
COMPUTABLE POLISH GROUP ACTIONS

ALEXANDER MELNIKOV AND ANTONIO MONTALBÁN

Abstract. Using methods from computable analysis, we establish a
new connection between two seemingly distant areas of logic: com-
putable structure theory and invariant descriptive set theory. We extend
several fundamental results of computable structure theory to the more
general setting of topological group actions. As we will see, the usual
action of S∞ on the space of structures in a given language is effective in
a certain algorithmic sense that we need, and S∞ itself carries a natural
computability strucutre (to be defined). Among other results, we give a
sufficient condition for an orbit under effective G-action of a computable
Polish G to split into infinitely many disjoint effective orbits. Our re-
sults are not only more general than the respective results in computable
structure theory, but they also tend to have proofs different from (and
sometimes simpler than) the previously known proofs of the respective
prototype results.

1. Introduction

We show how various results from computable structure theory generalize
to the setting of computable Polish group actions. On the one hand, this
allows us to obtain new results on the computability of Polish group actions.
Polish group actions appear in different areas of mathematics, as for instance
the action of GLn on Rn, or the action of the group of orientation-preserving
self-homeomorphisms of [0, 1] on C[0, 1]. In all these examples, notions like
computable categoricity and degree spectrum are still meaningful, and so
are the results we generalize. On the other hand, our results give us a better
understanding of some of the classical results from computable structure
theory: Being able to prove results about computable structures using only
topological arguments and without using the the elements of the structures,
allows us to understand the underlying reasons that make these results true.

For a given countable language L, the set of L-structures with domain
ω, denoted XL, has a natural topology associated to it which makes it a
Polish space. The permutation group on ω, denoted S∞, acts naturally on
this space by permuting the domain of the structures. One could then apply
general results about Polish group actions to get results about L-structures
and their isomorphisms. Descriptive set theory have been studying this

The first author was supported by the Packard Foundation. The second author was
partially supported the Packard Fellowship and NSF grant DMS-1363310. We thank
Slawomir Solecki who found an error in one of our proofs.

1

2 A. MELNIKOV AND A. MONTALBÁN

kind of interactions for a while. In this paper we look at this idea from the
point of view of computable structure theory. To our surprise, we have been
able to show how five known results on computable structure theory can be
extended to the much more general setting of Polish group actions.

In the language of computable Polish actions, when we consider action of
S∞ into XL, we can talk about the following basic notions: presentation of
a structure, degree of the presentation, isomorphism between presentations,
and degree of the isomorphism. Thus, any other notion or theorem purely
based on these basic notions can be expressed in generality in the language
of computable Polish actions. Let us start by looking at the notion of com-
putable categoricity. A computable structure A is computable categorical if
for every computable structure B isomorphic to A there is a computable iso-
morphisms between them. Re-writing this definition in terms of the group
action of S∞ on XL we get:

Definition 1. Let (X ,G, a) be a computable transformation group, that is,
let a be a computable action of a computable Polish group on a computable
Polish space (see Definition 15). A computable point x ∈ X is computably
categorical if for every computable point y ∈ X in the orbit of x, there is a
computable g ∈ G such that g ·x = y. We say that x is uniformly computably
categorical if there exists a computable operator Φ that given a presentation
of a point y in the orbit of x, it outputs g ∈ G with g · x = y.

We say that an effective property P holds on a cone if there exists a
Turing degree a such that for any b ≥ a the relativized property Pb holds.
For example, the second author has showed in [Mon] that a structure A is
uniformly computably categorical on a cone if and only if the set of copies of
A is a Π0

2 set of reals. The proof used Goncharov’s [Gon75] characterization
of relative computable categoricity, Ventsov’s [Ven92] analysis of uniform
computable categoricity, Lopez-Escobar’s [LE65] theorem connecting Borel
complex with Lω1,ω, and a finer version of the type-omitting theorem for
infinitary logic. This statement can be re-phrased in terms of Polish group
actions as follows: A point x is uniformly computably categorical on a cone
if and only its orbit is Gδ. Analyzing what uniformly computably categor-
ical on a cone means in this sense, we get that it is equivalent to saying
that the map g 7→ g · x : G → X is open. In 1965, Effros [Eff65] (see also
[Gao09, Theorem 3.2.4]) proved that the map g 7→ g · x : G → X is open if
and only if the orbit of x is Gδ. We will see that Montalbán’s result from
[Mon] is a corollary of Effros’s 50-year-old theorem. In contrast to the more
complicated proof in [Mon], our new proof uses only Effros theorem and
some basic computable analysis techniques.

Then we look at a well-known unpublished result of Knight and her group
from the 90’s. They showed that a non-trivial union of countably many
upper cones can never be the degree spectrum of a structure. (By non-
trivial we mean that the union is not equal to a single cone.) Their result
is also true when we look at enumeration degree spectra.

COMPUTABLE POLISH GROUP ACTIONS 3

Definition 2. Given a point x in a computable transformation group (X ,G, a),
the G-enumeration-degree spectrum of x is defined by:

DgSpeG(x) = {X ⊆ ω :

Every enumeration of X computes a presentation of a point y ≡G x}.

Note that a point x ∈ X (in a computable Polish space X) is computable
if, and only if, its name Nx = {B basic open : x ∈ B} is c.e. (all notions
will be clarified in the preliminaries). Thus, the result below for enumeration
degree spectra is more natural in our setting, and it also extends the classical
result from computable structure theory.

Theorem 3. The non-trivial union of at most countably many (≥ 2) in-
comparable cones cannot be realized as the G-enumeration-degree spectrum
of any x ∈ X .

We also generalise the theory of computable dimension (also called autodi-
mension, see the book [EG00]) to computable group actions. Recall that a
computable algebraic structure has computable dimension α ∈ ω∪{ω} if the
structure has α computable presentations, up to computable isomorphism.
In the more general set up of computable group actions, this corresponds
to splitting a G-orbit further into sub-classes of effectively G-equivalent ele-
ments. Then the number of such classes in Orb(x) will be the computable
G-dimension of x.

We look at Goncharov’s [Gon75] theorem that if we have two computable
copies of a structures which are ∆0

2 isomorphic, but not computably iso-
morphic, then the structure has infinite computable dimension. We prove
a version of Goncharv’s result true for all computable effectively open G-
spaces, but we require an “isomorphism” (in this setting, g ∈ G) to be
computable from a non-high c.e. oracle.

Theorem 4. Let X be a computable G-space such that the action of G on
X is also effectively open. Let x, y ∈ X be computable points that are not
computably equivalent but that, for some g ∈ G computable from a c.e. non-
high set, we have

y = g · x.
Then x has infinite computable G-dimension.

Let us remark that group actions are always open as functions G×X → X .
Our proof is a finite injury construction that is implemented via the true
stages method. We leave open whether our extra effectiveness conditions can
be dropped or improved in general. It seems that Goncharov’s original proof
heavily uses special properties of the S∞ action on XL. Our effectiveness
condition gives a rather different reason for the proof to work. Although it
is not even clear how to extend the theorem beyond non-c.e. high degrees,
the general result in its present form was somewhat unexpected.

4 A. MELNIKOV AND A. MONTALBÁN

2. Background

2.1. Computable metric and topological spaces. We will be mostly
interested in the case when both the group G and the space X are effectively
metrizable. The following definition is standard (e.g., [BHW08]).

Definition 5. A computable Polish metric spaceM is a triple (M,d, (xi)i∈ω),
where (M,d) is a Polish metric space and (xi)i∈ω is a dense sequence in M
such that, for any i, j ∈ ω, d(xi, xj) is a computable real uniformly in i, j.
When we refer to a computable Polish space, we assume it comes with an
associated metric making it a computable Polish metric space.

It will be typically more convenient to use the associated topology rather
than the metric. Using topology allows us to eliminate repetitive uses of
triangle inequality and concrete choices of distances in some proofs, thus
clarifying the proofs. Computable topological spaces that are not necessarily
metrizable have also been studied (e.g., [WG09]). A computable topological
space is a pair (X , ν), where ν : N→ τ is a numbering of a countable basis
of the topological space X , so that

ν(i) ∩ ν(j) =
⋃

(i,j,k)∈R

ν(k),

where R ⊆ N3 is c.e.
Every computable metric space is clearly a computable topological space,

with the base consisting of the basic open balls with rational radii and having
their centers in the dense computable set. What makes metric spaces much
more convenient from the recursion-theoretic viewpoint is the notion of fast
convergence which is behind the following definition.

Definition 6. Let M be a Polish space. Strengthening the approach from
[Wei01], we say that a basic open ball Br(x) is formally included in Bq(y),
written Br(x)� Bq(y), if r + d(x, y) < q and r < q/2.

We will use formal inclusion throughout the paper. We list below several
useful properties of formal inclusion. For basic open sets A,B,Bi, C, we
have:

(F1) A� B implies A ⊆ B.

(F2) For any x ∈ X and C 3 x there exists a B 3 x such that B � C.

(F3) For any countably infinite B0 � B1 � B2 � · · · there is an x ∈ X
such that

⋂
i∈ω Bi = {x}. We denote this by

B0 � B1 � B2 � · · · → x.

(F4) For any countably infinite B0 � B1 � B2 � · · · and any C ⊇⋂
i∈ω Bi there exists an i such that C � Bi.

Property (F3) is a consequence of M being complete, while the other three
properties follow from the basic definitions and the triangle inequality. In
(F3), we say that (Bi)i∈ω converges to x fast. Observe that in a computable

COMPUTABLE POLISH GROUP ACTIONS 5

metric space, formal inclusion is c.e., while the usual inclusion need not
be c.e. We will use these properties throughout the paper without explicit
reference.

Remark 7. We note that some fundamental properties of computable Polish spaces can
be proved using (F1)-(F4) without any reference to the metric. Apart from the technical
and notational convenience of �, we also sometimes get a more general result for free
(e.g., the lemmas in the next few subsections as well as the proof of Theorem 4 work in
this more general setting). Indeed, there exist computable topological spaces that possess
a countable basis and a c.e. relation � satisfying (F1)-(F4) that are not even regular1.

2.1.1. Computable points and functions. In this section we establish some
useful characterizations of computable points and computable maps in com-
putable Polish spaces. We also compare the approaches via metric and via
topology, and we use � to illustrate how we get equivalent notions in the
context of computable Polish spaces.

Definition 8. Let X be a computable topological space. We call

Nx = {i : x ∈ Bi}
the name of x (in X).

A fast Cauchy name (f.c.n.) for a point x in a Polish space is a sequence
(ji)i∈ω such that d(xji , x) < 2−i (for all i) and x = limi xji . Equivalently,
a fast Cauchy name for a point x is a sequence of (indices of) basic open
balls {Bi : i ∈ ω} such that B0 � B1 � B2 � · · · → x. Recall also that a
point in a computable Polish space is computable if it has a computable fast
Cauchy name [BHW08]. We illustrate that this notion is consistent with
Definition 8.

Fact 9. Let x be a point in a computable Polish space. Then x is computable
iff Nx is c.e.

Proof. Indeed, if Ny is c.e. we can uniformly produce a sequence B0 �
B1 � · · · such that

⋂
i∈ω Bi = {x}. Taking the centers of the Bi, we get

the desired c.e. fast Cauchy sequence. Conversely, note that if there exists
a c.e. fast Cauchy sequence then we can produce a c.e. sequence of basic
open balls B0 � B1 � · · · such that

⋂
i∈ω Bi = {x}. Then B ∈ Ny iff

(∃i)Bi � B. 2

1 For example, define X to be R2 without {(0, y) : y irrational}. The basis of topology
consists of standard Euclidean open discs BE

r (v, q) with rational parameters r, v, q, |r| <
|v|, and also special “squashed” discs that have the form BE

r (0, q)-{(0, k) : k 6= q}], where
q, r are rational. The space is not regular because the closed set Y = {(0, y) : y ∈ Q, y 6= 0}
and (0, 0) cannot be separated by open sets. To define � on the basis, follow Definition 6
literally, but in the case when both discs are special require that their centres are equal.
The definition of � is clearly effective upon the fixed base. Going through various cases,
we may verify that (F1)-(F4) hold as well. For (F1) use that a standard disc cannot
intersect the y-axis, and special discs are compatible under ⊆ only if they are centred at
the same point. To get (F2) shrink C 3 x. For (F3), note that either the whole sequence is
special (and thus the discs converge to their common center) or it is eventually standard.
Finally, (F4) can be derived from (F3) and the definitions of X and �.

6 A. MELNIKOV AND A. MONTALBÁN

Observe that the proof above is uniform. It follows that Nx has the least
enumeration degree among all enumeration degrees of fast Cauchy names
of x.

We can also use basic open balls to produce names of open sets, as follows.
A name of an open set U in a computable topological space X is a set W ⊆ N
such that U =

⋃
i∈W Bi, where Bi stands for the i-th basic open set in the

basis of X . If an open U has a c.e. name, then we say that U is effectively
open.

Definition 10. A function f : X → Y between two computable topological
spaces is effectively continuous if there is a c.e. family F ⊆ P(X)×P(Y) of
pairs of (indices of) basic open sets in such that:

(C1): for every (U, V) ∈ F , f(U) ⊆ V ;
(C2): for every x ∈ X and basic open E 3 f(x) in Y there exists a basic

open D 3 x in X such that (D,E) ∈ F .

Note that a function is continuous if and only if it is effectively continuous
relative to some oracle. The lemma below is well-known.

Lemma 11. Let f : X → Y be a function between computable Polish spaces.
The following are equivalent:

(1) f is effectively continuous.
(2) There is an enumeration operator Φ that on input a name of an open

set Y (in Y), lists a name of f−1(Y) (in X).
(3) There is an enumeration operator Ψ, that given the name of x ∈ X ,

enumerates the name of f(x) in Y.
(4) There exists a uniformly effective procedure that on input a fast

Cauchy name of x ∈ M lists a fast Cauchy name of f(x) (note
that the Cauchy names need not be computable).

2.1.2. Effectively open maps and c.e. subspaces. The properties of effectively
open maps are dual to the properties of computable maps.

Definition 12. A function f : X → Y is effectively open if there is a c.e.
family F of pairs of basic open sets such that

(O1): for every (U, V) ∈ F , f(U) ⊇ V ;
(O2): for every x ∈ X and any basic open E 3 x there exists a basic open

D 3 f(x) such that (E,D) ∈ F .

Lemma 13. Lef f : X → Y be a function between computable Polish spaces.
The following are equivalent:

(1) f is effectively open.
(2) There is an enumeration operator that given a name of an open set

A in X , outputs a name of the open set f(A) in Y.

Proof. (1)⇒ (2). Suppose E =
⋃
i∈W Bi. We have f(Bi) =

⋃
{D : (Bi, D) ∈

F}. The collection of all D such that for some i ∈W , (Bi, D) ∈ F is a name

COMPUTABLE POLISH GROUP ACTIONS 7

for f(E). Clearly, given any enumeration of W we can uniformly produce
an enumeration of all such D.

(2) ⇒ (1). For each basic open ball Bi in X , let Vi be a name for f(Bi).
Note that (2) implies that {Vi : i ∈ ω} is uniformly c.e. Let F = {(i, j) :
i ∈ ω, j ∈ Vi}. So F is a set of pairs of (indices of) open balls, and it is not
hard to see that F witnesses that f is effectively open. 2

As far as we are concerned, there is no standard notion of an effectively
open map between computable Polish metric spaces. However, the most
natural “pointwise” definition would be equivalent to our definition (we omit
details). The next simple lemma will be used later in the paper.

Lemma 14. Suppose f : X → Y is a continuous effectively-open map be-
tween computable Polish spaces. Then there exists an enumeration operator
that on input Ny of y ∈ f(X) lists Nx of some x ∈ f−1(y).

Proof. Given an enumeration of Ny, we use Fact 9 to get a sequence U0 �
U1 � . . . → y. We build a sequence of basic open balls {Bi : i ∈ ω} such
that for every i: Bi � Bi−1 and f(Bi) ⊇ Uj for some j. Given Bi−1, it is
not hard to see that such a Bi exists. We use the fact that f is effectively
open and that � is c.e. to find one such Bi. We then get a fast Cauchy
name for a point x: B0 � B1 � . . . → x. Since f is continuous,

⋂
i f(Bi)

contains only one point, and hence we must have f(x) = y. 2

2.2. Computable topological groups and their actions. A group G is
a computable Polish group if it is a computable Polish space in which the
operations (x, y)→ xy and x→ x−1 are computable maps (in the respective
Cartesian power of G).

Examples of effective topological groups include S∞ with the usual base of
clopen sets, the space of n×n invertible real or complex matrices2, the group
of orientation-preserving self-homeomorphisms of [0, 1], and many other ex-
amples. In this paper we are concerned with effective actions of such groups.

Definition 15. Suppose a Polish group G acts on a Polish space M. We
say that the action is effective if G is a computable Polish group, M is a
computable Polish space, and the action is represented by a computable
function a : G ×M → M. We call (X ,G, a) a computable transformation
group.

The following lemma is a version of the well-known result that if a real is
computable in every Cohen generic, then it is computable. We will use it a
few times throughout the paper. We use quantifiers ∃∗x and ∀∗x that mean
“for non-meager many x” and “comeager many x” respectively.

2In Mn×n(R), the compatible complete metric is given by the usual Euclidian distance

dE on Rn2

modified using the continuous determinant function: d′(A,B) = dE(A,B) +
| 1
det(A)

− 1
det(B)

|. The natural base of open balls centered in rational-valued invetible

matrices makes the group effectively Polish.

8 A. MELNIKOV AND A. MONTALBÁN

Lemma 16. Let G be a computable Polish group and let A ⊆ ω be such that

(∃∗h ∈ G) A ≤e Nh.

Then A is c.e.

Proof. We have that for some basic open set V , for co-meager many h ∈ V ,

there is an enumeration operator Φ, such that A = ΦNh
. Since for each Φ,

the set of such h is Borel, there must be an operator Ψ such that (∃∗h ∈
G) A = ΨNh

. Let U be a basic open set such that (∀∗h ∈ U) A = ΨNh
. We

claim that

A = {n ∈ ω : ∃Bk1 , ..., Bkm
(
∅ 6= ∩i≤mBki ∩ U ∧ n ∈ Ψ{Bk1

,...,Bkm}
)
}.

If n ∈ A, then n ∈ ΨNh
for some h ∈ U , and Ψ enumerates n using only

finitely many balls from Nh. Let Bk1 , ..., Bkm be those balls. If n is in the
right-hand-side as witnessed by Bk1 , ..., Bkm , we can extend this set of basic

open balls to Nh for some h ∈ U with A = ΨNh
. Thus n ∈ A.

Note that the right-hand-side is c.e. 2

3. Categoricity

Let us start by looking at the notion of computable categoricity. Recall
from Definition 1 that we call a computable point x ∈ X is computable
categorical if for every computable point y ∈ X in the orbit of x, there is
a computable g ∈ G such that g · x = y. Also, a computable point x is
uniformly computably categorical if there is an enumeration operator that
given an enumeration of Ny for a point y in the orbit of x, outputs the
name of g ∈ G with g · x = y.

The following theorem is generalization of Montalbán’s theorem that a
structure is computably categorical on a cone if an only if it has a Πin

2

Scott Sentence. (The theorem we are referring to is the equivalence between
(U2) and (U3) (and also (U4)) in Theorem 1.1 in [Mon] for α = 1. Other
equivalent characterizations are given in [Mon], and the proof there works
for all ordinals α.)

Theorem 17. Let (X ,G, a) be a transformation group, and x ∈ X . The
following are equivalent:

(1) x is uniformly computably categorical on a cone;
(2) the orbit of x is Π0

2.

Proof. (1)⇒ (2). For this direction we need to show that the orbit of x has
a Π0

2 definition. Let Φ be the enumeration functional that witnesses uniform
categoricity of x. Then y is in the orbit of x if and only if ΦNy

is the name
of a element g ∈ G and g · x = y. We now need to observe this is a Π0

2

statement. To say that ΦNy
is the name of a element g ∈ G, we need to say

that ΦNy
is a filter, and that it contains basic open balls of arbitrary small

radius — this is easily seen to be Π0
2. To say that ΦNy · x = y, we need to

say that for every Y ∈ Ny there exist basic open B ∈ ΦNy
and a basic open

COMPUTABLE POLISH GROUP ACTIONS 9

B′ ∈ Nx with BB′ ⊆ Y — which again is easily seen to be Π0
2 using the

presentation of the action given by Definition 10.
(2)⇒ (1) We make us of the following well-known result:

Theorem 18 (Effros [Eff65]). Let (X ,G, a) be a transformation group, and
x ∈ X . The following are equivalent:

(a) the map g 7→ g · x : G → X is open;
(b) the orbit of x is Gδ.

Now since the orbit of x is Π0
2, i.e. Gδ, we get that g 7→ g ·x : G → X is open.

Now, relative to some oracle, the map is effectively open. By Lemma 14, we
have x is u.c.c. on a cone. 2

4. Degree spectra

In this section, G is a computable Polish group that acts effectively on
a computable Polish space M . We now prove Theorem 3 that states that
the degree spectrum of a point x ∈ X can never be a non-trivial union of
countably many e-cones.

Proof of Theorem 3. We prove the case of only two cones. It will be clear
that almost literally the same proof works for any finite number of incom-
parable cones or countably many incomparable e-cones.

Aiming for a contradiction, suppose the degree spectrum of some x is the
union of two e-cones,

DgSpeG(x) = {X ⊆ ω : X ≥e A} ∪ {X ⊆ ω : X ≥e B},

for some A,B ⊆ ω such that A|eB.
Define Ca = {g ∈ G : A ≤e Ngx}, and Cb is defined mutatis mutandis.

These sets are Borel, so one of them must be non-meager; say Ca. (Note
the same would be true if they were countably many.) If Z is an oracle such
that Nx is Z-c.e., then for every g ∈ Ca, A is Z-enumerable from Ng. It
follows from Lemma 16 that A is Z-c.e., and hence that A ≤e Nx. But then
DgSpeG(x) ⊆ {X ⊆ ω : X ≥e A} and hence DgSpeG(x) = {X ⊆ ω : X ≥e A},
getting a trivial union of cones. 2

5. Proof of Theorem 4

In this section we prove Theorem 4 that states that a point x ∈ X has
infinite computable G-dimension if there is a y ∈ Orb(x) which it not com-
putably equivalent, but there is some g ∈ G computable in a c.e. non-high
oracle, with y = g · x.

5.1. Preliminary analysis. We start this subsection by giving a rather
informal idea of the proof. Then we establish two auxiliary technical facts
about approximations of ∆0

2-points.

10 A. MELNIKOV AND A. MONTALBÁN

5.1.1. Informal idea. In the construction, we will build infinitely many points
zi ∈ Orb(x) and diagonalize against all potential computable he in G for
which he · zi = zj . For this we start by “copying” x to zi and y to zj , i 6= j.
To copy x to zi we start defining a computable sequence of nested balls of G
working towards a computable ai such that aix = zi. While copying, we wait
for the first disagreement in hez

i = zj . If he is total then we must eventually
find a disagreement, for otherwise x can be mapped to y using a computable
element of G, contrary to our assumption. These diagonalization strategies
are finitary in nature. Thus, once we act for them, we do not need to keep
on defining ai as a computable point. Some diagonalization requirements
may require zi to copy x and some may require it to copy y. Thus, we will
have to “switch” from copying x to copying y in-between our actions using a
∆0

2 element g ∈ G such that y = g ·x, simultaneously preserving parts of the
copying procedures of higher priorities. Although this sounds a lot like the
proof of the original theorem for structures, there is one crucial difference.
More specifically, lower priority strategies may potentially injure a higher
priority strategy. This would not be a problem in the case of the standard
S∞ action on a space of L-structures. Very informally, this is because ∆0

2-
elements of S∞ behave very nicely with respect to this action; that is, the
action of a ∆0

2 point on a basic open set of XL eventually gets truly stable
for any given precision ε. We omit a formal explanation of this phenomenon.
However, in contrast to the standard S∞-action, in an arbitrary G-space a
∆0

2 element g (and thus, its action) may introduce an infinite injury effect to
the construction. Here the non-highness condition comes into play: it will
allow us to produce a neater approximation to the ∆0

2 element g. We will use

Martin’s theorem to produce approximations (Gs)s∈ω and (G̃s)s∈ω to g and

g−1 such that (G−1
s G̃s)s∈ω is eventually close to eG , regardless of whether

the approximations are correct or not. We will then argue that, in this case,
small perturbations of g will no longer be harmful. Note this gives a dif-
ferent reason for the construction to work when compared with the original
proof for structures. Unfortunately, there are several technical subtleties in
implementing this ideas, and these cannot be explained informally.

5.2. ∆0
2 and non-high points. Let us start by looking at computable ap-

proximations to ∆0
2 points. There are various ways of characterizing the

∆0
2 points of an effective Polish group. We chose to use the method of true

stages.
Before that, let us recall the notion of a true stage introduced by Lachlan.

We view countable sets as elements of 2ω. Let X be a c.e. set with a com-
putable enumeration {x0, x1, x2,}. For each s, let Xs = {x0, ..., xs} �xs +
1. We view Xs as a string in 2xs+1. So, {Xs : s ∈ ω} is a computable
sequence of binary strings trying to approximate X ∈ 2ω. A stage t is said
to be a true stage (for the enumeration of X) if its approximation to X is
correct, in the sense that Xt ⊆ X (where the inclusion is as strings). Equiv-
alently, t is a true stage if and only if (∀s ≥ t)Xs ⊇ Xt, and also, if and only

COMPUTABLE POLISH GROUP ACTIONS 11

if (∀s ≥ t)xs ≥ xt. It is not hard to show that there are infinitely many true
stages. We say that t looks true at a stage s ≥ t (for the enumeration of X)
if Xt ⊆ Xs. (If t ≥ s, then we agree that t looks true at s.) Notice that if
t < r < s and t looks true at s, then t looks true at r too.

We want a uniform way of saying that a sequence of balls gets small fast.
For that, fix in G a computable basis of open neighbourhoods of the identity
eG and produce a computable fast Cauchy name of eG :

E0 � E1 � E2 � · · · → eG .

Lemma 19. Let X be c.e. set. An element g ∈ G is X-computable if and
only if there exist computable sequences of basic open balls {Fs : s ∈ ω} and

{F̃s : s ∈ ω} and an infinite sequence of stages t0 < t1 < t2 < . . . such that

(1) Ft0 � Ft1 � Ft2 � · · · → g and F̃t0 � F̃t1 � F̃t2 � · · · → g−1;

(2) for every n, F̃tn · Ftn ⊆ En and Ftn · F̃tn ⊆ En;
(3) for all s < t, if s looks true at t for the enumeration of X, then

Ft ⊆ Fs and F̃t ⊆ F̃s;
(4) every tn is true for the enumeration of X.

Proof. For the right-to-left direction notice that the sequence of true stages
is computable in X. We can then compute a sub-sequence l0 < l1 < l2 <
satisfying Fl0 � Fl1 � Fl2 � · · · → g. We thus get an X-computable fast
Cauchy name for g.

For the left-to-right direction let H0 � H1 � · · · → g and H̃0 � H̃1 �
· · · → g−1 be X-computable fast Cauchy names for g and g−1. By taking a
subsequence if necessary, assume also that H̃n ·Hn ⊆ En and Hn · H̃n ⊆ En.
Let Φ and Ψ be the Turing functionals such that ΦX(n) is an index for Hn

and ΨX(n) is an index for H̃n.

For each s ∈ ω, to define Fs and F̃s, the idea is to look at the values of
ΦXs(i) and ΨXs(i) which converge, and take the greatest one. We need to
be a bit more careful. Let is ≤ s be the greatest such that for all i ≤ is,

(1) ΦXs(i) converges to an index of a basic open ball Ji, and ΨXs(i)

converges to an index of a basic open ball J̃i;
(2) J̃i · Ji ⊆ Ei and Ji · J̃i ⊆ Ei; and

(3) J0 � J1 � · · · � Jis and J̃0 � J̃1 � · · · � J̃is .

Then, let Fs = Jis and F̃s = J̃is .
Notice that if Xs ⊆ Xt, then ΦXt(i) and ΦXt(i) converge on more values

than they do with oracle Xs, and hence Fs ⊇ Ft and F̃s ⊇ F̃t. Among the
true stages, we can take an increasing subsequence {tj : j ∈ ω} such that
{itj : j ∈ ω} is strictly increasing and hence the sequences {Ftj : j ∈ ω}
and {F̃tj : j ∈ ω} are sub-sequences of the original X-computable sequences

H0 � H1 � · · · → g and H̃0 � H̃1 � · · · → g−1. 2

When we have that g is not only ∆0
2, but also computable from a non-high

c.e. oracle X, we get a slightly better behaved approximation. (Recall that a

12 A. MELNIKOV AND A. MONTALBÁN

X ∈ 2ω is high if X ′ ≥T 0′′.) This slight improvement to our approximation
will be key at the very end of our construction. What we get from the fact
that X is c.e. is that we are able to use a true-stage approximation exactly
as we did above. What we get from the fact that X is non-high is that, for
every H-computable function, there is a computable function not dominated
by it. This is by Martin’s theorem [Mar66] that states that a set is high
if and only if it computes a function that dominates all total computable
functions.

Lemma 20. Let g ∈ G be computable from a non-high c.e. set X. Then there
exist computable sequences of basic open balls {Gs : s ∈ ω} and {G̃s : s ∈ ω},
and an infinite sequence t0 < t1 < t2 < ... such that

(1) Gt0 � Gt1 � Gt2 � · · · → g and G̃t0 � G̃t1 � G̃t2 � · · · → g−1;

(2) for every n, G̃n ·Gn ⊆ En and Gn · G̃n ⊆ En.
(3) for all s < t, if s looks true at t for the enumeration of X, then

Gt ⊆ Gs and G̃t ⊆ G̃s;
(4) every tn is true for the enumeration of X.

Notice that the difference with the previous lemma is that now we get
that for every n we have G̃n ·Gn ⊆ En and Gn · G̃n ⊆ En, and not just for
the ones from the special sequence.

Proof. Let {Fs : s ∈ ω} and {F̃s : s ∈ ω} be exactly as in the previous

lemma. We will define the sequences {Gs : s ∈ ω} and {G̃s : s ∈ ω} as

subsequences of {Fs : s ∈ ω} and {F̃s : s ∈ ω}.
Observe that the sequence t0 < t1 < · · · from the previous lemma can

be found computably in X. Let gX be an X-computable function such that
gX(n) ≥ tn, but also that gX(n) bounds the witnesses for the inclusions

F̃tn ·Ftn ⊆ En and Ftn ·F̃tn ⊆ En. Since X is non-high, there is a computable
function f not dominated by gX .

For each n ∈ ω, let sn be the first stage s that looks true at f(n) and for

which we have witnessed F̃s · Fs ⊆ En and Fs · F̃s ⊆ En. First notice that
there is always such a stage s. Second, note that if gX(n) ≤ f(n), then sn
is actually true.

Finally let Gn = Fsn and G̃n = F̃sn . For the infinitely many n’s with

gX(n) ≤ f(n) we have that sn is true and hence Gn and G̃n are decreasing
on those n, and they both have �-decreasing sub-sequences converging to
the points g and g−1. 2

5.3. The setup. Let {Gs : s ∈ ω} and {G̃s : s ∈ ω} be as in Lemma 20.
We will build infinitely many points zi ∈ Orb(x) that are pairwise not
computably G-equivalent. Together with each zi, we will build ai and bi ∈ G
such that zi = ai · x and zi = bi · y witnessing that zi ∈ Orb(x). To get zi

and zj not computably equivalent for i 6= j we will consider each potentially
computable h ∈ G (it could end up being partial), one at a time, and work
towards getting h · zi 6= zj .

COMPUTABLE POLISH GROUP ACTIONS 13

Notation 21. For an index e, we say that e is an index for an element of
G if Φe is total and, for every n, Φe(n) is a code for a basic open ball
He,n � He,n−1 (we may assume He,0 = G). When this is the case, we let he
be the limit of these balls.

There will be infinitely many strategies R0,R1, ... ordered by priority.
There will be two types of strategies, but both types will share several
common technical properties including the form of their input and output.
This is a purely technical feature of the construction that will be convenient
in showing that the points zi are computable.

More specifically, for each i ∈ ω, we build zi by defining at each stage s,
and for each strategy Rk that is active at s, a tuple qik[s] which is either of
the form

qik[s] = (Zik, A
i
k,−, tik)[s], (copying x)

or of the form

qik[s] = (Zik,−, Bi
k, t

i
k)[s], (copying y)

where

• Zik[s] ⊆ X is a basic open ball trying to approximate zi in the sense
that we will have zi ∈ Zik[s];
• Aik[s] ⊆ G is a basic open set trying to approximate ai ∈ G in the

sense that we will have ai ∈ Aik[s] unless Rk is injured (to be defined);
• Bi

k[s] ⊆ G is a basic open set trying to approximate bi ∈ G in the
sense that we will have bi ∈ Bi

k[s] unless Rk is injured; and
• tik[s] ∈ ω is a stage that looks true (for both approximations) at

stage s, stating that we currently believe in Gtik[s] and G̃tik[s] in our

approximations to g and g−1.

In what follows, we omit the superscript i if it is clear from the context
which i the tuple qik[s] corresponds to.

x

g∈Gtk
,,

a∈Ak

��

y
g−1∈G̃tk

ll

b∈Bk

{{
z ∈ Zk

Convention 22. When qk[s] = (Zk, Ak,−, tk)[s], we define Bk[s] = Ak · G̃tk ,
and when qk[s] = (Zk,−, Bk, tk)[s], we define Ak[s] = Bk ·Gtk . Recall that,
by our hypothesis, the action is also effectively open. Thus, given indices
for Ak and G̃tk as effective open sets we can compute an index for Ak · G̃ti ,
and similarly given indices for Bk and Gtk we can compute an index for the

14 A. MELNIKOV AND A. MONTALBÁN

open set Bk ·Gtk . Thus, in both cases we will sometimes write

qk[s] = (Zk, Ak, Bk, tk)[s],

where either Ak or Bk is in fact not basic open but merely effectively open.

At each stage s and for a fixed i, let ks be (the number of) the last
requirement active at stage s. We have a sequence q0[s], q1[s], ..., qks [s]
which must satisfy for k < ks:

(1) Z0[s]� Z1[s]� · · · � Zks [s],
(2) A0[s] ⊇ A1[s] ⊇ · · · ⊇ Aks [s],
(3) B0[s] ⊇ B1[s] ⊇ · · · ⊇ Bks [s],
(4) t0[s] ≤ t1[s] ≤ · · · ≤ tks [s].

We define Zi[s] to be the least Zj [s] in the sequence, that is

Zi[s] = Ziks [s].

We require that,

Zi[0] ⊇ Zi[1] ⊇ Zi[2] ⊇ · · ·
as we need to make zi computable. At the end, we will define zi so that
{zi} =

⋂
s Z

i[s].
If none of the strategies below ks−1 require attention at s, then we will

have ks = ks−1 + 1 and qik[s] = qik[s− 1] for all k < ks. Otherwise, ks ≤ ks−1

is the index of the the highest priority strategy that requires attention at s.
In this case, all the requirements Rk for k > ks will be re-initialized, while
the values qik for k < ks will stay unchanged, and qiks will be re-defined.

This is a finite injury construction and we will show that each requirement
Rk will eventually stop re-defining qik[s], which will stabilize at (Zik, A

i
k, B

i
k, t

i
k).

We will have that for each i, Ai0 ⊇ Ai1 ⊇ Ai2 ⊇ · · · and Bi
0 ⊇ Bi

1 ⊇ Bi
2 ⊇ · · · ,

and that, for a ∈
⋂
k A

i
k, z

i = a · x and, for b ∈
⋂
k B

i
k, z

i = b · y witnessing
that zi ∈ Orb(x).

Each of the tuples (Z,A,B, t) = (Zik, A
i
k, B

i
k, t

i
k)[s] ever built in this con-

struction must satisfy the following two properties:

(Ca) A · x ∩ Z 6= ∅.
(Cb) B · y ∩ Z 6= ∅.
Not only must the tuples satisfy these properties above, but we must have

witnessed that they do. To witness that A · x ∩ Z 6= ∅ we must find basic
open sets Ã ⊆ A, X̃ 3 x and Z̃ ⊆ Z with Ã · X̃ ⊆ Z where (Ã, X̃, Z̃) is
listed in the effective representation of the group operation, and similarly
for (Cb). Both conditions are clearly c.e.

5.4. The strategies. There will be two types of strategies denoted CDi,j,e,
and Sxi or Syi . The strategy CDi,j,e will be in charge of convergence and
diagonalization, while Sxi and Syi will be in charge of switching from copying
y to x and from copying x to y, respectively.

COMPUTABLE POLISH GROUP ACTIONS 15

Remark 23. The phrase copying x comes from the version of this proof for
structures. Informally, we say that zj is currently copying x if we have
defined Aik+1 � Aik, and thus we have a better current approximation to ai
such that zi = ai ·x. In this case, it refers to the fact that B is being defined
out of A, so that any change in A will automatically produce a change in B.
We note here that this definition of B through A is consistent with condition
(Cb) (and symmetrically, our definition of A via B in the phase of copying

y will be consistent with (Ca)). Indeed, if we assume that g−1 ∈ G̃, we have

that if Â ⊆ A satisfies Â · x∩Z 6= ∅, then B̂, defined by B̂ = Â · G̃, satisfies
B̂ · y ∩ Z 6= ∅ because B̂ · y = Â · G̃ · y ⊇ Â · g · y = Â · x which intersects
Z. This means that, while we are copying x, we can concentrate on defining
the “A-side”, and we know the “B-side” will be fine.

In the order of priorities, each strategy CDi,j,e for i, j, e ∈ ω with i 6= j
will appear once. As we will see later, for it to work, CDi,j,e needs that in
its input zi is copying x and zj is copying y. Before CDi,j,e we will have one
occurrence of Sxi and one occurrence of Syj . The reason for that is rooted
in the preservation method that we will use; as will become clear later, this
technical assumption will also be convenient in showing that for each i the
sequence (Aik)k∈ω is a ∆0

2-approximation to a point ai ∈ G, and thus we
indeed have zi = ai · x ∈ Orb(x).

5.4.1. The convergence-diagonalization strategies CDi,j,e. The strategy CDi,j,e

is split into three different substrategies Cx
i , Cy

j and Di,j,e. The actions of
the three different substrategies are different and independent, but we are
grouping them because Di,j,k needs to have the same priority strength as
Cx
i and Cy

j to work.
The substrategy Cx

i is responsible for:

• Taking steps towards making zi computable; and
• Taking steps towards making Ai[s] an approximation of a point ai.

The substrategy Cy
j is responsible for:

• Taking steps towards making zj computable; and
• Taking steps towards making Bj [s] an approximation to a point bj .

Recall that he stands for the e-th potential computable point in G. The
requirement Di,j,k is responsible for:

• Ensuring that if Φe is total, then he · zi 6= zj .

Suppose that CDi,j,e is the k-th requirement in the list of priorities, that
is, that CDi,j,e = Rk. It will receive from Rk−1 two relevant inputs:

(Zik−1, A
i
k−1,−, tik−1)[s] and (Zjk−1,−, B

j
k−1, t

j
k−1)[s],

the former one copying x and the latter one copying y. The output of CDi,j,e

will not change who is copying what.
The requirement Di,j,k is the one deciding when to require attention, and

hence when to act and re-initialize weaker priority requirements, but that

16 A. MELNIKOV AND A. MONTALBÁN

will be its only action. It will be Cx
i and Cy

j who will act defining the values

of (Zik, A
i
k,−, tik)[s] and (Zjk,−, B

j
k, t

j
k)[s].

Action of CDi,j,e. The strategy CDi,j,e will act the first time we reach it
after it is initialized, and then whenever Di,j,e requires attention (unless a
higher priority strategy also requires attention at the same time). Di,j,e will
require attention whenever we see more evidence towards having he ·zi = zj .
At each stage s, we define the length of agreement for Di,j,e to be the largest
n such that Φe converges on 0, 1, ..., n and is looking like an index for an
element, he, in G so far, and we have witnessed that

He,n · Zi[s] ∩ Zj [s] 6= ∅,
where Hn is the basic open set with index Φe(n). We say that a stage
s is an expansionary stage for Di,j,e if the length of agreement reaches a
new value higher than any value it had before. CDi,j,e require attention at
every expansionary stage for Di,j,e. If CDi,j,e is the highest priority strategy
requiring attention, it will act; otherwise some strategy of a higher priority
will act and will re-initialize CDi,j,e.

When CDi,j,e acts, it does the following: First, it re-initializes all strate-

gies of lower priority. Second, for k̂ < k and h = i, j, it sets qh
k̂
[s] = qh

k̂
[s−1].

Finally, it lets Cx
i and Cy

j act.

Let us now describe the action of Cx
i . Let (Z̃, Â,−, t) be, either the output

of CDi,j,e the last time it acted (i.e., (Zk[s−1], Ak[s−1],−, tk[s−1])) if it has
not been initialized since, and let it be the output of Rk−1 if this is the first
time CDi,j,e acts after initialization (i.e., (Zk−1[s−1], Ak−1[s−1],−, tk−1[s−
1]). Note that (Z̃, Â,−, t) satisfies condition (Ca). Let Ẑ = Zks−1 [s − 1].

Since (Zks−1 [s−1], Aks−1 [s−1],−, tks−1) satisfies (Ca), and Â ⊇ Aks−1 [s−1],

we have that Â · x ∩ Ẑ 6= ∅, and similarly for the B-side.
To define A[s] and Z[s], we search for basic open sets A[s]� A[s−1] and

Z[s]� Z[s− 1] with
A[s] · x ∩ Z[s] 6= ∅.

Recall that we then define B[s] = A[s] · G̃t provided we see confirmation
that

A[s] · G̃t · x ∩ Z[s] 6= ∅.
As we have already noted above, if G̃t is true and contains g−1, we will
eventually see this is the case because B[s] · y = A[s] · G̃t · y ⊇ A[s] · g−1 · y =
A[s] · x which intersects Z[s]. However, while waiting for this confirmation

we might discover that G̃t was not true. In that case, the strategy that
defined tk[s], which has stronger priority, is now requiring attention and
Di,j,e will be re-initialized before even defining (Zi, Ai, Bi, ti)[s].

Let us now show how CDi,j,e = Rk works. Suppose Rk−1 eventually stops
requiring attention. If there is a later stage when CDi,j,e stops requiring
attention then it is because we have reached a maximum in the length of
agreement and hence he · zi 6= zj . Suppose towards a contradiction that

COMPUTABLE POLISH GROUP ACTIONS 17

CDi,j,e acts infinitely often. This would mean that we have infinitely many
expansionary stages and that the length of agreement goes to infinity, which
would imply that he · zi = zj . Since the requirement Cx

i is acting infinitely
often, we have that the sequence {Aik[s] : s ∈ ω} converges to a computable
point ai. The same way we get a computable point bj . Thus, we will have
y = (bj)−1 · he · ai · x, with (bj)−1 · he · ai being computable, contradicting
that x and y are not computably equivalent. Therefore, if Di,j,e eventually
stops being re-initialized, it will eventually stop requiring attention and we
will have that either zj 6= he · zi or that e is not an index for an element of
G.

5.4.2. The “switch” requirement. For each i, we will have infinitely many
strategies Sxi and Syi . The job of Sxi is to switch from zi copying y to zi

copying x, and the one of Syi is to switch from zi copying x to copying y. In
other words, the job of Sxi is to make sure its outcome is of the form

qik[s] = (Zik, A
i
k,−, tik)[s], (copying x)

instead of of the form

qik[s] = (Zik,−, Bi
k, t

i
k)[s], (copying y),

while the job of Syi is the opposite. Since Di,j,e needs zi to be copying x and

zj to be copying y, before each strategy CDi,j,e we put a strategy Sxi and a
strategy Sxj .

Let us describe the action of Sxi . Suppose Rk is an instance of Sxi . If the
input for Sxi is of the form (Z,A,−, t), then there is nothing to switch and
nothing for Sxi to do. So, let us assume

the input for Sxi is (Z,−, B, t).
By the input for Sxi we mean the following: B and t are given to us by their
higher priority requirement, i.e., B = Bi

k−1[s] and t = tik−1[s]; and Z is given

to us by the outcome at the previous stage, i.e., Z = Zi[s−1] = Ziks−1
[s−1].

Recall that even if ks−1 > k − 1, we still have that Z and B satisfy (Cb).

As before, we let A = Aik−1[s] = B · G̃t.
We want to find t′ true, and Â ⊆ A such that, if we let B̂ = Â ·Gt′ then

(Ẑ, Â, B̂, t′) satisfies (Ca) and B̂ ⊆ B. Note we can only search for t′ which
look true, and if we later notice we chose a t′ that was not really true, will
have to search again.

Recall that (Et)t∈ω is the computable fast Cauchy name of eG that we
fixed at the beginning of the construction. When Sxi acts it choses a member
of the original dense subset b′ ∈ B, and a number t′ ≥ t such that

(S1) b′ · y ∈ Z,
(S2) b′ · Et′ ⊂ B, and
(S3) t′ looks true at the current stage.

18 A. MELNIKOV AND A. MONTALBÁN

We remark that b′ is only useful at this step of the construction and is
going to be forgotten later. Then define

Â = b′ · G̃t′ =
⋃
{U : ∃W a basic open ball around (b′)−1 (W · U ⊆ G̃t′)}.

We then have that

B̂ = Â ·Gt′ = b′ · G̃t′ ·Gt′ ⊆ b′ · Et′ ⊆ B.

Note that t looks true at t′, as otherwise it would not look true at the current
stage and some higher priority requirement would have required attention.
We remark here that, above, we have used that G̃t′ · Gt′ ⊆ Et′ and this is
why we could state (S2) in terms of Et′ and not in terms of G̃t′ ·Gt′ — this
is one of the key uses of having a non-high point g.

We have that G̃t ⊇ G̃t′ , and hence

Â = b′ · G̃t′ ⊆ B · G̃t = A.

Since b′ · y ∈ Z, we have that unless g 6∈ Gt′ or g−1 6∈ G̃t′ , (Ca) and (Cb)
hold. Thus, either we will eventually find confirmation of (Ca) and (Cb), or
we will find out t′ is not true in which cases we need new t′ and b′.

At a later stage, if we ever see that t′ is not true, then Sxi requires attention
to redefine its outcome. At that later stage when we act again, the input is
going to be of the form (Z̃,−, B, t), where B and t are the same as the first

time Sxi acted after initialization, but Z̃ is new and smaller than the previous
Z (recall that the sequence {Zi[s] : s ∈ ω} needs to be decreasing). This

means that we might need to change our choice of b′ to b′′ so that b′′ · y ∈ Z̃,
and then we might have to change t′ to a larger t′′ to get b′′ · Et′′ ⊆ B . If
this new t′′ is not true, at some later stage we will have to change it again
to t′′′, etc. We need to make sure that eventually we will hit an actual true
stage. In fact, what we need to make sure is that if there is a real true stage
between t′ and t′′, we do not skip it.

The next technical feature is crucial in the construction. After the first
time Sxi acts after initialization, it silently keeps track of the new changes in
Z to make sure that if it needs to act again, it will not skip a true stage. It
does it as follows. Suppose that at a later stage s̃ some lower priority strategy
wants to define Zi[s̃] to be some set Z̃. Silently, and without interfering with

the rest of the construction, Sxi will look for a new b̃ and its corresponding

t̃ so that b̃ · y ∈ Z̃, b̃ · Et̃ ⊆ B and t̃ looks true. Such b̃ and t̃ must exist,
so Sxi will eventually find them. At that point, Sxi will then check that its
current t′ is still true up to t̃ before allowing Zi[s] to be re-defined. If t′ still
looks true at t̃, there is nothing for Sxi to worry about and it can let the
other requirement do its job. If t′ does not look true anymore, Sxi requires
attention and acts before Z is re-defined.

Claim 1. After Sxi is re-initialized for the last time, Sxi eventually will output
a t′ which is a true stage and it will stop requiring attention thereafter.

COMPUTABLE POLISH GROUP ACTIONS 19

Proof of the Claim. Suppose Sxi acts at a stage s′ getting output t′ which is

not true, and that t̂ is the next true stage after t′. At some stage, say s̃, we
will notice t′ is not true and Sxi will act again. We will prove that, at that

time, Sxi will output t̃ ≤ t̂. Therefore, either it will output the true t̂ and it

will be done, or it will output t̃ < t̂ but we will be closer to finding t̂ at a
later stage.

At s̃ − 1 we had not yet noticed t′ is not true. This implies two things.
First, we had a potential pair b′′, t′′ that worked for Zi[s̃ − 1], i.e., they
satisfied b′′ · y ∈ Zi[s̃− 1], b′′ ·Et′′ ⊆ B. Second, we must have s̃ ≤ t̂. When
Sxi acts at s̃, Z does not change, that is, Zi[s̃] = Zi[s̃− 1]. That means that

the pair b′′, t̂ also satisfies (S1)-(S3). Therefore, if Sxi does not choose this

pair at s̃, it choses t′′ < t̂. 2

5.5. Finalising the proof. At stage s we let the strategies act according to
their instructions. We have already argued above that the injury is merely
finite (which was the main meat of the proof), thus the verification is just a
straightforward inductive argument.

References

[BHW08] Vasco Brattka, Peter Hertling, and Klaus Weihrauch. A tutorial on computable
analysis. In New computational paradigms, pages 425–491. Springer, New York,
2008.

[Eff65] Edward G. Effros. Transformation groups and C∗-algebras. Ann. of Math. (2),
81:38–55, 1965.

[EG00] Yuri L. Ershov and Sergei S. Goncharov. Constructive models. Siberian School
of Algebra and Logic. Consultants Bureau, New York, 2000.

[Gao09] Su Gao. Invariant descriptive set theory, volume 293 of Pure and Applied Math-
ematics (Boca Raton). CRC Press, Boca Raton, FL, 2009.

[Gon75] S. S. Gončarov. Selfstability, and computable families of constructivizations.
Algebra i Logika, 14(6):647–680, 727, 1975.

[Gon80] S. S. Gončarov. The problem of the number of nonautoequivalent construc-
tivizations. Algebra i Logika, 19(6):621–639, 745, 1980.

[Kec95] Alexander S. Kechris. Classical descriptive set theory, volume 156 of Graduate
Texts in Mathematics. Springer-Verlag, New York, 1995.

[LE65] E. G. K. Lopez-Escobar. An interpolation theorem for denumerably long for-
mulas. Fund. Math., 57:253–272, 1965.

[Mar66] Donald A. Martin. Classes of recursively enumerable sets and degrees of un-
solvability. Z. Math. Logik Grundlagen Math., 12:295–310, 1966.

[McC02] Charles F. D. McCoy. Finite computable dimension does not relativize. Arch.
Math. Logic, 41(4):309–320, 2002.

[Mon] Antonio Montalbán. A robuster scott rank. To appear in Proc.Amer.Math.Soc.
[RN64] C. Ryll-Nardzewski. On Borel measurabilty of orbits. Fund. Math., 56:129–130,

1964.
[Ven92] Yu. G. Ventsov. The effective choice problem for relations and reducibilities

in classes of constructive and positive models. Algebra i Logika, 31(2):101–118,
220, 1992.

20 A. MELNIKOV AND A. MONTALBÁN

[Wei01] Klaus Weihrauch. On computable metric spaces Tietze-Urysohn extension is
computable. In Computability and complexity in analysis (Swansea, 2000), vol-
ume 2064 of Lecture Notes in Comput. Sci., pages 357–368. Springer, Berlin,
2001.

[WG09] Klaus Weihrauch and Tanja Grubba. Elementary computable topology. J.UCS,
15(6):1381–1422, 2009.

The Institute of Natural and Mathematical Sciences, Massey University,
Auckland, New Zealand

Department of Mathematics, University of California, Berkeley, USA
Email address: antonio@math.berkeley.edu

URL: www.math.berkeley.edu/∼antonio

http://www.math.berkeley.edu/~antonio/index.html

	1. Introduction
	2. Background
	2.1. Computable metric and topological spaces
	2.2. Computable topological groups and their actions.

	3. Categoricity
	4. Degree spectra
	5. Proof of Theorem 4
	5.1. Preliminary analysis
	5.2. 02 and non-high points
	5.3. The setup
	5.4. The strategies
	5.5. Finalising the proof

	References

