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Abstract. We show that there exists an almost everywhere (a.e.) dominating computably

enumerable (c.e.) degree which is half of a minimal pair.

1. Introduction

Dobrinen and Simpson [4] defined the notion of almost everywhere dominating function and
started studying their Turing degrees. They also defined a uniform version of this property
(the almost everywhere uniformly dominating functions) but this has been shown in [1] to be
equivalent to the former notion. So let us settle on the following definition.

Definition 1. Let f, g : ω → ω. The function f majorizes g if f(n) ≥ g(n) for all n. If
f(n) ≥ g(n) for all but finitely n then f dominates g. We say that f is an almost everywhere
(a.e.) dominating if the measure of reals β with the property

g ≤T β ⇒ f dominates g

is 1. A Turing degree is a.e. dominating if it contains an a.e. dominating function.

Kurtz [5] showed that 0′ is a.e. dominating. The existence of incomplete c.e. degrees with this
property was shown in [3] and a high c.e. degree which is not a.e. dominating was constructed in
[2]. In order to have a better picture of this class of c.e. degrees it is natural to compare it with
known definable classes, the promptly simple degrees for instance. By well known results these
are the non-cappable degrees, i.e. the c.e. degrees which are not parts of minimal pairs in this
structure. In this work we show that there are cappable c.e. degrees which are a.e. dominating.
Thus a.e. dominating degrees lie in both parts of the decomposition of the c.e. degrees into
promptly simple and cappable degrees.

Theorem 1. There is an almost everywhere dominating c.e. degree which is part of a minimal
pair.1

Before we start proving the theorem let us say more about what motivated this work. A
central question in the study of a.e. dominating c.e. degrees is whether they are contained in a
non-trivial upper cone of degrees. The construction in [3] of an incomplete a.e. dominating c.e.
degree does not seem to combine with many other constructions in the theory of c.e. degrees
and in particular the cone avoidance. To be more specific, that construction seems incompatible
with the situation where there is unpredictably large number of repeated restraints for a single
requirement, in a way that when a new restraint is imposed the old one still remains in force.

Although this is a very common feature in constructions of c.e. degrees (and in the cone
avoidance strategy it seems unavoidable), by combining the construction in [3] with known
techniques from the theory of promptly simple degrees (in particular the use of the recursion
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theorem in order to trigger prompt diagonalizations) we were able to show that outside any
upper cone of promptly simple degrees there is an a.e. dominating c.e. degree. Theorem 1
implies this result but is also the first example of an infinite injury argument which constructs
a.e. dominating degrees. Indeed, the proof incorporates new ideas which help to control the
restraint imposed on the a.e. dominating function being constructed, although this may be
infinitary. For further background, history, motivation and results related to this area we refer
to [2, 1, 3, 4].

2. Proof of theorem 1

Following [3], there is a Turing functional Φ such that f is a.e. dominating iff it dominates Φ
almost everywhere (where Φ is treated here as an operator from reals to reals). We may assume
that all functionals considered here (including Φ) have the standard properties: if Γσ(n)[s] ↓
then n and the (length of the) use of σ are less than s; also, if Γσ(n)[s] ↓ then Γσ(i)[s] ↓ for all
i < n. We construct two functions f, g such that their degrees form a minimal pair. As in [3] f
will be an a.e. dominating function which is approximated from below so that it has c.e. degree.
In particular we construct a computable double sequence (fs(n)) such that fs(n) ≤ fs+1(n) for
all s, n. Then we can take A = {〈n, m〉 | m ≤ f(n)} so that A is c.e. and Turing equivalent to
f . In the construction we often use f to mean fs where s is the current stage. The function
g will be the characteristic sequence of a c.e. set and in the construction it will be treated as
a c.e. set. First of all we have the domination strategies which ensure that lims fs = f exists
(by restraining f) and that f dominates Φ almost everywhere (by increasing f). Then we got
the minimal pair strategies. Both of these strategies can restrain f and so, as in [3], they
need backing strategies which provide them with a good approximation of the measure of the
domain of Φ (i.e. µ(domΦ)). Finally we got the simplicity strategies which ensure that g is not
computable.

The construction will be a tree argument both because of the Π0
2 approximation of µ(domΦ)

and the minimal pair strategies which are infinitary. As we want to make f a.e. dominating
we will make sure that at any stage no more than one restraint on f is in force for a single
requirement. According to the uniform labeling of the tree described below this means that
at any stage no more than one restraint on f is in force at a single level of the tree. This
is a principle which made the argument in [3] work. Interestingly, the proof of theorem 1
involves stretching the minimal pair construction rather than the construction in [3] of an a.e.
dominating c.e. degree.

The tree argument in [3] naturally defined a 0′′ computable sequence (Ni) which consisted
of the permanent restraints which were imposed on the a.e. dominating sequence f being con-
structed. The property (3) which was verified for (Ni) was the main tool for showing that f
is a.e. dominating. We will follow the same plan, only that (Ni) will be a bit more complex
due to the infinitary nature of the minimal pair requirements. Such a sequence is an important
component of the construction of almost everywhere dominating reals. The following proposi-
tion says that every possible construction of an a.e. dominating c.e. real defines such a sequence
(Ni). Let

Dn = {β | Φβ(n) ↓}(1)

D[n,m)[g] = {β | (∀k ∈ [n, m)) Φβ(k)[g(k)] ↓}.(2)

Note that by the standard conventions on the functionals, if β ∈ D[n,m)[g] then g dominates
Φβ in the interval [n, m).
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Proposition 1. If f is an a.e. dominating c.e. real then from a Turing functional Φ we can
effectively get a 0′′ computable sequence (Ni) such that

(3) µ(domΦ−D[Ni,Ni+1)[f ]) < 3−i.

We sketch a proof: the domain of a Turing functional as an operator from the Cantor space
to itself is a Π0

2 class. Also it is not hard to show the following.

Lemma 1. The measure of a Π0
n or a Σ0

n class is computable from 0(n). Moreover the measure
of any finite intersection of Π0

n and Σ0
n classes is computable from 0(n).

Now one can define (Ni) inductively by using 0′′ as an oracle and using the fact that f a c.e.
real. Note that the 3−i in proposition 1 can be replaced with 3−g(i) for any g ≤T 0′′; however
this is not particularly useful since 0′′ is anyway used in order to define (Ni).

Requirements and tree. We approximate functions f, g such that f is approximated from
below and is a.e. dominating; g will be a c.e. set and the following requirements will be satisfied:

Qe : Φf
e = Ψg

e total ⇒ he = Φf
e = Ψg

e

Pe : |We| = ∞⇒ We ∩ g 6= ∅
where (Φe,Ψe) runs over all pairs of Turing functionals, (We) over all the c.e. sets and the
functions he are partial computable and constructed by us. The strategy for Qe will be an
adaptation of the minimal pair strategy and its outcomes will be inf <∗ fin (i.e. infinite and
finite). The strategy for Pe will be the usual strategy for the construction of a simple set: if
We∩g = ∅ wait until some x > 2e appears in We such that it does not violate any g-restraint of
higher priority and enumerated into g. The outcomes of Pe are diag <∗ wait (i.e. diagonalized
and wait). The domination and Q strategies can restrain f and so they need backing strategies
as explained above. Let Me be the eth backing strategy and De be the eth domination strategy.

The construction will be a tree argument where the level 3e belongs to the backing strategy
Me, the levels 3n+1 belong alternately to domination and minimal pair strategies (e.g. 3(2e)+1
belongs to De and 3(2e + 1) + 1 belongs to Qe) and level 3e + 2 belongs to Pe.

Backing strategies. Before giving the details about how the domination and Q strategies
work, we need to describe the backing strategies Me which provide a good approximation of
µ(domΦ) and which both of them need. An M strategy comes with a resolution n and the error
allowance δ = 3−n; its job is to find a rational q which approximates µ(domΦ) from below to
within δ. An M strategy first divides [0, 1) into 3n subintervals

[q1, q0), [q2, q1), . . . , [qk, qk−1)

(where q0 = 1, qk = 0 and qi > qi+1) of length δ. Its outcomes will be the following specially
ordered set

q1 <∗ · · · <∗ qk.

When M is visited at stage s it looks for the least t such that µDt has moved into a different
interval of the partition above since the last stage s0 it was visited. If such does not exist (or
s0 does not exist) it outputs qk. Otherwise it outputs the small endpoint of the interval of the
partition in which µDt currently belongs. That is, if µDt ∈ [qi, qi−1) then the current outcome
is qi. To get a picture of the approximation of the outcomes note that for every t the measure
µDt is non-decreasing during the stages of the construction (more precisely the stages of the
enumeration of Φ). Moreover

µDt ≥ µDt+1

for all t at all stages. So we can picture µDt, t ∈ N as a collection of markers on the unit interval
which move monotonically towards 1 while preserving their order. Now if µ(domΦ) ∈ [qi, qi−1)
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then there will only be finitely many t such that qi−1 < µDt and so after some stage no marker
will go beyond [qi, qi−1). Also, for almost all t the marker µDt will settle in [qi, qi−1). Thus
qi will be the leftmost infinitely often visited outcome (and so, the final outcome and it can be
seen as an approximation of µ(domΦ) from below within δ).

Domination strategies. Since the domination strategy also has to make sure that lims fs

exists it will have infinitely many versions (let De be the eth domination strategy); each of
them will try to fix f on a certain initial segment, while ensuring that it is a.e. dominating.
Each (version of the) domination strategy inherits a restraint N which prohibits it from changing
f � N , and is based on a backing strategy which provides an approximation q of µ(domΦ) as
above. It operates as follows:

(1) Wait for a stage s + 1 such there exists σ ∈ s<s with |σ| > N and the following
properties:
• σ ⊃ fs � N
• (∀n < |σ|) fs(n) ≤ σ(n)
• µ(D[N,|σ|)[σ] > q − δ

(2) Let fs+1 ⊃ σ and restrain f � |σ|.
Then, if the guess q is correct, the reals β such that Φβ is not majorized by f in [N, |σ|) will
have measure less than 2δ. This strategy also contributes to the convergence of (fs) since it
restrains it on a certain segment. Note that in [3] the domination strategies are incorporated
into other strategies rather than distinguished as in this construction. If this strategy sits on
a node α the restraint it imposes will be rα and its state/current outcome will be active or
inactive according to whether rα 6= 0 or rα = 0 respectively.

Minimal pair strategy. Suppose that α works for Qe. If it works in isolation, it just has
to follow the usual minimal pair strategy: it enumerates a partial computable function hα as
follows. At expansionary stages (i.e. stages where the length of agreement

`e = max{x | Φf
e � x = Ψg

e � x}

is larger than ever before) it defines hα = Φf
e � ` = Ψg

e � ` and defines restraint rα equal to
the (maximum) use of these computations. Also it requires that when one of f � rα, g � rα

changes, then the other one does not change until the next expansionary stage occurs. By the
usual inductive argument on the stages one can verify that this strategy succeeds (see [6]).

The strategies for all Qe can work together with non-computability requirements for f, g on a
tree, thus constructing a minimal pair of c.e. degrees. However this construction has the feature
that unpredictable number of repeated restraints may be applied to f for the sake of a single
requirement Qe in such a way that when a new restraint is imposed, the existing restraints must
remain in force. To visualize this situation in the context of a tree argument, these are the
restraints on the left of the true path which can easily be accumulated and should be respected.
As we pointed out earlier this feature prevents us from making f a.e. dominating.

To overcome this obstacle we do the following: whenever we wish to impose a restraint on
f for the sake of Qe but there is already such a restraint in force for Qe we try to push the
existing restraint to g. The reason that we can do this is that a restraint on g is as good as a
restraint on f given that the purpose of issuing restraints is to preserve one side of the double
computation

Φf
e � x = Ψg

e � x.

Of course this means that the restraint of a minimal pair strategy may increase due to the
request of lower priority strategies (i.e. strategies on the same level of the tree and to its right)
and in general the restraint on g will be much more than usual. But it will be sufficiently well
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behaved so that it allows the Pe requirements to succeed in making g non-computable. However
it will be clear by the end of the proof that this method does not allow us to ask g to be a.e.
dominating as well. In other words, we cannot apply this trick to both f and g in order to
construct a minimal pair of a.e. dominating degrees.

Adapted minimal pair strategy on the tree. Suppose that α on the tree works for Qe. As
usual, α will have its own enumerations Φα,Ψα of the functionals Φe,Ψe. In particular Φα[s]
will be Φα[t] where t is the largest α-stage ≤ s (and similarly for Ψα). The length of agreement
`α is now defined according to Φα,Ψα.

We look at the minimal pair argument in some detail in order to be able to make the
modifications we need. Every Qe strategy α has a restraint rα which may tend to infinity (we
use one restraint for both f, g and direct it to one of these functions if needed). The restraint
rα (or the strategy α) can be in one of the following states: off, f -switched, g-switched (see
figure 1).

off f -switched g-switched

Figure 1: The states of Qe.

Switching of the restraint to different states will be performed explicitly during the construc-
tion. The possible transitions are shown in figure 2.

off � f -switched
off � g-switched

f -switched → g-switched

Figure 2: Possible transitions between the states of Qe.

The idea is that when we have an expansionary stage we can switch to off since it does
not matter if one side of the double computation is injured. However if the f side is injured
we need to switch the restraint to g (and similarly if the g side is injured). A g-switched or
f -switched restraint can return to off state if another expansionary stage comes, in which case
both computations will be restored and the restraint rα will possibly increase.

The extra transition which is not a feature of the usual minimal pair argument is the third
one in figure 2. If a Q strategy wants to start defining hα and setting up a positive rα it is
actually exposing itself to possibly becoming f -switched since the g side of its computations
may later be injured. If there is already an f -switched strategy β on the left of α and on the
same level then α cannot take this risk since it would allow the possibility of two f restraints
on the same level—something we want to avoid. So in that case α will try to g-switch the
restraint on the left before it starts. It does that by waiting for a stage where the length of
agreement `α is larger than `β . Then it can increase rβ up to the use of Ψg

e � |hβ | (where Qe is
the requirement that α, β are trying to fulfill), set β to g-switched state and proceed.

Comments. Before we state formally the set of instructions that a Q node α follows we make
some remarks. First, when a Q strategy switches from a restraint on f to no restraint on f
(i.e. to off or g-switched) then all domination strategies below α_fin must be initialized since
they counted a restraint that is not permanent. Second, the fact that we can only pass from
f -switched to g-switched and not vice-versa is crucial. This transition causes the restraint rβ

to increase for nodes β on the left of the true path when they are not accessible. The fact that
this transition is one-way guarantees that the state of the Q nodes on the left of the true path
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will settle down and so their restraint will reach a limit as well. This is something we need since
otherwise the simplicity requirements P for g would not get the chance to be satisfied.

Finally we point out the different attitude of the positive strategies for g and f , i.e. the
simplicity strategies P and the domination strategies D. A P strategy will respect both the
usual restraint from the nodes on the left (it will enumerate no number which is less than the
last stage where a node to the left of it was accessible) and the g-switched restraints of Q nodes
to the left of it or above it. The standard restraint from the nodes on the left prevents the
situation where there is an f -switched node on the true path, a strategy β in off state at
the same level to the left of it and a node on the right of the true path switches β to an f
restraint thus creating a second restraint on f at the same level. Domination strategies are
more demanding and will respect less restraint: they only listen to f -switched restraints of
higher priority (i.e. above or to the left of them) and not the standard restraint.

2.1. Formal strategies. We give the sets of instructions for each strategy which constitute
the programs actually run in the construction.

Me-node α. These are the backing strategies and they run exactly as described above. In
particular, if α is an Me-node then it works with resolution e. This means that it has k = 3e

outcomes

q1 <∗ · · · <∗ qk.

which are rationals such that q0 = 1, qk = 0 and qi > qi+1.

Qe-node α. Let Nα be the largest restraint imposed on f by a higher priority requirement.
That is, the largest rβ such that β <L α or β ⊂ α and one of the following holds:

• β is an f -switched Q node.
• β is an active D node.

Also, let qn be the outcome of the predecessor of α (i.e. the outcome of its backing strategy) and
δα = 3−e (the distance between the outcomes of the backing strategy). Follow the instructions:

(1) If `α is larger than ever before and larger than all values that the parameters `β with
β <L α and |β| = |α| have ever taken then do the following.
• if there is an f -switched strategy β such that β <L α and |β| = |α| then set rβ

equal to the use of Ψg
e � |hβ |; also g-switch β. Initialize all D strategies of lower

priority than β.
• If µ(D[Nα,N ′)[f ]) > qn − δα where N ′ = max{Nα, u} + 1 and u is the use of the

computations Φf
α � (|hα|+1), Ψg

α � (|hα|+1), then go to the next step. Otherwise
access outcome fin and pass control to the construction.

• Define

hα � (|hα|+ 1) = Φf
α � (|hα|+ 1) = Ψg

α � (|hα|+ 1)

set α to off state, define rα equal to the use of the above computations, access
outcome inf and pass control to the construction.

(2) Otherwise access outcome fin and pass control to the construction.

(apart from the states of a Q node that we discussed, such a strategy may be active or
inactive according to whether rα 6= 0 or rα = 0. This qualification refers to the potential of
the strategy to restrain a segment of f .)
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Pe-node α.

(1) If We ∩ g 6= 0 access outcome diag and pass control to the construction.
(2) Otherwise check if currently there exists x (less than the current stage) such that

• x > 2e
• x ∈ We

• x > r where r is the least number greater than all stages where a node to the left
of α was accessible and all g-switched restraints rβ where β is any node of lower
priority (i.e. to the left or below α).

If yes, put the least one into g and pass control to the construction along with a request
to terminate the current stage. Otherwise access outcome wait and pass control to the
construction.

De-node α. Let Nα be the largest restraint imposed on f by a higher priority requirement (as
described in the Q-node strategy) and s the current stage. Also, let qn be the outcome of the
predecessor of α (i.e. the outcome of its backing strategy) and δα = 3−e (the distance between
the outcomes of its backing strategy).

(1) If α is in active state access outcome active and pass control to the construction.
(2) If α is in inactive state and there exists σ ∈ s<s with the following properties

• |σ| > Nα

• σ ⊃ fs � Nα

• (∀n < |σ|) fs(n) ≤ σ(n)
• µ(D[Nα,|σ|)[σ] > qn − δα

then define f � |σ| = σ, set rα = |σ| and access the active outcome (thus setting α
in active state). Pass control to the construction along with the request to terminate
the current stage.

(3) Otherwise access outcome inactive and pass control to the construction.

2.2. Construction. Start with f0(n) = 0 for all n and g = ∅. Initialize all strategies α (set
rα = 0, hα = ∅). At stage s do the following:

(A) Initialize every active D or Q strategy which became active at some stage s0 < s and
is based on outcome qi of its backing strategy such that

µDt[s] ≥ qi−1

where t is the largest number such that µDt[s0] < qi−1. Also if α was initialized, do
the same for the strategies of lower priority than α (the ones below it or to the right of
it).

(This cancellation is allowed since the outcomes of the backing strategies considered
have been proved wrong. Also, it is necessary since such strategies may impose ‘too
much’ restraint on f , thus preventing it from being a.e. dominating. Note that this
initialization does not happen automatically since some of these strategies may lie on
the left of the true path.)

(B) Start accessing the nodes of the tree starting from the top node , running the corre-
sponding strategies and determining the successor according to the outcome suggested
by the previous strategy. Continue until either stage s is terminated by a request of a
strategy we run or we reach a strategy α with |α| = s. If α is the last node we access,
initialize all nodes to the left of it. If a Q strategy α was in off-state at the beginning
of the stage and g � rα or f � rα changed, α changes to f or g-state respectively.
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2.3. Verification. The following lemma is evident from the construction.

Lemma 2. The state of a Q node α can only change provided that it is active (i.e. rα 6= 0)
and one of the following reasons holds.

(1) Initialization of α sets its state to off.
(2) A node to the right of α on the same level changes the state of α from f-switched to

g-switched.
(3) A domination node of lower priority (i.e. below or to the right of it) changes its state

from off to f-switched.
(4) A simplicity strategy for g below α switches its state from off to g-switched.

Lemma 3. The following basic facts are true.
• There is an infinite leftmost infinitely often visited path TP through the tree.
• The states and restraints of the Q and D nodes to the left of TP reach a limit.
• If a node lies on TP then it is initialized finitely many times.

Proof. We prove these claims by simultaneous induction on TP . Note that every node has
finitely many branches and so we can immediately conclude that the outcomes of a node on TP
will have limit infimum. For the top node all claims are trivial since it is a backing strategy.
Suppose that α = TP � n in an infinitely often visited node such that after some stage s0 no
node to the left of it is visited. Since α has finitely many branches there will be an outcome o
such that the node α+ = α_o is accessed infinitely often and any node to the right of it finitely
often. So α+ belongs to TP and after some stage s1 no node to the left of it is visited. At s1

there are only finitely many active Q or D nodes to the left of α+ and so, after some stage
s2 > s1 there will be no initializations of α+. According to lemma 2 the only state transitions
that can happen to nodes on the left of α+ after s2 concern active Q nodes (of which there
are finitely many) which turn from off to f -switched or from f -switched to g-switched. This
can only happen finitely often and thus the states of all nodes to the left of α+ will stabilize
at some stage s3 > s2. At stage s3 the restraints rβ of the nodes β <L α+ have reached their
final values. �

Lemma 4. If α is a Q node and α_fin is on TP then rα reaches a limit.

Proof. After some stage α_fin will stop being initialized and so, it will stop having expan-
sionary stages. Then rα can not be increased anymore. �

Lemma 5. If α is a P or D strategy on TP then the restraint imposed on α reaches a limit.
Hence all P are satisfied.

Proof. Suppose that α is a P node. By lemma 3 the g restraint coming from nodes to the left
of α will reach a limit. The only other restraint that α has to consider come from g-switched
Q nodes β such that β_fin ⊆ α. But according to lemma 4 this reaches a limit as well. The
same argument applies to the case where α is a Q node, only that now we do not have to
consider the restraint “last stage where a node to the left was accessible”. The satisfaction of
P is evident. �

By construction at any stage there is at most one strategy at each level which restrains f
(i.e. which is an f -switched Q strategy or an active D strategy). So at each level of the tree
there is at most one strategy with a permanent restraint on f (i.e. a permanently active D node
or a permanently f -switched Q node with a final restraint). Let (σi) be inductively defined as
follows. Set σ0 = ∅ and let σi+1 be the node β of least length which holds a permanent restraint
on f and has |β| > |σi|. Then |σi| < |σi+1| and all these nodes lie to the left or on TP . Also,
if Ni is the final value of rσi (and N0 = 0) we have Ni < Ni+1.
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Lemma 6. The sequence (σi) is infinite.

Proof. Suppose for a contradiction that σi, Ni is the last term of the sequence. Let σ ⊃ σi

be a D node on the true path. If q0, . . . , qk are the outcomes of its backing strategy and
µ(domΦ) ∈ [qi, qi−1) then σ will be under qi = qσ. Also all markers µDm will eventually pass
the threshold qσ − δσ. After all states and restraints on the left of σ have stabilized no node
on the same level as σ and to the left of it will be active (according to hypothesis). After such
a stage and when µDrσ

> qσ − δσ (where rσ = Ni) σ will be visited and it will define f such
that µD[Ni,rα)[f ] > qσ − δσ thus becoming active. By hypotheses it will remain active and
this is a contradiction. So (σi) is infinite. �

Lemma 7. f = lims fs exists.

Proof. Once σi becomes active for the last time thus imposing restraint Ni, the segment f � Ni

will not change. �

Lemma 8. For every i ≥ 1 the measure of the reals β in the domain of Φ such that Φβ is not
dominated by f in [Ni−1, Ni) is less than 2 · 3−ni , where 3ni + 1 is the level of σi. Formally,

µ(domΦ−D[Ni−1,Ni)[f ]) < 2 · 3−ni .

Also, ni ≥ i.

Proof. If 3ni + 1 or 3ni + 2 is the level of σi then its resolution is ni and i ≤ ni. Also the
error allowance is δi = 3−ni . Let qj be the outcome of its backing strategy. Then if σi became
permanently active at stage s0 and m is least such that µDm[s0] ∈ [qj , qj−1), by step A of the
construction we have µDm[s] ∈ [qj , qj−1) for all s ≥ s0 , so µ(domΦ) ∈ [qj , qj−1); we also have
that µ(D[Ni−1,Ni)[f ]) > qj − δi (otherwise σi would not be active). So the reals β for which
Φβ is not majorized by f in [Ni−1, Ni) can have measure at most 2δi which is 2 · 3−ni . �

Lemma 9. The degrees of f, g form a minimal pair.

Proof. Suppose that h ≤T f and h ≤T g for some function h. We show that h is computable.
Let Φe, Ψe be programs such that

(4) Φf
e = Ψg

e = h.

Then there is α ⊂ TP such that Φα = Φe and Ψα = Ψe. We show that h = hα. By (4) we
have that α_inf ⊂ TP . The whole argument takes place in a final segment of stages where
α is not initialized and all nodes to the left of α have finalized their states and restraints. It
follows by 4 that there will be no f -switched strategy to the left and on the same level as α.

First we wish to show that outcome inf is accessed infinitely often and thus hα is total.
Since we get infinitely many expansionary α-stages (stages where α is accessible) it is enough
to show that

µD[Ni,N)[f ] > qα − δα

where N > Ni is a fixed number, qα, δα are the outcome and resolution respectively of the
backing strategy of α and i is the maximum such that |σi| < |α|. If |α| = 3e+1 then δα = 3−e.
The level 3ni+1 + 1 of σi+1 will be larger than the level 3e + 1 of α. So by lemma 8 we have

µ(domΦ−D[Ni,∞)[f ]) ≤
∑
j>i

µ(domΦ−D[Nj−1,Nj)[f ]) ≤
∑
j>e

2 · 3−j ≤ 3−e.

So
µ(D[Ni,N)[f ]) ≥ µ(D[Ni,∞)[f ]) > µ(domΦ)− 3−e ≥ qα − 3−e.
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So α will be allowed to access outcome inf infinitely many times thus increasing |hα| infinitely
often. Now we only need to show hα = h. For a contradiction suppose that for a least x,
hα(x) 6= h(x). When hα(x) was defined at some expansionary α-stage s0 we had

(5) hα(x) = Φf
α(x) = Ψg

α(x).

If s1 is the largest expansionary stage for `α at which (5) holds, rα is larger than the correspond-
ing uses of the computations. Let s2 be the least stage after s1 at which one of f � rα, g � rα

changes (from the value they had at s1), and s3 the next expansionary stage after s1. By
construction at each stage at most one of f , g can change. So we have the following cases:

(1) f changes: When the change happens α becomes g-switched. Note that before s3 the
outcome α_inf will not be accessible and so α remains g-switched until s3. So no node
to the right of α or below it will change g � rα before stage s3. This means that at s3

(5) will hold again, a contradiction.
(2) g changes: When the change happens α becomes f -switched. If it remains in this state

until s3 by the same argument we get that (5) will hold at stage s3, a contradiction.
Otherwise a node to the right of α turns this strategy to g-switched state at a stage s∗
between s2 and s3. But at that stage (5) must hold (possibly with new use u) and rα

will increase to cover the use of these (possibly new) computations. From stage s∗ to
stage s3 the node α will remain in g-state and as before it will preserve the g-side of
the computation (5), thus guaranteeing that this equality survives until stage s3; this
is a contradiction.

This shows that (5) holds for all x. �

Lemma 10. The function f is almost everywhere dominating.

Proof. If a real β is such that the function Φβ is total and is not dominated by f , then it must
belong to infinitely many of the sets domΦ−D[Ni−1,Ni)[f ] for i ≥ 1. So according to lemma 8
these reals belong to a set of measure 0. �
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