note that £ has to be a well ordering because since w* does
not embed in o and £ embeds in «, w* does not embed in L either (where w*
is the order type of the negative integers).) So, actually, we can state Theorem
1.1 as “every hyperarithmetic well ordering is equimorphic to a recursive linear
ordering.” The main theorem of this paper is the following generalization of
Theorem 1.1.

THEOREM 1.2. FEvery hyperarithmetic linear ordering is equimorphic to a re-
cursive one.

Many properties of linear orderings are invariant under equimorphisms. An
interesting example is extendibility. A linear ordering L is extendible if every
partial ordering, P, which does not embed £ has a linearization (i.e.: a linear
extension) which does not embed L either. The notion of weakly extendible
is defined similarly but only considering countable partial orderings P. It is
not hard to see that these notions depend only on the equimorphism type of
the linear ordering L. Classifications of extendible and weakly extendible linear
orderings have been given by Bonnet and Pouzet [BP82], and Jullien [Jul69]. See
[Mon] and [DHLS03] for an analysis of Jullien’s theorem and of the extendibility
of certain linear orderings form the viewpoint of Computable Mathematics and
Reverse Mathematics.

Three other properties that are invariant under equimorphisms, and which
will be very important in this paper, are being scattered, being indecomposable
and having a certain Hausdorff rank. A linear ordering is scattered if it does not
contain a copy 7, the order type of the rationals. Then, for a countable linear
ordering, being scattered is equivalent to not being equimorphic to n. We say
that a linear ordering L is indecomposable if whenever L = A+, we have that £
can be embedded in either A or B. It is not hard to prove that a linear ordering
equimorphic to an indecomposable one is also indecomposable. The Hausdorff
rank of a scattered linear ordering is the least ordinal « such that only finitely
many point are left after « iterations of the operation of collapsing points of £
which have only finitely many points in between (see Definition 2.1 below). We
will prove that a scattered linear ordering has Hausdorff rank less than w{'* (the
first non-recursive ordinal) if and only if it is equimorphic to a recursive linear
ordering.

Contrary to the case of countable well orderings, the partial ordering, L, of
countable linear orderings modulo equimorphism ordered by embeddablity is not
a well understood structure. (See [Ros82, § 10.2] for more information on L.)
Note that L has the equimorphism type of 7 as its top element. (An equimor-
phism type is an equivalence class for the equimorphism relation.) Let L be
obtained by removing the equimorphism type of n from L. So, L consists of the
equimorphism types of scattered linear orderings. Roland Fraissé conjectured in
[Fra48] that L is well founded and that every element has only countably many
elements below it. Later, the statement that says that L is a well partial order-
ing became known as Fraissé’s conjecture. (A partial ordering is a well partial
ordering if it contains no infinite descending sequence and no infinite antichain.
See Definition 2.10 below.) All these statements were proved by Richard Laver,
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twenty three years later, in [Lav71] using Nash-Williams’s complicated notion of
better quasiordering [Nas68]. As a corollary of our construction, we prove that
for every a < w{'¥ | L,, the subordering of L. containing the the equimorphism
types of linear orderings of Hausdorff rank less than «, is recursively presentable.
This result might be useful when studying Fraissé’s conjecture from the viewpoint
of Reverse Mathematics. Logicians have been interested in Fraissé’s conjecture
because of the complexity of its proof. Some results have been proved about
its proof theoretic strength: Shore [Sho93] proved that it implies ATRy, and we
proved in [Mon] (also see [Mon05]) that it is equivalent to Jullien’s theorem,
to the finite decomposability of scattered linear orderings and to the statement
that says that the class of signed trees is well quasiordered. But, its exact proof
theoretic strength is still unknown. It has been conjectured by Clote [Clo90],
Simpson [Sim99, Remark X.3.31] and Marcone [Mar] that it is equivalent to ATRg
over RCAy. It would be interesting, and maybe useful when studying Fraissé’s
conjecture, to know what the rank of L., as a well founded partial ordering, is
for a given a.

Outline. In Section 2 we present the most important ideas in the proof of
our main result, Theorem 1.2. In Section 3 we introduce and study the structure
of signed forests. Signed forests extend the notion of signed trees which was
introduced in [Mon]. The use of signed trees is very helpful when studying the
structure of indecomposable linear orderings up to equimorphisms. In Section 4
we formally describe the construction, already mentioned in Section 2, but this
time using the results of Section 3.

Basic Notions. An embedding between linear orderings £ and Q is a one-to-
one, order preserving map f: L — Q. If this is the case, we write f: L — Q,
and we write £ < Q to mean that £ embeds in Q. £ and Q are equimorphic if
L < Qand Q < L, in which case we write £ ~ O.

A presentation of a linear ordering £ is another linear ordering A = (A, <)
isomorphic to £ such that A C w. The Turing degree of a presentation A is the
join of the degrees of A and <.

Given a function f: X — Y and Z C X, we let f[Z] ={f(z) : z € Z}.

Given two linear orderings A and B, A + B is obtained by considering the
disjoint union of A and B and letting all the elements of 5 be bigger than the
ones in A. This can be generalized to infinite sums of the form Ay +.4; +As+ ...,
in an obvious way.

82. General ideas of the Proof. In this section we start proving Theorem
1.2. The first easy observation is that if a linear ordering has a subset isomorphic
to n, then it is equimorphic to 1, which has a recursive presentation. So we can
restrict our attention to scattered linear orderings.

The second step is to analyze the Hausdorff rank of hyperarithmetic scattered
linear orderings.

DEFINITION 2.1. Let £ = (L,<) be a scattered linear ordering. For each
ordinal o we define an equivalence relation =, on L by transfinite recursion.
Let ~( be the identity relation. If « is a limit ordinal, let = =, y if =g y for
some § < a. If a = +1, let x =, y if there are only finitely many different
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~g-equivalence classes between x and y. In other words
TRy = Inzy, ..., 0,V2(z < 2z <y=3Fi < n(z =g x;)).

We define the Hausdorff rank of L, rki (L), to be the least a such that ~, has
only finitely many equivalence classes if such an « exists, and we let rky (L) = oo
otherwise.

It can be proved by transfinite induction that if f: Lo < L1, and f(z) = f(y)
then = ~, y. Therefore, Lo < £1 implies that rkg(Ly) < rky (L), and hence,
the Hausdorff rank is preserved under equimorphisms. Also note that rky(n) =
oo and hence rky (L) = oo for every non-scattered L. It is also known that if £ is
scattered, then rky (L) < oo. (This follows from the relativized version Lemma
2.2 below.) See [Ros82, Chapter 5] for more background on Hausdorff rank.

In the following lemma we prove that when £ is hyperarithmetic and scattered,
its Hausdorff rank cannot be arbitrarily high. This is the only place in the
paper where we use hyperarithmecity. All we use is that if a set is X} in a
hyperarithmetic set, then it is ¥1 and hence it cannot be the set of indices
for recursive well orderings which is II} complete. See [Sac90] or [AKO00] for
information on the hyperarithmetic hierarchy.

LEMMA 2.2. If L is a hyperarithmetic scattered linear ordering, thentky (L) <
CK
wi ™.

The proof of this lemma is somewhat similar to the proof of [Clo89, Lemma
13], where Clote proved that Hausdorff’s theorem holds in ATRy. The basic idea
of both proofs is the use of pseudohierarchies.

PROOF. Assume that £ is hyperarithmetic and rkg (£) > w{'%. We will show
that then, there is an embedding of n into £. Given a linear ordering A = (A4, <),
and a family E = {~,: a € A} of equivalence relations on L, let ¢(A, E) be the
hyperarithmetic formula that says:

e For every a € A there is a pair of non-~~,-equivalent elements, and
e for every a € A, if © #, y, then, for every b < a there are infinitely many
elements of L between x and y which are mutually non-~-equivalent.

Observe that if o < rkgy (L), then E = {~g: § < a} satisfies ¢(«, E). Then, for
every recursive well ordering o, 3E(é(a, E)). The formula 3E(¢(z, E)) is 1.
Then, since the set of recursive well orderings cannot be defined by a ¥} formula,
there is a recursive non-well-ordered linear ordering A such that IE(¢(A, E)).
Let E = {~,: a € A} and {a;}ieny be a descending sequence in A. Let x
and z1 be two elements of L such that z¢ #,, x1. Since there are infinitely
many =~,,-equivalence classes between z¢ and z1, there is an x5 € L such that
o < w172 < 1 and g %4, T1/2 Fa, T1- In the same way we define x,,4 and
x3/4 such that

o < 1'1/4 < 351/2 < x3/4 <
and
0o Fay T1/4 Fas T1/2 Pas T3/4 Fay T1-

Continue in this way to define an embedding of the dyadic rationals into £. O
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From the lemma we have just proved, we get that Theorem 1.2 will follow
from the following theorem.

THEOREM 2.3. A scattered linear ordering has Hausdorff rank less than w$'

if and only if it is equimorphic to a recursive linear ordering.

Since equimorphism preserves Hausdorff rank, the direction from right to left
follows from the lemma above.

Richard Laver [Lav71] proved that every scattered linear ordering is a finite
sum of indecomposable linear orderings. Thus, it would be enough to prove
Theorem 2.3 for indecomposable linear orderings. Dealing with equimorphism
classes of indecomposable linear orderings might be complicated, so we will work
with signed trees instead. Signed trees were introduced in [Mon] to represent
indecomposable linear orderings up to equimorphism.

DEFINITION 2.4. A signed treeis pair (T, st), where T is a well founded subtree
of w<¥ (i.e.: a downwards closed subset of w<* with no infinite paths) and st is
a map, called sign function, from T to {4+, —}. We will usually write T instead
of (T,s7). A homomorphism from a signed tree T to another signed tree T is a
map f: T — T such that

e for all o C 7 € T we have that f(o) C f(7) and

o forall o € T, sp(f(0)) = sr(o).

(Here C is the strict inclusion of strings.) We define a binary relation < on the
class of signed trees. We let T' < T if there exists a homomorphism f: T — T.
We say that T and T are equimorphic, and write T ~ T, if T < T and T < T.

Remark 2.5. For f to be a homomorphism, we do not require that o|r implies
f(o)[f(7).

Notation 2.6. For o € T, we let T, = {7 : 077 € T} and s7,(7) = sp(c77).
For n € w with (n) € T, we let T}, = Tyy,y.

We associate to each signed tree T, a linear ordering lin(7T').

DEFINITION 2.7. The definition of lin(T") is by effective transfinite induction.
If T = {0}, we let lin(T) = w or lin(T) = w* depending on whether st () = +
or s7(@) = —. Now suppose T' 2 {0}. If s7(0) = +, we want lin(T) to be an w
sum of copies of lin(Tp), lin(74),..., where each lin(7;) appears infinitely often in
the sum. So, we let

lin(T) = lin(To) + (lin(To) + Uin(71)) + (lin(Tp) + lin(Th) + lin(Ts)) + ...
If s7(0) = —, we let
Iin(T) = ... + (in(Ts) + lin(Ty) 4 lin(Tp)) + (lin(7y) + 1lin(7p)) + lin(7Tp).

We say that a linear ordering, £, is h-indecomposable if it is of the form lin(7T)
for some signed tree T'.

It was proved in [Mon] that every indecomposable linear ordering is equimor-
phic either to 1 or to an h-indecomposable linear ordering. (Note that in [Mon],
1 is considered an h-indecomposable linear ordering.) It was also proved in
[Mon] that given signed trees T and T, T < T if and only if lin(7) < lin(7),
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and hence T' ~ T if and only if lin(T) ~ lin(T). The ranks of T" and of lin(T)
are very closely related too. We define rk(7T') to be the rank of the well founded
partial ordering (T, D). On a well founded partial ordering P = (P, <), the rank
function is defined as usual:

rk(P,z) = sup{rk(P,y) +1:y € P,y <z}
and rk(P) = sup{rk(P,z) +1: z € P}.

Remark 2.8. Observe that if T' < 5, then rk(T') < rk(S). To prove this first
let f is a homomorphism f: T — S. Then, by transfinite induction on rk(7, z),
prove that for every x € T, rk(T, z) < rk(S, f(z)).

LEMMA 2.9. Let T be a signed tree. If T has finite rank, then rk(T) =
tky (in(T")). If T has infinite rank, then tk(T) = rky (lin(7T")) + 1.

PROOF. The proof is by transfinite induction on the rank of 7. If T' = {0},
then rk(7) = 1 and, since either lin(T) = w or lin(T) = w*, rky(lin(T)) =1
too. For the inductive step it is enough to prove that for any linear orderings
Ly, L1,... we have that

(1) rkH(EO + (Eo + El) + (,CO + L1+ 52) + ) = sup{rkH(ﬁi) +1:7¢€ w}.

Let £L=Lo+ (Lo+L1)+ (Lo+ L1+ L)+ ... and o = sup{rky(L;)+1:i € w}.
First observe that rtky (£;+L;+L;+...) = kg (L;)+1, and since L;+L;+... < L
we have that rky (L) > rky(L£;) 4+ 1 for every i, and hence rky(£) > a.. On the
other hand, if we let a; = max{rkg(L;) : j < i}, then the initial segment of L,

Lo+ Lo+ L)+ .4 (Lo+ L1+ ...+ L)

has only finitely many ~,,-equivalence classes, and hence it has only one ~q,4+1-
equivalence class. Therefore, every pair of elements of L is = ,-equivalent, and
hence kg (£) < a.

Now that we have proved (1), the induction step is straightforward in both, the
finite and the infinite case. The discrepancy between the finite and the infinite
case is due to the following fact: when rk(7,0)) = w, we have that tk(T) = w+1
and

rky (lin(7T")) = max{rky (in(7;)) + 1 : (&) € T} = max{rk(T;) + 1: (i) € T} = w.
O

Therefore, since the functional lin is recursive, it is enough to show that every
signed tree of rank less than w{'¥ is equimorphic to a recursive one. This will
follow from the following proposition that we will prove in section 4.

PROPOSITION (4.1). For every recursive ordinal « there is a recursive partial
ordering (A, <o) and a recursive function t, that assigns to each element of
A, a recursive signed tree of rank at most o such that

o for every signed tree T of rank at most « there is an x € A, with to(z) ~ T,
and
o forx,y € Ay, ® <0 y if and only if to(x) < ta(y).
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We start by giving the general idea of the proof of this proposition. The
construction is by effective transfinite recursion. Suppose we have already defined
Agp, <p and tg and we want to define these objects for a = 3+ 1. Every signed
tree T is determined, up to equimorphism, by s7(0) and the set of branches of
T

bran(T) = {T; : (i) € T}.

If T has rank «, then for every T' € bran(T), there is some = € Ay such that
T ~ tg(z). Let bran(T)| = {T € t[dg] : Ji((i) € T & T < Ti)}. Then,

A~

observe that the tree T’ determined by s+ () = s7(0) and bran(T) = bran(T)]
is equimorphic to T. Also observe that T has rank « if and only if sup{rk(7) :
T € bran(T)} = f, or equivalently, if and only if for every v < 3 there is a
tree T € bran(T) such that v < rk(T). Therefore, to construct A, ~ Ag, we
have to consider all the trees T such that bran(T") C tg[As] is downwards closed
(i.e. bran(T) is equal to bran(T)| up to equimorphism), and rk[bran(T)] is
unbounded below 3. (We say that a subset X C 4 1 is unbounded below (3 if
Vy < 35 € X(6>7).)

Now comes one of the key ideas of the construction. We need the following
definition.

DEFINITION 2.10. A quasiordering is a pair P = (P, <,) where <, is transi-
tive and reflexive. If P is also antisymmetric, then P is a partial ordering. A well
quasiordering is a quasiordering P such that, for every sequence {z; : i € w} C P,
there exists ¢ < j such that ; <, x;. A well partial ordering is a well quasiorder-
ing that is also a partial ordering. A partial ordering is well founded if it has no
infinite descending sequences. For more information on well quasiorderings see
[Mil85].

Remark 2.11. Observe that a well quasiordering has no infinite descending
sequences and no infinite antichain. Conversely, it can be proved using Ramsey’s
theorem that a quasiordering which has no infinite descending sequences and
no infinite antichain is a well quasiordering. Also observe that if we have a
quasiordering P and we take the quotient over the equivalence relation z =,
y <= z <,y &y <, x, we obtain a partial ordering that we denote by
P/ =,. Moreover, P is a well quasiordering if and only if P/ =, is a well partial
ordering, and if P is recursive, then so is P/ =,.

By Fraissé’s conjecture we have that, in particular, the set of indecomposable
linear orderings, ordered by <, is a well quasiordering. Then, since the operator
lin preserves order, we have that the set of signed trees, ordered by < is well
quasiordered too. Therefore (Ag, <) is a well partial ordering, and hence it is
well founded too. Given a subset F' of Ag, let

Ia,(F)={z € Ag:Vy € F(y #p 2)}.

Conversely, given a downwards closed subset Z of Ag, let F7 be the set of minimal
elements of Ag . Z. Since Fr is an antichain, and (Ag, <) is a well partial
ordering, F7 is finite. Moreover, since (A, <p) is well founded, T = T, (Fr).
We have proved the following lemma.
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LEMMA 2.12. Let T be a signed tree. Then T has rank o = 8+ 1 if and
only if there is a finite antichain F of Ag such that bran(T) = tg[Za,(F)] and
rk(tg[Za, (F)]] is unbounded below 3.

In section 4 we will represent the trees of rank « by pairs (x, F'), where x €
{+,—}, and F C Ap is a finite antichain such that rk([t3[Z4,(F')]] is unbounded
below (. The difficulty here is that there is no obvious way of checking recursively
whether rk[ts[Za, (F")]] is unbounded below 3. In the next section we will analyze
the structure of signed trees further and find a recursive way of doing this.

To define <, we will use the following lemma.

LEMMA 2.13. Consider x € Ag, *,% € {+,—} and F,F finite antichains of
Ag such that both tk[tg[Za, (F)]] and tk[ts[Za,(F)]] are unbounded below 3. Let
S =tg(z), T be a signed tree with sp(0) = * and bran(T) = tg[La,(F)], and T

be a signed tree with s3(0)) = % and bran(T) = tg[Za,(F)]. Then:
L T4S. ]
2. T T if and only if x = % and Za,(F) C Za,(F).
3. S < T if and only if either x € Ta,(F), or ss(0) = * and bran(S) C
tg[Za,(F)).

PROOF. Part (1) is because S has rank less than or equal to 8 and T has rank
a=p0+1.

For part (2) note that, since both T and T have rank «, a homomorphism
between them has to map the root of T into the root of T', and each branch
of T into a branch of T. Since bran(T) is downwards close, this is equivalent
to * = % and Za,(F) C Za,(F). For part (3) observe that a homomorphism
S — T either maps the root of S to the root of T, in which case sg(f) = *
and bran(S) C tg[Za,(F)], or it maps S into a branch of T', in which case
x € IAE (F) O

Remark 2.14. Note that whether Zs,(F) C Za,(F) or not can be decided
recursively. This is because

Ta,(F) CTa,(F) < FNI4,(F)=0 < Vo€ FIye F(y<s2).

§3. Signed Forests. In this section we study ideals (downwards closed sub-
sets) of the partial ordering of signed trees modulo equimorphisms. Since the
class of signed trees is well quasi-ordered, every antichain is finite. So, for every
ideal Z there is a finite set com(Z) such that

Tel «— —-(3T € com(I))T =T,

namely the set of minimal elements of the complement of Z. The objective of
this section is to define com(Z), for some ideals Z, in a recursive way. The results
of this section will be used in the next one when we prove Proposition 4.1.

Since we will be dealing with signed trees and ideals of signed trees at the same
time, we will work with the more general notion of signed forests. Before intro-
ducing signed forests we prove some properties about ranks of partial ordering
that we will need later.
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3.1. Natural sum of ordinals and ranks. Given an ordinal o we let w® be
the linear ordering whose elements are the finite sequences (5, 01, ..., 3n) such
that a > By > 01 > ... > B > 0. We order the elements of w® lexicographically;
that is, (8o, -, Bn) <_a (Y0, s ¥m) if either n < m and for all i < n, §; = ~;, or,
for the first 7 such that (3; # ~;, we have that §; < ;. It can be shown that w®
is also a well ordering, and that the initial segment of w® up to (8o, ..., On) has
order type

wbo —I—wﬁl + ... —s—wﬁ".

The Cantor normal form of an ordinal « is a tuple («ay, ..., @, ) such that o >
apg > a1 > ... > a, > 0and

o =W+,

(See [AK00, Chapter 4] or [Ros82, Chapter 3 §4] for more information on ordinal
operations and the Cantor normal form. The definition we give here of Cantor
normal form is slightly different, but obviously equivalent.) Given two ordinals
a=w+ ... +w 1 and B = W + ... + w1 we define the natural sum
between « and 3 to be

a®f=w" 4w 4 . Wintmot

where Yo, ..., Yn4tm—1 are such that vo > 71 > ... > Yp4m—1 and there exists
two disjoint subsets {ag, ..., an—1} and {bg,...,bm—1} of {0,...,n +m — 1} such
that v,, = o and v, = §;. The natural sum, sometimes called the Hessenberg
sum, was introduced in [Hes06]; see [AB99] for more information on Hessenberg
based operations. Note that if we are only considering ordinals which are initial
segments of w® for a big recursive ordinal «, then the operations +, & and
taking Cantor normal forms are recursive. There are only a few properties of
the natural sum that we will use:

NSL. (a®fB)+1l=ad(f+1)=(a+1)adp,

NS2. a+8<ad g,

NS3. if a, 8 < w7, then a ® 8 < W,

NS4. if ag < aq and [y < (1, then ag @ a1 < By B F1.

The proofs of these facts are not hard. An ordinal ¢ is said to be additively
indecomposable if for every a, 8 < §, a® [ < §. A well known fact is that for an
ordinal ¢ the following are equivalent:

1. § is additively indecomposable;

2. § is indecomposable as a linear ordering;

3. § = w" for some ordinal 7.
To prove that (1) implies (2) use (NS2). To prove that (2) implies (3) use
transfinite induction on ¢ (see [Ros82, Exercise 10.4]). That (3) implies (1)
follows from (NS3).

The following lemma will be very useful later. We need to define some notation
first. Given a partial ordering P = (P, <,), and x € P, we let P,y = {y € P:
y <p z} and Py = (P(<y), <,). Observe that

tk(P) = sup{rk(P(<z)) +1: 2z € P}.
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LEMMA 3.1. Let P = (P, <) be a well founded partial ordering. Let Py, P, C P
be such that Py U Py = P, and let Py = (P, <) and Py = (P1,<). Then
rk(P) < rtk(Py) & rk(Py).
If we also have that Py and Py are closed upwards, then
rk(P) = max(rk(Po), rk(P1)).

PRrROOF. We use transfinite induction on rk(P). For the first part we have
that
tk(P) = sup{rk(P(<s)) +1: 2 € P}
< sup{rk(Po(<q)) ® 1k(Py(<qy) +1: 2 € P}
= max(sup{ (tk(Po(<z)) + 1) ©1k(P1(<a)) : z € Po},
sup{rk(Po(<z)) ® (tk(Pi(<q)) + 1) : x € P1})
< max(sup{rk(Po(<q)) + 1 : 2z € Po} @ sup{rk(Py(<s)) : € Po},
sup{rk(Py(<z)) : © € P1} @ sup{rk(Py(<p)) +1: 2 € P1})
< max(rk(Py) @ rk(P1), rk(Po) @ rk(P1))
=1k(Po) ® rk(P1).
The second inequality being because of NS4. For the second part we use that if
x ¢ Py, then Py = Pi(<q)-
tk(P) = sup{rk(P(<s)) +1: 2 € P}
= max(sup{rk(P<s)) +1: 2 € PyN P},
sup{rk(P(<z)) +1: 2 & Py}, sup{rk(Pp)) +1: 2 &€ P1})
= max(sup{max(rk(Py(<z)) + 1,1k(Py(<p)) + 1) : x € PyN P},
sup{rk(Pi(<q)) +1: 2 & Po},sup{rk(Py(<a)) +1: 2 & P1})
= max(sup{rk(Po(<q)) + 1 : 2 € Po},sup{rk(Py(<s)) +1: 2 € P1})
= max(rk(Po), rk(P1)).

3.2. Signed forests and signed sequences.

DEFINITION 3.2. A signed forest is a structure P = (P, <, sp) such that

1. (P, <) is a countable well founded partial ordering;

2. for every x € P, {y € P :y > x} is finite and linearly ordered;

3. sp: P—{+,—}.
A homomorphism between two signed forests Py = (P, <,sp,) and Py = (P, <
,sp,) is amap f: Py — P such that z < y= f(x) < f(y) and sp, = sp, o f.
We let Py < P; if there is a homomorphism f: Py — P;. We say that Py and
P1 are equimorphic if Py < P1 and P; < Py. The rank of a signed forest is the
rank of the underlying well founded partial ordering.

A signed tree (T, s7) can be thought of as the signed forest (T, <, sr), where
< is the reverse inclusion relation D. Conversely, a rooted signed forest (that
is a signed forest which has a top element, called root), can be thought of as
a signed tree. Given a rooted signed forest (P, <,sp) with P C w, consider
the signed tree T C w<%, whose nodes are the sequences (zg, ..., Z,), where
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{r <azo < .. <zapm) ={y e P:y < x,} and r is the root of P, and
sT({20, ooy Tm)) = sp(Tm)-

Countable ideals of signed trees can also be represented by signed forests.
Given an ideal 7 of signed trees we consider the signed forest |4 Z defined to be the
disjoint union of the trees on Z where elements of different trees are considered
incomparable. Formally, JZ = (| |Z,<,, sz), where | |[Z = {{(¢,T) : t € T € T},
(t, Ty <, (s,S)ifand only if S =T and t O s, and sz({¢,T)) = sr(t). Observe
that given two countable ideals 7 and Z we have that Z C 7 if and only if
WZ < WZ, and given a signed tree T, T € 7 if and only if T' < | as signed
forests.

LEMMA 3.3. Let Py and P1 be signed forest and suppose that both sp, and sp,
are constant and equal to x € {+,—}. Then, Py < Py if and only if tk(Py) <
I"k(Pl)

PrOOF. First, suppose that Py < P; and f is a homomorphism f: Py — Ps.
It can be proved by transfinite induction on rk(Py,z) that for every = € P,
rk(Po, z) < rk(P1, f(z)). This implies that rk(Py) < rk(Py).

Now suppose that rk(Py) < rk(P;). For z € Py we define f(z) € P; by induc-
tion on the size of {y € Py : y > z}, and we do it so that rk(Py, x) < rk(Py, f(z)).
If z is a maximal element of Py, since rk(Py) < rk(P1), we can define f(x) to be
some element of P; such that rk(Py, x) < rk(Py, f(z)). Now suppose that z has
an immediate successor y. Since rk(Py,x) < rk(Po,y) < rk(P1, f(y)), we can de-
fine f(x) to be some element of Py ¢,y such that rk(Po, z) < 1k(Py, f(z)). O

This lemma implies that given o and * € {+, —}, there is only one signed forest
of rank « and with signed function constant equal to *, up to equimorphism.
We now define a canonical forest in this equivalence class.

DEFINITION 3.4. Given an ordinal a and * € {+, —}, let Sf(a, *) be the signed
forest (P,<,sp) where P is the set of non-empty strictly descending finite se-
quences of elements of «, < is reverse inclusion on sequences, and sp is the
constant function equal to *. If « is a successor ordinal, say a = (8 + 1, then
consider only the sequences that start with .

Observe that rk(Sf(«, *)) = « and that if « is a successor ordinal then Sf(c, *)
is rooted, and hence a signed tree.

LEMMA 3.5. Let o be an indecomposable ordinal and P be a signed forest of
rank at least . Then, either Sf(a,+) < P or Sf(a, —) < P.

PROOF. For x € {+,—1}, let P* = {z € P: sp(x) = x} and P* be the induced
signed forest with domain P*. By Lemma 3.1, tk(P) < rk(P+) @& 1k(P~). Then,
since « is additively indecomposable, either rk(P*) > « or rk(P~) > . From
the previous lemma we get that then, either Sf(a,+) < PT < P or Sf(a, —) <
PP a

DEFINITION 3.6. Given two signed forests Py and P1, let Py+P; be the signed
forest obtained by putting a copy of Py below each minimal element of P;.

<
>

See the picture below for an example. In the picture the elements of the forests
are marked with either a + or a — and the lines between them represent the order
relation.
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LEMMA 3.7. 1. (Po+P1)+ P2 =Po+ (P1+P2).

2. tk(Py + P1) = tk(Py) + rk(Py).

3. If Po < Qo and Py < Q1, then Py +P1 < Qo + Q1.

4. If P is an upwards closed subset of P such that for all x € P, Q < Pi<z),
then Q +P < P.

5. If P is a non-empty upwards closed subset of P such that for all x ¢ P,
P(S:v) < Q, then P X Q+7P.

PROOF. Part (1) is immediate. Part (2) can be easily proved by transfinite
induction on rk(P;) using that for all z € Py, (Po+P1)(<a) = (Po+Pi(<a)). Part
(3) follows from part (4). To prove part (4) construct the map f: Q +P < P
as follows: First, for each minimal element y of P let gy be an embedding,
Gyt Q= P(cy). Thenif z € P, let f(z) = x, and if z is in the copy of Q that is
below some minimal element y of P, define f(z) using g, in the obvious way. For
part (5), construct the map f: P < Q + P as follows: First, for each maximal
element y of P~ P, let gy be an embedding, g,: P(<,) — Q. Then, if z € P,
let f(x) = 2, and if x € P\ P, let y be the maximal element of P ~\. P that is
greater that or equal to x and let f(z) = gy(«). It is not hard to see that in
both cases f is the desired embedding. m|

DEFINITION 3.8. A signed sequence is a finite sequence of the form

T = ({Q, *0), (A1, %1), oy {Qn—1, *n—1)),

where each «; is an ordinal and *; € {+,—}. The rank of a signed sequence
is tk(7) = ap + a1 + ... + ap—1. Given a signed sequence m we define a signed
forest Sf(w) by induction on |r|. Sf({{a,*))) = Sf(a, ) and St(7 " {a,*)) =
Sf(m) + Sf(c, x). Just for completeness, we let rk(f)) = 0 and let Sf(0)) be the
empty signed forest.

Observation 3.9. If last(w) = (@n_1,*p—1) and a,_1 is a successor ordinal,
then Sf(r) is rooted, and therefore a signed tree. Also observe that rk(Sf(w)) =
k(7).

PROPOSITION 3.10. Let @ = w*+w™ +...4+w* -1 withag > a1 > ... > Qp_1,
and let P be a signed forest of rank > «. Then, there exists a 0 = (%q, ..., %p_1) €
{+,—}" such that

Sf(<<wao’ *0>7 <wa17 *1>7 E) <wa"71a*n—1>>) <P

PRrROOF. We use induction on n. If n = 1, the proposition follows from Lemma
3.5. Suppose now we have proved the lemma for n. Let o = w® 4+ w™ + ... +
w1 4w and P be a signed forest of rank > «. For each x € P with
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rk(P,z) > w* + ... + w* -1 we have, by inductive hypothesis, that for some
Ox = <*07 ~-~7*n71> € {+7 _}n7

Sf(<<w0¢0, *0)7 <wa1a *1>a tey <wan_17*n—1>>) < 7)(<$)
Let Q@ = {z € P:1k(P,x) > w* + ...+ w1} and Q the induced signed forest
with domain Q. Observe that rk(Q) > w®". (This is because Vz € Q(rk(P,z) =
W 4 ..+ w1 +1k(Q, ), which can be easily proved by transfinite induction
on rk(Q, z).) For each o € {+, —}", let

7o = (@0, 0(0)), (0, (1)), oy (01 0 (n — 1)),
and let @, be the set of y € @ such that Sf(7,) < P(<y). Since Q = Uge(4 1 Qo,
from Lemma 3.1, we get that

@ tk(Qs) > 1k(Q) > W
U€{+,—}"

Then, since w® is additively indecomposable, for some o € {+, —}", rk(Q,) >
w*, and from Lemma 3.5, we get that for some * € {4, —}, Sf(w*", %) < Q,.
Thus, from Lemma 3.7(3) and (4), we get that

St(me " (W, %)) = St(7y) + Sf(w™, %) < St(7,) + Qo < P. ]

DEFINITION 3.11. Given « as in the proposition above, let com, be the set of
all signed sequences of the form
<<w(x0 5 *0>7 <wa17 *1>7 ceey <w0¢n—1 9 *n71>>-
The set comgi; will be used later to compute the minimal elements of the
complement of Ag.

Note that, assuming we could compute the Cantor normal form of & uniformly,
com,, could be computed uniformly in « too.

COROLLARY 3.12. A signed forest P has rank greater than or equal to « if
and only if for some o € com,, Sf(o) < P.

ProOF. The implication from left to right follows immediately form Proposi-
tion 3.10. For the other direction, observe that if Sf(c) < P then

a = tk(Sf(0)) < rk(P). O

This corollary will allow us to identify the unbounded ideals of Ag in the proof
of Proposition 4.1.

3.3. The complements. To identify the unbounded ideals of Az we will also
need to be able to find, for each 7 € comg, a finite subset F' C Ag such that

{x € Ag : tg(x) < SE(1)} =T, (F).
For this purpose, for each such 7 we will define com(7), a finite set of signed
sequences, such that for every signed tree T,
T < Sf(7) < —(37 € com(7)) Sf(n) < T.

In the next section we will define a function isf 5 that, given a signed sequence
7 of rank at most §, which ends in (1, *), returns an index in Ag for the signed
tree Sf(7). So, the desired F' will be {isfz(7) : 7 € com(7) & rk(m) < B}. The
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definition of com(m) might seem obscure at first; it is defined the way it is just
to make Proposition 3.14 below work.

DEFINITION 3.13. Given a signed sequence 7 we will define com(7), a finite set
of signed sequences, by induction on || as follows: Let com(@) = {(1,+), (1, —)}

and
com(m ™ {a, %)) = {o7(1,%):0 € com(nw), last(c) = (1,%)} U
{o7 " {a,*) " (1,%) : UGCOHI() last(o) = (1,%)} U

{0 o com(r), last(o) = (1,%)}.

We are using the following notation: For % € {4, —}, % is the opposite of x,
that is + = — and — = +. For a string o = (29, ..., Zp_1), last(o) = 2,1 and
07 = (X0, ey Tp—2a)-

Note that for all o € com(), last(o) is either (1,+) or (1, —), and hence Sf(0)

is a signed tree.

PROPOSITION 3.14. For a signed forest P and a signed sequence m we have
that P £ St(m) if and only if for some o € com(rw), Sf(o) < P.

PROOF. We use induction on n = |r|. For 7 = ) the result is trivial. Now
suppose we know the result for 7 and we want to prove it for 7’ = 77 (a, *).

Let us start by proving the implication from right to left. It is enough to
prove that for every 7 € com(n’), Sf(r) % Sf(n’). There are two possible
cases. First suppose that last(7) = (1,%) and either 7= = o € com(w) or
7 € com(m). In any case, by induction hypothesis, Sf(7) # Sf(w). But, if
St(1) = Sf(n') < St(mw)+Sf (e, *), then necessarily Sf(7) < Sf(7) because the root
of Sf(7) is signed *. So Sf(7) £ Sf(n’). Second, suppose that 7 = o™ (a, *) (1, )
and 07 (1,%) € com(mw). Suppose, toward a contradiction, that we have an
homomorphism f: Sf(r) — Sf(n’). Let P be the copy of Sf({{a,*),(1,%)))
inside Sf(7) = Sf(o) + Sf({{a,*),(1,%))) and @Q the copy of Sf(a,x) inside
St(n') = Sf(n) + Sf(«, *). By inductive hypothesis Sf(o™(1, %)) £ Sf(x), so
for every z € P it has to be the case that f(x) € Q because

SH(n") < e = SE(7) <) = SEo™ (1, 4)) & SE()
But then Sf(({a, *), (1,%))) = P < Q = Sf(a, *), contradicting Lemma 3.3.

Now we prove the other implication. Let P be such that P £ Sf(n’). Let
P ={x € P:P(<, #% Sf(m)}. Note that P is upwards closed. By the inductive
hypothesis, for each z € P there is some o, € com(r) such that Sf(c,) < P(<a).-
If for some of these z € P, last(c,) = (1,%), then o, € com(7’) too, and we
would be done. So, suppose this is not the case and that for every x € P
last(o,) = (1,%). If some € P is signed %, then actually Sf(0,) < P(<y), since
Sf(o,) has a top element signed *. But then Sf(o, " (1,%)) < P(<s) < P and
since 0, (1, %) € com(n’), we would be done. So, suppose that every x € P,
last(o,) = (1,%) and sp(x) = *. We want to show that for some o € com(n)
with last(o) = (1, ) we have that Sf(c™ " (o, %) (1, %)) < P. First we observe
that rk(P) > . Because otherwise, by Lemma 3.3, P < Sf(c, *), and then using
Lemma 3.7(5) and (3) and the fact that Vo ¢ P(P(<,) < Sf(7)) we would get
that

P < Sf(m) + P < Sf(m) + St(av, %) = St(n').
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For each o € com(m), let P, be the set of 2 € P such that Sf(c) < P(<,). The
sets P, are closed upwards and have union P, so, by Lemma 3.1,

max{rk(P,) : o € com(m)} =rk(P) > a+ 1.

Therefore, for some o € com(w), tk(P;) > a + 1, and hence, by Lemma 3.3,
Sf(a+1,%) < P,. Notice that for for all z € P,, Sf(67) < P(<s). Then, again
by Lemma 3.7(3) and (4),

St(o™ " {a,*) " (1,%)) ~ Sf(c7) 4+ Sf(a+ 1,%) < Sf(c™) + Py < P. O

DEFINITION 3.15. Let comy (7) = {0 € com(n) : k(o) < a}.

COROLLARY 3.16. Given P of rank at most o, we have that P £ Sf(w) if and
only if there is some o € comy (m) such that Sf(o) < P.

PRrROOF. It follows immediately from the proposition above and the fact that
if Sf(o) < P, then necessarily k(o) < rk(P) < a. O

84. The construction. In this section we put everything we have done to-
gether and prove Proposition 4.1. We have already shown in section 2 that
Proposition 4.1 implies Theorems 2.3 and 1.2.

PROPOSITION 4.1. For every recursive ordinal a there is a recursive partial
ordering (A, <o) and a recursive function t, that assigns to each element of
A, a recursive signed tree of rank at most « such that

o for every signed tree T' of rank less than or equal to « there is an x € A,
with to(x) ~ T, and
o forx,y € Ay, x <0 y if and only if to(x) < ta(y).

PRrROOF. Let £ be a big additively indecomposable recursive ordinal such that
the operations +, @, and taking Cantor normal forms of ordinals below & are
recursive. For each o < & we will construct, uniformly in «, a recursive set A,
a recursive partial ordering <, on A,, and two recursive functions ¢, and isf
such that the following condition are satisfied.

1. t, assigns to each x € A, a recursive signed tree of rank less than or equal
to a.

2. For every recursive signed tree T of rank less than or equal to « there exists

an x € A, such that t,(x) ~T.

T <q y if and only if ¢4 (2) X ta(y).

4. isf, maps signed sequences m, with last(7) = (1, %) and of rank less than
or equal to a, into A,, such that ¢, (isf (7)) ~ Sf(r).

5. For B < a, Ag = Aq Nw=Al, tg C ta, isf 3 C isf,, and < is the restriction
of <a to Ag x Ag, where wl=Fl = {(y,y) : v < B,y € w}.

Observe that Condition (5) above implies that rk(t.(z)) = (x)o, where (-)o
is the projection onto the first coordinate, so for example ({y, z))o = y. So, we
want to construct ¢, and isf, such that the following diagram commutes up to

©w



16 ANTONIO MONTALBAN

equimorphism of signed trees.

ta _ signed trees
Ay —>

\ of rank < «
iSfaT / .
< |

signed sequences
gof ranl?ﬁ « rk {(vir<a}

The construction is by effective transfinite recursion. Let A; consist of two
incomparable elements (1,+) and (1,—), and for x € {+,—1}, let t1((1,%)) =
SE(1, %) and dsf; ({{1,%))) = (1, %) € Aj.

Suppose now we have already constructed Ag, <, tg and isf 4 for each 8 < «
satisfying the conditions above. When « is a limit ordinal, just take A, to be
Uﬁ<a Ag and define <, t, and isf, also by taking unions. It is not hard to
see that the conditions above are still satisfied. (Recall that there are no signed
trees whose rank is a limit ordinal.)

Now suppose oo = 3+ 1. Let B, the set of pairs (x, F) where * € {+, —} and
F is a finite antichain of (A, <) such that rk[ts[Z4,(F)]] is unbounded below
B. By Lemma 2.12, for every signed tree of rank « there is some (x, F) € B,
such that sp(0) = * and bran(T)| = tg[Za,(F)]. Conversely, if, for a signed
tree T', s7(0) = * and bran(T')| = tg[Za,(F)] for some (*, F') € B, then T has
rank a. Now, observe that rk[tg[Za,(F')]] is unbounded below 3 if and only if
the signed forest |H¢s[Za,(F)] has rank 3. By Corollary 3.12, this happens if
and only if there is a 0 € comg such that Sf(c) < Jt5[Za,(F)]. By Corollary
3.16, Sf[comp(c)] is the set of trees of rank at most 8 which are minimal in
the complement of the ideal {T : rk(T) < 8 & T < Sf(0)}, everything up to
equimorphism. Therefore Sf(o) ~ t15[Za, (isf glcomg(o)])]. So, we have that
rk[tg[Za,(F)]] is unbounded below £ if and only if for some o € comyg,

IAB(iSfﬁ[COng(O')D - IAﬁ (F)v
By Remark 2.14, we can check whether Za, (isf s[comg(0)]) € Za,(F) recur-
sively. So B, is recursive.

Let Ay = Ag U ({a} x B,). For x € Ag, let to(x) = tg(x). For (x,F') € By,
let to({c, (%, F))) be the signed tree T such that sp(§) = x and bran(T) =
tg[Za,(F)]. Note that, because of what we said above about B, t, satisfies
conditions (1) and (2).

Now we want to define the relation <, on A,. Consider xz,y € A,. We let
Z <q y if and only if one of the following conditions holds

o 2,y € Ag and z <3 v;

o = (a, (%0, F0)), y = (a, (x1, F1)), *0 = *1, and Zn,(Fp) € Ta,(F1);

o v € Ag, y=(a (xF)) and

— either x € Ty, (F),
—orx = (y+1,(% F)), for some v < (3, * = ¥ and
IA’Y (F) - IA[,(F).
Condition (3) follows from Lemma 2.13. Observe that

IAW(F)QIAL,(F) < FﬂIAW(F):(Z) < VxEF((x)ozfy\/EyeF(y <8 a?))
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So <. is recursive.
Finally, let us define isf,. For a signed sequence 7 of rank less than «, let
isf o () = isf g(m). For 7" = 77 (1, %) of rank «, let isf , (7") = (a, (¥, isf g[comg(7)])).
So we get that t,(isf, (7)) is the signed tree T such that sr(0) = * and
bran(T') = tg[Za, (isfﬁ[comﬁ(w)])]

={T:1k(T) < B & -(3z € isf glcomp(m)])ts(x) < T}

={T :1k(T) < B & =(Fo € comy(7)) St(0) < T},
which, by Corollary 3.16 is equal to {7 : T' < Sf(w)}. Therefore, T ~ Sf(n’) and
condition (4) follows. Condition (5) is immediate from the definitions. O

(7
(7

An interesting consequence of the proof of this proposition is given in Corollary
4.3. The following basic observation about indecomposable linear orderings will
be used in the proof of Corollary 4.3.

Observation 4.2. If £ is indecomposable and £ < Ly + ... + L, then L < L;
for some 7. This fact can easily be proved by induction on n using the definition
of indecomposability.

COROLLARY 4.3. Given a < WK, L., the partial ordering of equimorphism
types of linear orderings of Hausdorff rank less than o ordered by <, is recursively
presentable.

PROOF. Let A,, <o and t, be as in the proof above. Let A, = (A, U
{01)<« \ {0}, the set of finite, non-empty, sequences of elements of A, U {0}.
For z € A, U {0} let

umz{?”“”)izeﬁa

Define the function [ to A, by:
l(<.’1?0, ...,{Bn,1>) = l(ajo) + ...+ l(scn,l).

Since every scattered linear ordering is equimorphic to a finite sum of 1s and
h-indecomposable linear orderings, for every linear ordering of Hausdorff rank
less than or equal to «, there is a 0 € Ay, such that Z(O’) is equimorphic to it.
(Here we are using Lemma 2.9. So, if « is finite, we need to consider A,_1
instead of A,.) We now need to compute the embeddablity relation between
linear orderings. We will define a relation < on A, such that for o,7 € A,,
o< T Z(O’) < Z(T) First, suppose we are given o = (xg, ..., Tpn) € A,
and © € Ay U {0}, and we want to know whether {(¢) < I(z). If 2 = 0, then
I(6) < I(z) = 1 if and only if I(s) = 1, or equivalently ¢ = (0). So, suppose
that © = (B + 1, (+, F)) for some 8 < a. (The case when x = (8 +1,(—, F)) is
analogous.) Then

Wz)=Lo+ (Lo+ L1)+ (Lo+ L1+ L2) + ...y

where {Lo, L1, La, ...} = I[Za,(F)]]. Suppose that I(0) < I(z). Then, necessarily,
l(zy) = l(x) and for each i < n, [(x;) embeds into a proper initial segment of
I[(x). Since every proper initial segment of I(x) is contained in a finite sum of
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linear orderings of the form [(y) for y € Z4,(F), and I(x;) is indecomposable,
it has to be the case that for some y € Z4,(F), l(z;) < I(y), and hence that

x; € Ta,(F'). Therefore, for I(0) < I(z) to hold we have to have that
(2) Tno1 Sa & Vi <n(r; € Za,(F)),
which we can check recursively since

vy € Ta,(F) <= rk(z;) < B & -y € F(y <o Ti).

Conversely, if (2) holds, then [(o0~) embeds into a proper initial segment of I(z)
because [(x) contains infinitely many segments isomorphic to I(x;) for each i < n.
Since I(z) embeds into every proper final segment of itself, (2) implies that I(z,,)
embeds in every proper final segment of I(z). Therefore [(0) = i(c7) + I(zn) <
I(z). We have shown how to check whether [(c) < I(z) recursively.

Now, suppose we are given o = (xg,...,Z,) and 7 = (Yo, ..., Ym) € A, and

we want to check whether {(¢) < (7). Suppose that there is an embedding
g: Yoo l(z) — ZT:O I(yj). Observe that, since each I(z;) is indecomposable,
we can assume that for every ¢ < n, g[l(z;)] C I(y;) for some j < m. (This is
because of the property of indecomposable linear orderings mentioned above.)

Therefore, [(0) < I(7) if and only if

\/ /\ [(<Iik7xik+17"'7xik+1—1>) < l(yk)

0=ip<...<im<n \k<m

(In the formula above we are taking 4,41 = n + 1.) Now we have that the
quasiordering relation < on A, is recursive. Hence the induced equivalence
relation, ~, defined by x ~ y <= x <y & y < x, is recursive, and therefore the
quotient partial ordering (A,, <)/ ~ is recursive too. Observe that (A,, <)/ ~
is the desired partial ordering. O
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