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COUNTABLY COMPLEMENTABLE LINEAR ORDERINGS

ANTONIO MONTALBÁN

Abstract. We say that a countable linear ordering L is countably complementable
if there exists a linear ordering L, possibly uncountable, such that for any countable
linear ordering B, L does not embed into B if and only if B embeds into L. We
characterize the linear orderings which are countably complementable. We also show
that this property is equivalent to the countable version of the finitely faithful extension
property introduced by Hagendorf.

Using similar methods and introducing the notion of weakly countably comple-
mentable linear orderings, we answer a question posed by Rosenstein and prove the
countable case of a conjecture of Hagendorf, namely, that every countable linear or-
dering satisfies the countable version of the totally faithful extension property.

1. Introduction

We are interested in the structure (L, 4), where L is the set of countable linear
orderings, and 4 is the embeddability relation. (For more information on this structure,
see [Ros82, Chapter 10], [Fra00, Chapters 5, 6 and 7] or [Mon].) Given L ∈ L, let

L(L) = {B ∈ L : L 64 B}.
In this paper we completely characterize the following class of linear orderings.

Definition 1.1. A countable linear ordering L is countably complementable if there
exists a linear ordering L, possibly uncountable, such that for every countable linear
ordering B,

B ∈ L(L) ⇐⇒ B 4 L,

in which case we call L a complement for L.

This is a quite natural definition, although to our knowledge it has not been studied
before.

In this paper, we show that the class of countably complementable linear orderings
coincides with the class of linear orderings that have the finitely faithful extension prop-
erty, and with the class of linear orderings that have the completely faithful extension
property. These two properties, which we define below, were introduced by Hagendorf
in [Hag77] (see [Hag79, page 426]) for arbitrary cardinality. In this paper we treat only
the countable case.

Definition 1.2. Let L ∈ L
(1) L has the finitely faithful extension property if for all A,B ∈ L(L), there exists
C ∈ L(L) such that A 4 C and B 4 C.

(2) L has the completely faithful extension property if for every set {Ai : i ∈ ω} ⊆
L(L), there exists C ∈ L(L) such that (∀i ∈ ω) Ai 4 C.
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(3) L has the totally faithful extension property if for every set {Ai : i ∈ ω} ⊆ L(L)
which is totally ordered by embeddability, there exists C ∈ L(L) such that
(∀i ∈ ω) Ai 4 C.

The completely faithful extension property actually appeared much earlier, in a paper
by Fräıssé, [Fra48] in which four conjectures about L were made (see [Ros82, page 178]).
One of them is the celebrated Fräıssé’s Conjecture, which states that in L, ordered
by embeddability, there are no infinite strictly descending sequences and no infinite
antichains. This conjecture was later proved by Laver [Lav71]. (See [Clo90, Sho93,
Mon06] for proof-theoretic analyses of this statement.) Of the other three conjectures,
two have been proved to be true and the other one has been shown to be false. The
false conjecture says the following:

(Conjecture (3) in [Fra48].) For every countable linear orderings L, C0, C1, ....,
if for every C such that ∀n(Cn 4 C) we have that L 4 C, then there is
some n such that L 4 Cn.

Note that this is equivalent to the statement that every countable linear ordering L
has the completely faithful extension property. The first counterexample, L = ω + ω∗,
was found by Jullien [Jul69] (see [Ros82, Chapter 10]). That ordering does not have
even the finitely faithful extension property, as witnessed by A = ω ·ω∗ and B = ω∗ ·ω.
It will follows from Lemma 3.2 that ω + ω∗ is also an example of a linear ordering
which is not countably complementable. A characterization of all such counterexamples
follows from Theorem 1.3.

Our main theorem gives four characterizations of linear orderings that are countably
complementable.

Moreover, we will give an explicit way of constructing complements for any linear
orderings that has one. This construction would be by transfinite recursion and can be
recovered from the proof of Proposition 3.9.

Here is our main Theorem. We will prove it in Section 3.

Theorem 1.3. Let L be a countable linear ordering. The following are equivalent:

(CC.1) L is countably complementable;
(CC.2) L has the completely faithful extension property;
(CC.3) L has the finitely faithful extension property;
(CC.4) L has no essential segment of the form 〈→ | ←〉;
(CC.5) Either L is equimorphic to Q, or L is scattered and if F0 + ...+Fn is a minimal

decomposition of L, then for no i < n we have that Fi and Fi+1 are incomparable,
Fi is indecomposable to the right, and Fi+1 is indecomposable to the left.

See relevant definitions in the background section below.

Conditions (CC.4) and (CC.5) are the ones that we see as characterizing the count-
ably complementable linear orderings. Condition (CC.4) says that the linear orderings
of the form 〈→ | ←〉 are essentially the only reason why a linear ordering could be
not countably complementable. Condition (CC.5) characterizes the countably comple-
mentable linear orderings, because every scattered linear ordering has a unique minimal
finite decomposition into indecomposable linear orderings; see Lemma 2.1 below.
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A characterization of a similar sort was given by Jullien [Jul69] for the extendible
linear orderings. A linear ordering L ∈ L is extendible if every countable partial or-
dering into which L does not embed has a linearization into which L does not embed
either. This class of linear orderings was studied by Bonnet and Pouzet [BP82] even in
the uncountable case, and then from a logic viewpoint by Downey, Hirschfeldt, Lempp
and Solomon [DHLS03] and by Montalbán [Mon06]. We observe that every extendible
linear ordering has the finitely faithful extension property, and thus is countably com-
plementable. (If A,B ∈ L(L), then L cannot be embedded into the partial ordering that
consists of incomparable copies of A and B, and a linearization of this partial ordering
without copies of L gives an extension of both A and B which is in L(L).) The other
direction does not hold. For example, ω + 1 + 1 is countably complementable but not
extendible.

An effective version of the notion of taking complements of a linear ordering had
already appeared in [Mon06], where the author studies the extendibility property from
a logic viewpoint. Presented in that paper is an algorithm that, given a computable
indecomposable linear ordering L, constructs a (countable) Π1

1 linear ordering comCK(L)
such that, for every computable linear ordering A, A 4 comCK(L) ⇐⇒ 1+L+1 64 A.

Though Conjecture (3) in [Fra48] was proved to be false, the question of whether
it holds in the case where C0 4 C1 4 C2 4 ... remained open (see [Ros82, page 178]).
We will show that every countable linear ordering has the totally faithful extension
property, answering this question in the affirmative. Hagendorf [Hag79] has conjectured
that that this is true even without restricting to the countable case.

Here is our second main theorem. We will prove it in section 4.

Theorem 1.4. Every L ∈ L has the totally faithful extension property.

The way we prove this is by showing that every countable linear ordering is weakly
countably complementable (see definition below) and showing that every weakly count-
ably complementable linear ordering has the totally faithful extension property.

Definition 1.5. A countable linear ordering L is weakly countably complementable if
there exist linear orderings L0, ...,Ln, possibly uncountable, such that for every count-
able linear ordering B,

B ∈ L(L) ⇐⇒ (∃i ≤ n) Bi 4 Li,

in which case we call {L0, ...,Ln} a complement set for L.

A construction of a complement set for each countable linear ordering follows from
Proposition 4.3.

2. Background

In this section, we introduce our notation and prove some basic lemmas about in-
decomposable linear orderings. Let A = 〈A,≤A〉 be a linear ordering. The reverse
linear ordering of A is A∗ = 〈A,≥A〉. Let B = 〈B,≤B〉 be another linear ordering. The
product, A · B, of A and B is obtained by starting with B and substituting a copy of A
for each element of B. That is, A·B = 〈A×B,≤A·B〉, where 〈x, y〉 ≤A·B 〈x′, y′〉 iff either
y <B y′, or y = y′ and x ≤A x′. The sum,

∑
i∈A Bi, of a set {Bi}i∈A of linear orderings
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indexed by A, is constructed by starting with A and, for each i ∈ A, substituting a
copy of Bi. Thus, A · B =

∑
i∈BA. If A = {0 < 1 < · · · < m− 1}, we sometimes write

B0 + ... + Bm−1 or
∑m−1

i=0 Bi instead of
∑

i∈A Bi.
A linear ordering L is indecomposable if whenever L = A+B, either L 4 B or L 4 A.

We allow A or B to be ∅, so 1, the linear ordering with one element, is indecomposable.
L is indecomposable to the right (resp. left) if L 6= 1 and whenever L = A + B and
B 6= ∅ (resp. A 6= ∅), we have that L 4 B (resp. L 4 A). Sometimes, we say that L is
〈→〉 (resp. 〈←〉), to mean that L is indecomposable to the right (resp. left).

Two linear ordering L1, L2 are equimorphic (denoted L1 ∼ L2) if they can be em-
bedded into each other. We say that a linear ordering L has the form 〈→,←〉 if it can
be written as A + B, where A is 〈→〉, B is 〈←〉, and neither L ∼ A nor L ∼ B. If, in
addition, A and B are incomparable, we say that L is of the form 〈→ | ←〉.

We note that all the properties of linear orderings that are discussed in this paper
are preserved under equimorphism.

Given L = A + B + C, we say that B is an essential segment of L if whenever
L 4 A + B′ + C we have that B 4 B′. For example, in ω + ω + ω, each copy of ω is
essential, but in ω2 + ω + ω2 the middle copy of ω is not.

A linear ordering is scattered if it contains no copy of Q, the ordering of the rationals.
If L is countable, then L is scattered if and only if it is not equimorphic to Q, the
reason being that every countable linear ordering can be embedded into Q. We say that
L = A0 + ... +An is a minimal decomposition of L if each Ai is indecomposable and n
is least possible.

Theorem 2.1 (Laver [Lav71], Jullien [Jul69]). Every scattered linear ordering has a
unique minimal decomposition up to equimorphism.

The existence of finite decompositions is due to Laver, and the uniqueness of minimal
decompositions is due to Jullien.

Another very important structural theorem of Laver is the following one.

Theorem 2.2. Every countable scattered indecomposable linear ordering, different from
1, can be written as either an ω-sum or an ω∗-sum of indecomposables.

Now we state a few very simple facts that will be useful later.

Lemma 2.3. (1) If A+ B 4 C +D, then either A 4 C or 1 + B 4 D.
(2) If L is indecomposable and L 4

∑n
i=0Ai, then for some i ≤ n, L 4 Ai.

(3) If L is indecomposable to the left and L 4
∑

i∈αAi, where α is an ordinal, then
for some i ∈ α, L 4 Ai.

(4) If A+A 4 A, then Q 4 A.
(5) If A is scattered and indecomposable to the right, then A+ 1 64 A.

3. Countably complementable linear orderings

This section is dedicated to prove Theorem 1.3.
First, in Section 3.1, we show that all the conditions in Theorem 1.3 are true when L is

equimorphic to Q, and we show that (CC.1) =⇒ (CC.2). The implication (CC.2) =⇒
(CC.3) is trivially true. The implication (CC.4) =⇒ (CC.5) is a particular case of
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[Mon06, Lemma 5.9]. The remaining two implications are proved in the following sub-
sections.

3.1. The simple implications. We start by proving that Theorem 1.3 holds when
L ∼ Q. So, later, we can assume L is scattered and use all the structural results we
know about scattered linear orderings.

Lemma 3.1. All the conditions in Theorem 1.3 are satisfied if L ∼ Q.

Proof. To prove (CC.1) consider Zω1 , where Z is the ordering of the integers. Zω1 consists
of the set of maps f : ω1 → Z such that f(ξ) = 0 for all but finitely many ξ ∈ ω1, where
f ≤ g if for the greatest ξ ∈ ω1 where f(ξ) 6= g(ξ) we have f(ξ) ≤Z g(ξ). It is well
known that Q 64 Zω1 and that for every countable scattered B, we have B 4 Zω1 . (We
actually have B 4 Zrk(B)+1, where rk(B) is the Hausdorff rank of B.) Thus, Zω1 is a
complement for Q.

Conditions (CC.2) and (CC.3) follow from the fact that countable sums of countable
scattered linear orderings are also countable and scattered.

For condition (CC.4), we note that if L = A+ B + C and B is a segment of the form
〈→ | ←〉, then, since Q 64 B, Q embeds into either A or C. Then, since L 4 Q, the
segment B cannot be essential.

Condition (CC.5) is trivially satisfied. �

Lemma 3.2. Every countably complementable linear ordering has the completely faithful
extension property.

Proof. Let L be countably complementable, and let L be a complement for L. Consider
a sequence {Ai : i ∈ ω} ⊆ L(L). For each i, there exists a subset Bi ⊆ L which is
isomorphic to Ai. Let C =

⋃
i∈ω Bi. Then C ∈ L(L) and (∀i ∈ ω) Ai 4 C. �

3.2. Non-countably complementable linear orderings. Now we prove that (CC.3)
implies (CC.4).

Lemma 3.3. If L is 〈→ | ←〉, it does not have the finitely faithful extension property.

Proof. Write L asD+E , whereD is indecomposable to the right and E is indecomposable
to the left, and D and E are indecomposable and incomparable. Write D as

∑
i∈ω Di

and E as
∑

i∈ω∗ Ei. Let

A =
∑
n∈ω

(E +Dn) and B =
∑
n∈ω∗

(D + En).

First, note that D does not embed into any proper initial segment of A; since D is
indecomposable and cannot be embedded in E , or any of the Dn’s. Therefore L 64 A.
Similarly, E does not embed into any proper final segment of B; hence L 64 B.

Let C be such that A 4 C and B 4 C, and let A′ and B′ be subsets of C isomorphic
to A and B, respectively. If every element of A′ is less than every element of B′, then
L = D + E 4 A+ B 4 C. Otherwise, there exists a final segment of A′ that lies to the
right of some initial segment of B′. Since E embeds into every final segment of A, and
D embeds into every initial segment of B, we have that L 4 C. In any case C 6∈ L(L),
so L does not have the finitely faithful extension property. �
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Lemma 3.4. Let L = D + E + F , where E is an essential segment of L. If E does not
have the finitely faithful extension property, neither does L.

Proof. Let A,B ∈ L(E) be such that C 6∈ L(E) for any C with A 4 C and B 4 C. Since
E is essential in L, we have that L 64 D + A + F , because otherwise we would have
E 4 A. Analogously, L 64 D+B+F . Now, let C be such that both D+A+F 4 C and
D + B + F 4 C. We want to show that C 6∈ L(L). Choose embeddings of D +A + F
and D + B + F into C. Then express C as C0 + C1 + C2, where C0 contains the image
of D in at least one of those embeddings, C2 contains the image of F in at least one of
them, and C1 contains the images of both A and B. By the choice of A and B, we have
that E 4 C1. But then L = D + E + F 4 C0 + C1 + C2 = C, so L does not have the
finitely faithful extension property. �

The implication (CC.3) =⇒ (CC.4) in Theorem 1.3 follows from the two lemmas
above.

3.3. Constructing the complements. Now we show that (CC.5) implies (CC.1).
Moreover, we explicitly construct a complement for each countable linear ordering that
satisfies (CC.5). The idea of the construction in following lemma is taken from [Mon06,
6.5], where the effective version is considered.

Lemma 3.5. Every scattered indecomposable countable linear ordering L is countably
complementable.

Moreover, if L is 〈→〉 and L =
∑

i∈ω Li, where, for every i, Li is indecomposable and

L+1

i is a complement for Li + 1, then

L =

(∑
i∈ω∗

L+1

i

)
· ω∗1

is a complement for L, and

L+1 =

(∑
i∈ω∗

L+1

i

)
· ω∗1 · ω

is a complement for L+ 1.

Proof. We first show that L is a complement for L. Suppose, toward a contradiction,

that L 4 L. Then, since L is indecomposable to the right, L 4
∑

i∈ω∗ L
+1

i . Moreover,

for some i ∈ ω∗, L 4 L+1

i . But then Li + 1 4 L+1

i , which is a contradiction.
Suppose that B is countable and L 64 B. It cannot be the case that, for every i,
Li + 1 embeds into every final segment of B, because otherwise we could construct an
embedding of L into B. Thus, there exist some final segment B0 of B and some j ∈ ω
such that Lj + 1 64 B0. Let B0 be such that B = B0 + B0. Now, since L 64 B0, we can
write B0 as B1 +B1 in such way that for some j, Lj +1 64 B1. Continuing in this fashion
we can decompose B as

∑
ξ∈β Bξ for some β < ω1, where for every ξ ∈ β there is some

jξ ∈ ω such that Ljξ
+ 1 64 Bξ. Then, for every ξ, Bξ 4 L+1

jξ
4
∑

i∈ω∗ L
+1

j . Therefore,

B 4 L.
We now prove that L+1 is the complement of L+ 1.
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First, we note that L + 1 64 L+1 , because otherwise we would have that L 4 L.
Second, suppose that B is countable and L + 1 64 B. If B has a last element, then

L 64 B and hence B 4 L 4 L+1 . So suppose that B has no last element, and write B as∑
m∈ω Bm. Then, we have that L 64 Bm for every m, and hence that Bm 4 L. It follows

that B 4 L+1 . �

Lemma 3.6. If D+1 and 1+E are countably complementable, then so is L = D+1+E.
Moreover, If D+1 is a complement for D+1 and 1+E is a complement for 1+E, then

L = D+1 + 1+E
is a complement for L.

Proof. First, we note that L 64 D+1 + 1+E , because otherwise we would have that either

D+1 4 D+1 or 1+E 4 1+E . Now consider B ∈ L(L). Let B0 = {x ∈ B : D+1 64 B(≤x)},
and let B1 be such that B = B0+B1. Clearly, D+1 64 B0. Also, if 1+E 4 B1, there would
be some x ∈ B1 such that D 4 B(<x) and E 4 B(>x) contradicting that D + 1 + E 64 B.

Thus, B0 4 D+1 and B1 4 1+E , and hence B 4 L. �

Lemma 3.7. If L+ 1 is countably complementable, then so is L+ 1 + 1.

Moreover, if L+1 is a complement for L+ 1,then

L+1 + 1

is a complement for L+ 1 + 1.

Proof. Clearly, L+1+1 64 L+1 +1, because otherwise we would have that L+1 4 L+1 .
Now consider B ∈ L(L + 1 + 1). If B has no last element, then L + 1 64 B, hence

B 4 L+1 4 L+1 + 1. So suppose that B = A+ 1. Then L+ 1 64 A, hence A 4 L+1 and

B 4 L+1 + 1. �

Lemma 3.8. If D and E are indecomposable, E is 〈←〉, and D 4 E, then L = D+ E is
countably complementable.

Moreover, if D is a complement for D and 1+E is a complement for 1 + E, then

L = D + 1+E
is a complement for L.

Proof. First, note that L 64 L, because D 64 D and 1 + E 64 1+E .
Consider F ∈ L(L). Let

F0 = {x ∈ F : E 4 F(>x)} and F1 = {x ∈ F : D 4 F(<x)}.
Clearly, no element of F can be in both F0 and F1, because that would imply that
D + E 4 F . First, suppose that there exists some x ∈ F such that x 6∈ F0 ∪ F1. Then

D 64 F(<x) and 1 + E 64 F(≥x), hence F 4 D + 1+E . Finally, suppose that F0 is the
complement of F1. Then F = F0 + F1 and

F0 = {x ∈ F : D 64 F(<x)} and F1 = {x ∈ F : E 64 F(>x)}.
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If E 64 F , then F 4 1+E 4 L, so suppose that E 4 F . Note that 1+ E 64 F1, and hence

F1 4 1+E . We will show now that F0 4 D. We cannot have E 4 F0, because that would
imply D + 1 4 E + 1 4 E 4 F0, and for no x ∈ F0 we have D 4 F(<x). So, E 4 F1.

This implies that D 64 F0, because otherwise L 4 F . So, we have that F0 4 D, and
hence F 4 L. �

By reversing the orderings in the lemma above, we get that If D and E are indecom-
posable, D is 〈→〉, and E 4 D, then L = D + E is countably complementable.

Proposition 3.9. Let F0 + ... + Fn be a minimal finite decomposition of L such that
for no i we have that Fi + Fi+1 is 〈→ | ←〉. Then L is countably complementable.

Proof. We use induction on n. If n = 0, then by Lemma 3.5, L = F0 is countably
complementable.

Suppose n > 0, and assume that the proposition is true for all m < n.
If Fi = 1 for some i with 0 < i < n, then L = (F0 + ... + Fi−1) + 1 + (Fi+1 +

... + Fn). Using Lemma 3.6 and the induction hypothesis, we get that L is countably
complementable.

If for some i < n either Fi+1 is 〈→〉, or Fi is 〈←〉, then L is equimorphic to (F0 + ...+
Fi) + 1 + (Fi+1 + ... + Fn). So, again, using Lemma 3.6 and the induction hypothesis,
we get that L is countably complementable.

This leaves only the possibility of having n = 1 and L = F0 +F1. If L = 1 + 1, then
it is countably complementable. If either F0 = 1 and F1 is 〈←〉 or F1 = 1 and F0 is
〈→〉, then L is countably complementable because of Lemma 3.5.

The only case remaining is L = F0 + F1 where F0 is 〈→〉, F1 is 〈←〉, and either
F0 4 F1 or F1 4 F0. In this case, L is countably complementable by Lemma 3.8. �

4. Weakly countably complementable linear orderings

Recall that L ∈ L is weakly countable complementable if there exist linear orderings
L0, ...,Ln such that (∀B ∈ L) B ∈ L(L) ⇐⇒ (∃i ≤ n) Bi 4 Li.

We will prove in this section that every countable linear ordering has the totally
faithfull extension property.

Lemma 4.1. If L is weakly countable complementable, it has the totally faithful exten-
sion property.

Proof. Let {Ai : i ∈ ω} ∈ L(L) be a set which is totally ordered by embeddability. Let
{L0, ...,Ln} be a complement set for L. Then for each i ∈ ω, there exists j ≤ n such
that Ai 4 Lj. Since {Ai : i ∈ ω} is totally ordered by embeddability, there is some
j ≤ n such that Ai 4 Lj for every i ∈ ω. Let C ⊆ Lj be the union of the images of all
the embeddings Ai 4 Lj. So, we have that (∀i) Ai 4 C but L 64 C. �

Lemma 4.2. If D, D + 1, E, and 1 + E are weakly countably complementable, then so
is L = D + E.
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Moreover, if D, D+1, E and 1+E are complement sets for D, D + 1, E, and 1 + E,
respectively, then

{A+ B : A ∈ D,B ∈ 1+E} ∪ {A+ B : A ∈ D+1 ,B ∈ E}
is a complement set for L.

Proof. First, if A ∈ D and B ∈ 1+E, then L 64 A + B because D 64 A and 1 + E 64 B.

Analogously, if A ∈ D+1 and B ∈ E, then L 64 A+ B.
Now consider C ∈ L(L). Let

C0 = {x ∈ C : E 64 C(>x)} and C1 = {x ∈ C : D 64 C(<x)}.
These two sets cover C because otherwise we would have that L 4 C. If there exists
x ∈ C0∩C1, then D 64 C(<x) and 1+E 64 C(≥x), in which case C 4 A+B for some A ∈ D
and B ∈ 1+E. So suppose that C0 and C1 are disjoint. Then C = C0 + C1 and

C0 = {x ∈ C : D 4 C(<x)} and C1 = {x ∈ C : E 4 C(>x)}.
Note that D + 1 64 C0 and 1 + E 64 C1. Also, it cannot be the case that both D 4 C0
and E 4 C1. If D 64 C0, then C 4 A + B for some A ∈ D and B ∈ 1+E. Similarly, if

E 64 C1, then C 4 A+ B for some A ∈ D+1 and B ∈ E. �

Proposition 4.3. Every L ∈ L is weakly countably complementable.

Proof. If L ∼ Q or L is finite, then L is countably complementable, so suppose that L
is infinite and scattered, and let F0 + ... + Fn be a minimal decomposition of L. By
grouping the terms of this decomposition write L as A0 + ... +Ak so that for each i, Ai

is infinite and of the form 1+1+ ...+1+Bi +1+ ...+1, where Bi is either 〈←〉 or 〈→〉.
By noting that if B is 〈→〉 then 1+B ∼ B, and using Lemmas 3.5 and 3.7, we get that,
for each i ≤ k, the orderings Ai, 1 +Ai and Ai + 1 are countably complementable. By
induction on k and the lemma above, L is weakly countably complementable. �
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