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Abstract

We study the complexity of the isomorphism relation on classes of
computable structures. We use the notion of FF -reducibility introduced
in [9] to show completeness of the isomorphism relation on many familiar
classes in the context of all Σ1

1 equivalence relations on hyperarithmetical
subsets of ω.

1 Introduction

We develop the theory for computable structures analogous to the theory of iso-
morphism relations introduced by H. Friedman-Stanley in [13]. Our languages
are computable, and our structures have universes contained in ω. In measuring
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complexity, we identify structures with their atomic diagrams. In particular, a
structure is computable if its atomic diagram is computable.

In descriptive set theory, the study of Borel equivalence relations under Borel
reducibility has developed into a rich area. The notion of Borel reducibility al-
lows one to compare the complexity of equivalence relations on Polish spaces, for
details see, for example, [15, 19, 21]. In particular, natural equivalence relations
such as isomorphism and bi-embeddability on classes of countable structures
have been widely studied, e.g., [13, 14, 18, 25]. An effective version of this study
was introduced in [4] and [24]. The complexity of the isomorphism relation on
various classes of countable structures was measured using the idea of effective
transformations. In the recent work [11] the general theory of effectively Borel
(i.e., ∆1

1) equivalence relations on effectively presented Polish spaces was de-
veloped via the notion of effective Borel reducibility. The resulting structure
turned out to be much more complex than in the classical case.

In computable model theory, equivalence relations have also been a subject
of study, e.g., [3, 7, 23], etc. In these papers, equivalence relations of rather
low complexity were studied (computable, in the Ershov hierarchy, Σ0

1,Π
0
1). In

[9] Σ1
1 equivalence relations on computable structures were investigated. The

notion of hyperarithmetical and computable reducibility of Σ1
1 equivalence rela-

tions on ω was used to estimate the complexity of natural equivalence relations
on hyperarithmetical classes of computable structures within the class of Σ1

1

equivalence relations on hyperarithmetical subsets of ω as a whole.
In this paper we continue the study of the theory of Σ1

1 equivalence relations
on computable structures. Our work here shows that this theory behaves very
differently than the theory initiated in H. Friedman-Stanley [13] for isomor-
phism relations and further developed for arbitrary Borel equivalence relations
on Polish spaces [15, 19, 21]. In particular we show that isomorphism of com-
putable graphs is complete with respect to the chosen effective reducibility in
the context of all Σ1

1 equivalence relations on ω. This is false in the context
of countable structures and Borel reducibility [22]: there are examples of Borel
equivalence relations that are not Borel-reducible to isomorphism of graphs. We
also show that the isomorphism relation on computable torsion Abelian groups
is complete among Σ1

1 equivalence relations on ω, while in the classical case it
is known to be incomplete among isomorphism relations on classes of countable
structures [13]. The same holds for isomorphism of computable torsion-free
Abelian groups, which in the case of countable structures is not known to be
complete for isomorphism relations.

2 Background

2.1 Trees

Here we give some definitions useful for describing computable trees. Our trees
are isomorphic to subtrees of ω<ω. For the language, we take a single unary
function symbol, interpreted as the predecessor function. We write ∅ for the top
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node (our trees grow down), and we think of ∅ as its own predecessor. Thus, our
trees are defined on ω with their structure given by the predecessor function,
but we often consider them as subtrees of ω<ω and treat their elements as finite
sequences.

Definition 1. Let S, T ⊆ ω<ω be trees. Define the tree S ∗ T in the following
way. We think of the elements of S ∗ T as ordered pairs (σ, τ), where σ ∈ S,
τ ∈ T . At level 0 of S ∗ T , we have (∅, ∅). For an element (σ, τ) at level k of
S ∗ T , σ and τ are at level k of S and T , respectively. The successors of (σ, τ)
are the pairs (σ′, τ ′), where σ′ is a successor of σ in S, and τ ′ is a successor of
τ in T .

Definition 2. Let T be a subtree of ω<ω. We define the tree rank of x ∈ T ,
denoted by tr(x), by induction:

1. tr(x) = 0 if x has no successor;

2. For α > 0, tr(x) = α if α is the least ordinal greater than tr(y) for all
successors y of x;

3. tr(x) =∞ if x does not have ordinal tree rank.

The tree rank of the tree T is defined to be the rank of the top node ∅.

Note that all computable trees have rank ∞ or rank some computable ordi-
nal. Moreover, for any node x ∈ T , tr(x) =∞ iff x extends to an infinite path
through T [27].

Remark. The tree rank of the tree S ∗ T is the minimum of the tree ranks of
S and T . In particular, S ∗T has an infinite path iff both S and T have infinite
paths. More generally, for σ ∈ S and τ ∈ T , where σ and τ lie at the same level
in their respective trees, tr((σ, τ)) = min(tr(σ), tr(τ)).

Definition 3 (rank-saturated tree). A computable subtree T of ω<ω is rank-
saturated provided that for all x in T :

1. If tr(x) is an ordinal α, then for all β < α, x has infinitely many successors
z such that tr(z) = β;

2. If tr(x) =∞, then for all computable β, x has infinitely many successors z
such that tr(z) = β and x has infinitely many successors z with tr(z) =∞.

Lemma 1. There is a computable rank-saturated tree T∞ such that
rk(T∞) =∞.

Proof. In [17] Harrison proved the existence of a computable linear orderingH of
type ωCK

1 (1+η). We let T∞ be the set of finite sequences ((a0, k0), . . . , (an, kn)),
where a0 > · · · > an in H and k0, . . . , kn ∈ ω. It is easy to see that if ai
corresponds to an ordinal α in H, then tr((a0, k0), . . . , (ai, ki)) = α, and if ai
lies in the non-well-ordered part of H, then tr((a0, k0), . . . , (ai, ki)) =∞.
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Proposition 1. If T is a computable tree, then T ∗ T∞ is a computable rank-
saturated tree of the same tree rank as T .

Proof. The top node in T ∗T∞ clearly has the proper rank, by Remark 2.1. For
x ∈ T ∗T∞ of rank α and β < α, we show that x has infinitely many successors
of rank β. Say x = (σ, τ). By Remark 2.1, tr(τ) ≥ α and because T∞ is
rank-saturated, τ has infinitely many successors τ ′ of rank β. Also, tr(σ) ≥ α,
so σ has a successor σ′ of rank at least β. Then for all such pairs (σ′, τ ′),
tr(σ′, τ ′) = β.

Remark. Computable rank-saturated trees are a special case of computable
rank-homogeneous trees, defined in [5].

Proposition 2.

1. For every computable α, if Tα and Tα1 are computable rank-saturated trees
of tree rank α, then Tα ∼= Tα1 .

2. If T∞1 is a computable rank-saturated tree of tree rank ∞, then T∞ ∼= T∞1 .

Proof. By induction on α.

We will fix the notation Tα for the computable rank-saturated tree of rank α,
and we recall that T∞ is a computable rank-saturated tree with infinite paths.

2.2 Σ1
1 Sets and Relations

We assume the reader is familiar with basic concepts of recursion theory. How-
ever, here we list some definitions and facts that will be useful for the future
proofs. Detailed information can be found, for example, in [1, 27].

Definition 4.

1. A relation S(x) is Σ1
1 if there is an arithmetical relation R(x, u), on tuples

of numbers, such that x ∈ S iff (∃f ∈ ωω) (∀s)R(x, f � s) — we identify
f � s with its code.

2. A relation S(x) is Π1
1 if there is an arithmetical relation R(x, u), on tuples

of numbers, such that x ∈ S iff (∀f ∈ ωω) (∃s)R(x, f � s).

3. A relation S(x) is ∆1
1 if it is both Σ1

1 and Π1
1.

By the Kleene-Suslin Theorem, a relation is ∆1
1 iff it is hyperarithmetical.

If S(x) is a k-place relation, we may consider the set S′ of codes for k-tuples
belonging to S. It is clear that S is Σ1

1 iff S′ is Σ1
1. The next result gives familiar

conditions equivalent to being Σ1
1 [1, 27]. We identify finite sequences with their

codes.

Proposition 3 (Kleene). The following are equivalent:

1. S is Σ1
1;
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2. There is a computable relation R(n, u), on pairs of numbers, such that
n ∈ S iff (∃f) (∀s)R(n, f � s);

3. There is a computable sequence of computable trees (Tn)n∈ω such that
n ∈ S iff Tn has an infinite path.

Theorem 1 (Bounding). Let CWF denote the set of codes for computable well-
founded trees on ω and for each computable ordinal α, let CWFα denote the set
of codes for computable trees of tree rank less than α. Then if F is a hyperarith-
metical function from a hyperarithmetical subset of ω into CWF, there exists a
computable α such that the range of F is contained in CWFα.

We now give a notion of effective reducibility of Σ1
1 equivalence relations

on hyperarithmetical subsets of ω. The idea is the following. A relation E
is effectively reducible to a relation E′ if there is an effective procedure which
allows us to answer any question about E-equivalence using information about
E′-equivalence. We want to use computable functions as witnesses for reducibil-
ities.

Definition 5. Let E,E′ be Σ1
1 equivalence relations on hyperarithmetical sub-

sets X,Y ⊆ ω, respectively. The relation E is FF -reducible to E′ iff there exists
a partial computable function f with X ⊆ dom(f), Y ⊆ f(X) such that for all
x, y ∈ X,

xEy ⇐⇒ f(x)E′f(y).

We denote this fact by E ≤FF E′.

The notion of FF -reducibility was first used in [9] and was called “tc-
reducibility”. In the next section we will explain the relationship between FF -
reducibility and the notion of tc-reducibility introduced in [4] to compare the
classes of countable structures.

2.3 Computable Characterization and Classification

Here we review equivalent approaches from [16] to the problems of computable
characterization and classification. The goal is to be able to measure the com-
plexity of a set of computable structures or an equivalence relation on com-
putable structures.

The first approach is based on the notion of computable infinitary formulas.
Roughly speaking, computable infinitary formulas are Lω1ω formulas in which
the infinite disjunctions and conjunctions are over c.e. sets. For a formal defi-
nition see [1]. Computable infinitary formulas form a hierarchy: a computable
Σ0 or Π0 formula is a finitary quantifier-free formula. For α > 0, a computable
Σα formula is a c.e. disjunction of formulas of the form ∃uψ, where ψ is com-
putable Πβ for some β < α, and a computable Πα formula is a c.e. conjunction
of formulas of the form ∀uψ, where ψ is computable Σβ for some β < α.

Following [16], we say that a class K of structures closed under isomorphism
has a computable characterization if the set Kc of its computable members
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consists exactly of all computable models of a computable infinitary sentence.
This definition expresses the idea that the set of all computable members of K
can be nicely defined among all other structures for the same language.

The second approach uses the notion of an index set. For a computable
structureM, an index is a number a such that ϕa = χD(M), where (ϕa)a∈ω is a
computable enumeration of all unary partial computable functions. The index
set for M is the set I(M) of all indices for computable (isomorphic) copies of
M. For a class K of structures, closed under isomorphism, the index set is the
set I(K) of all indices for computable members of K. As in [16], we say that a
class K has a computable characterization, if its index set is hyperarithmetical.

Proposition 4 (Goncharov-Knight [16]). Let K be a class of countable struc-
tures closed under isomorphism, and let Kc be the set of computable members
of K. Then the following are equivalent:

1. The index set I(K) of K is hyperarithmetical;

2. There is a computable infinitary sentence ψ such that Kc = Modcψ, where
Modcψ is the set of all computable models of ψ.

For a relation E on a class K of structures, denote by I(E,K) the set of
pairs of indices

{(m,n)|m,n ∈ I(K) and MmEMn}.

We measure the complexity of various relations on computable structures via
the complexity of the corresponding sets of pairs of indices. In what follows we
will often identify E with I(E,K) considered as a relation on indices. Thus, it
will make sense to compare relations on classes of computable structures with
relations on subsets of ω. The most studied cases are that of isomorphism and
bi-embeddability relations, e.g., [2, 6, 9, 16].

We are interested in studying the relations on classes that are nicely defined.
For this reason we will require the index set of each class K to be hyperarith-
metical. Equivalently, Kc = Modcψ for some computable infinitary ψ. Let
K and K ′ be two classes of countable structures, such that K = Modψ and
K ′ = Modψ′ for some computable infinitary ψ,ψ′. Suppose the isomorphism
relation on K is tc-reducible to the isomorphism relation on K ′ in the sense of
[4]. Then I(∼=,K) ≤FF I(∼=,K ′) and the reduction is exactly the restriction to
computable structures of the reduction of K to K ′.

3 Isomorphism is Complete among Σ1
1 Equiva-

lence Relations

If I(K) is hyperarithmetical and E is the isomorphism or bi-embeddability re-
lation, then the corresponding equivalence relation I(E,K) on indices is a Σ1

1

set. In this section we prove completeness of the isomorphism relation on var-
ious familiar classes of structures in the context of all Σ1

1 equivalence relations
on hyperarithmetical subsets of ω under FF -reducibility. These results show
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the difference of our theory from the classical theory of Borel equivalence re-
lations since, by [22], some Borel equivalence relations cannot be reduced to
isomorphism relations.

Definition 6. A relation E on a hyperarithmetical subset of ω is an FF -
complete Σ1

1 equivalence relation if E is Σ1
1 and every Σ1

1 equivalence relation
E′ on a hyperarithmetical subset of ω is FF -reducible to E.

Note that if E is an equivalence relation on a hyperarithmetical class Kc of
computable structures then it is complete if and only if for every Σ1

1 relation
E′, there exists a computable sequence of computable structures (Mn)n∈ω from
Kc such that for all m,n ∈ ω,

mE′n ⇐⇒ MmEMn.

3.1 Trees and Graphs

Theorem 2. The isomorphism relation on computable trees is an FF -complete
Σ1

1 equivalence relation.

Proof. Let E be a Σ1
1 equivalence relation on ω. To prove that E is FF -reducible

to the isomorphism relation on computable trees, we will build a computable
sequence of computable trees (Tn)n∈ω such that for every m,n ∈ ω,

mEn⇐⇒ Tm ∼= Tn.

Since E is Σ1
1, there exists a uniformly computable sequence of trees (Tm,n)m,n∈ω

such that ¬mEn if and only if Tm,n is well founded. Then we say that ¬mEn
is witnessed by stage α if and only if Tm,n has tree-rank less than α.

The strategy to build (Tn)n∈ω is the following. First, uniformly in m,n, we
will build a computable tree T ∗m,n with the following properties:

1. T ∗m,n
∼= T ∗n,m;

2. mEn⇒ T ∗m,n
∼= T∞, where T∞ is the rank-saturated tree with an infinite

path;

3. ¬mEn⇒ T ∗m,n
∼= Tα, where Tα is the rank-saturated tree of tree rank α,

for α least such that for all m′ ∈ [m]E and n′ ∈ [n]E the relation ¬m′En′
is witnessed by stage α.

We start with a computable sequence of computable trees (Tm,n)m,n∈ω such
that mEn iff Tm,n has an infinite path (such a sequence exists by Proposition
3). For every m,n ∈ ω, we construct (effectively and uniformly) a new tree T ′m,n
in the following way. Let σ0, σ1, . . . be an enumeration of all finite sequences
of natural numbers. Suppose σs = (a0, . . . , als). Then under the sth node on
level 1 (i.e., under the element of the form (s), s ∈ ω) of T ′m,n we put the tree
Ps = Tm,a0 ∗ Ta0,a1 ∗ · · · ∗ Tals ,n, identifying the top node of Ps with s. Then

tr(T ′m,n) = sup{tr(Ps) + 1|s ∈ ω}.
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If mEn, then Tm,n has an infinite path, i.e., tr(Tm,n) = ∞. Therefore,
tr(T ′m,n) =∞. If ¬mEn, then for every σ = (a0, . . . , al), tr(Tm,a0 ∗Ta0,a1 ∗ · · · ∗
Tal,n) is a computable ordinal. Indeed, fix m,n ∈ ω such that ¬mEn. For every
finite sequence σs consider the corresponding tree Ps = Tm,a0∗Ta0,a1∗· · ·∗Tals ,n.
Consider the function F from the set of finite sequences into CWF such that
F (s) is the code of Ps. The function F is hyperarithmetical, its domain is
computable. By Bounding, there is a computable bound on the range of F .
Therefore, T ′m,n has rank α for some computable α. Note that for all m′ ∈ [m]E
and n′ ∈ [n]E , we get the same bound α. Indeed, let m′Em,n′En and let β be
the computable bound on the ranks of trees constructed using finite sequences
starting with m′ and ending with n′. Let Ps = Tm,a0 ∗ Ta0,a1 ∗ · · · ∗ Tals ,n be
as above. Then tr(Tm′,m ∗ Ps ∗ Tn,n′) = tr(Ps), thus α ≤ β. Similarly one can
show that β ≤ α.

Let T ∗m,n = T ′m,n ∗ T∞. As shown in Proposition 1, the tree T ∗m,n is a
computable rank-saturated tree, tr(T ∗m,n) = tr(T ′m,n), and the construction is
uniform.

Now we build the desired sequence (Tn)n∈ω. Take the tree T consisting
exactly of the sequences (m,m, . . . ,m) of length i ≤ m, for m ∈ ω. Now fix n
and for every m, attach T ∗m,n to the m-th leaf of T . The resulting tree is Tn.
The sequence (Tn)n∈ω witnesses the reducibility: mEn iff Tm ∼= Tn. Indeed,
suppose mEn. Then

1. for every k ∈ [m]E = [n]E , tr(T ′k,m) = tr(T ′k,n) = ∞, thus T ∗k,m
∼= T ∗k,n

∼=
T∞;

2. for every k /∈ [m]E , tr(T ′k,m) = tr(T ′k,n) = α, thus T ∗k,m
∼= T ∗k,n

∼= Tα.

Therefore, Tm ∼= Tn.
Suppose now that ¬mEn. Then T ∗m,m

∼= T∞, while T ∗m,n
∼= Tα for some

computable α. Thus Tm � Tn.

Corollary 1. The isomorphism relation on computable graphs is an FF -complete
Σ1

1 equivalence relation.

3.2 Torsion-Free Abelian Groups

Torsion-free Abelian groups are subgroups of Q-vector spaces. Hjorth [18] gave
a transformation from trees to torsion-free Abelian groups which enabled him to
show that the isomorphism relation on these groups is not Borel. Downey and
Montalbán [8] built on Hjorth’s ideas to show that the isomorphism problem on
these groups is complete among Σ1

1 sets. In this paper we use the transformation
from [18] and [8] to show that the isomorphism relation on computable torsion-
free Abelian groups is, in fact, complete as a Σ1

1 equivalence relation. First we
describe the transformation.

We consider the elements of ω<ω as a basis for a Q-vector space V ∗. Let
T be a subtree of ω<ω, and let V be the subspace of V ∗ with basis T . Let
Tn be the set of elements at level n of T . If u is at level n > 0, let u− be
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the predecessor of u. Let (pn)n∈ω be a computable list of distinct primes. We
let G(T ) be the subgroup of V generated by the vector space elements of the
following forms:

1. v
(p2n)k

, where v ∈ Tn, and k ∈ ω,

2. v+v′

(p2n+1)k
, where v ∈ Tn, v′ is a successor of v, and k ∈ ω.

Theorem 3. The isomorphism relation on computable torsion-free Abelian
groups is FF -complete among Σ1

1 equivalence relations.

Proof. It follows from [12] that if we restrict the class of trees to only rank-
saturated trees, then the transformation from trees into torsion-free Abelian
groups described above is 1− 1 on isomorphism types. Thus, given a Σ1

1 equiv-
alence relation E for every n ∈ ω, we first construct the sequence of rank-
saturated trees (T ∗m,n)m∈ω as in Theorem 2. We want to pass effectively from
the sequence to a group Gn such that Gn ∼= Gn′ iff for all m, T ∗m,n

∼= T ∗m,n′ .
For m ∈ ω, let (pm,k)k∈ω be uniformly computable lists of primes such that

for distinct m, the lists are disjoint. For each m, we apply the transformation
described above, taking Tm,n to a torsion-free Abelian group Gm,n, using the
list of primes (pm,k)k∈ω. The resulting sequence (Gm,n)n∈ω will satisfy the
property:

T ∗m,n
∼= T ∗m′,n′ ⇐⇒ Gm,n ∼= Gm′,n′ .

Let Gn = ⊕mGm,n.
Using the fact that the sequences of primes are disjoint, we can see that

Gn ∼= Gn′ iff for all m, Gm,n ∼= Gm,n′ . The reason is that Gm,n is the subgroup
of Gn generated by the set of elements divisible by all the powers of some prime
in the list (pm,k)k∈ω (for more details see [8] or [12]).

3.3 Abelian p-Groups

Let p be a prime number. An Abelian p-group is an Abelian group such that
each element has some power of p for its order. Countable Abelian p-groups are
classified up to isomorphism in terms of Ulm invariants (see [20] for details).

In this section we use the transformation from trees into Abelian p-groups
to get completeness of the isomorphism relation for this class. Note that in the
classical theory of Borel equivalence relations the analogous result is false (see
[13] and a proof for Turing computable embeddings in [12]).

Theorem 4. The isomorphism relation on Abelian p-groups is an FF -complete
Σ1

1 equivalence relation.

Proof. By Theorem 2, for any Σ1
1 equivalence relation E on ω, we have a uni-

formly computable sequence of trees (Tn)n∈ω such that mEn iff Tm ∼= Tn. Each
tree Tn is the result of combining a family of trees T ∗m,n. Each T ∗m,n is rank
saturated, so it is really determined by its tree rank. We may modify our trees,
if necessary, so that the tree rank, if it exists, is a limit ordinal.
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Let T = (Tm)m∈ω be a sequence of rank saturated trees. We need a
transformation taking such sequences T to Abelian p-groups G(T ), such that
G(T ) ∼= G(T ′) iff the sequences of ranks for the trees in T and T ′ match. We
replace Tm by a tree Tm∗ such that each single successor in Tm becomes a chain
of pm successors in Tm∗ . Then tr(Tm∗ ) = pmtr(T

m). We form a single tree with
infinitely many nodes at level 1, with a copy of T 0

∗ below the first, a copy of T 1
∗

below the second, etc. Denote the resulting tree by T . Let G be the Abelian
p-group generated by the elements of T in a standard way [20]: the top node is
the identity, and if x′ is a successor of x, then px′ = x.

Rogers [28] described how to calculate (non-effectively, of course) the Ulm
sequence for G from the tree ranks of elements in the corresponding tree T . We
describe her scheme briefly. For each node of successor rank, apart from the
top node, we choose a successor witnessing the rank. Now, for each α, uG(α) is
the number of nodes of rank α that are not chosen as witnesses. In computing
uG(α), we count all x at level 1 such that tr(x) = α. Suppose x is an element
at level n > 1, where tr(x) = α. Let y be the predecessor of x. If tr(y) > α+ 1,
then x cannot witness the rank of y, so we count x. If tr(y) = α + 1, then x
may be the chosen successor of y witnessing the rank. We count x just in case
it is not chosen.

Using Rogers scheme, we can see that our group G has the following features.
For all computable α, the Ulm invariant uα(G) is either ∞ or 0. For limit α,
uα(G) = 0. If α = ωβ + pm, then uα(G) =∞ iff tr(Tm) ≥ ωβ.

Corollary 2. The isomorphism relation on torsion Abelian groups is an FF -
complete Σ1

1 equivalence relation.

Suppose K and K ′ are classes of countable structures, with universe a sub-
set of ω, closed under isomorphism. We write K ≤tc K ′ if there is a Turing
computable operator Φ = ϕe taking the atomic diagram of each A ∈ K to the
atomic diagram of some B ∈ K ′, such that Φ is 1 − 1 on isomorphism types.
This notion was introduced in [4]. If I(K) and I(K ′) are hyperarithmetical,
and K ≤tc K ′, then I(∼=,K) ≤FF I(∼=,K ′). If Φ is the computable operator
reducing the isomorphism relation on structures in K to that on structures in
K ′, then for computable A ∈ K, we can effectively compute an index for Φ(A)
from an index for A.

H. Friedman and Stanley [13] introduced the study of Borel reductions ≤B
of isomorphism relations on classes of structures with universe ω. They showed
that the class of undirected graphs, the class of fields of any fixed characteristic,
the class of 2-step nilpotent groups, and the class of linear orderings all lie “on
top” in this setting. In [4], it was observed that the Borel transformations are
all effective. Moreover, the transformations work perfectly well for structures
with universe an arbitrary subset of ω. Therefore, these classes are also “on
top” under the relation ≤tc in [4]. We have shown that for the class K of trees,
the relation I(E,K) (the set of pairs of indices for computable members of K
that are isomorphic) lies “on top” under the relation ≤FF on Σ1

1 equivalence
relations on ω. From this, we immediately get the following.
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Theorem 5. For each of the following classes K, I(E,K) is an FF -complete
Σ1

1 equivalence relation:

• undirected graphs,

• fields of characteristic 0, or p,

• 2-step nilpotent groups,

• linear orderings.

4 Open Problems

In [9] equivalence relations were compared not only via FF -reducibility but also
via hyperarithmetical reducibility (h-reducibility):

Definition 7. Let E,E′ be Σ1
1 equivalence relations on hyperarithmetical sub-

sets X,Y ⊆ ω, respectively. The relation E is h-reducible to E′ iff there exists
a hyperarithmetical function f such that for all x, y ∈ X,

xEy ⇐⇒ f(x)E′f(y).

By [14] the following theorem is true for the bi-embeddability relation on
computable structures. Here we mean the standard model-theoretic notion of
embeddings on structures.

Theorem 6. For every Σ1
1 equivalence relation E on ω there exists a hyper-

arithmetical class K of structures, which is closed under isomorphism and such
that E is h-equivalent to the bi-embeddability relation on computable structures
from K.

Remark 3.4 of [14] provides the result for Σ1
1 preorders on the reals, but the

result for preorders on ω follows almost immediately.
In [10] it was proved that the general structure of Σ1

1 equivalence relations on
hyperarithmetical subsets of ω is rich. The above theorem states that the struc-
ture of bi-embeddability relations on hyperarithmetical classes of computable
structures is as complex as the whole structure of Σ1

1 equivalence relations. It
would be interesting to get the following refinement of Theorem 6:

Question 1. If E is a Σ1
1 equivalence relation on ω, does there exist a hyper-

arithmetical class K of structures, closed under isomorphism and such that E is
FF -equivalent to the bi-embeddability relation on computable structures from
K?

Let K be a class of structures closed under isomorphism such that the index
set I(K) is hyperarithmetical. Consider the following statements:

(1) I(∼=,K) is properly Σ1
1;

(2) I(∼=,K) is m-complete Σ1
1;
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(3) I(∼=,K) is Σ1
1 complete under FF -reducibility;

(4) I(∼=,K � highSR) is not hyperarithmetical within K � highSR, where
highSR is the class of structures of high (i.e., noncomputable) Scott rank;

(5) K has infinitely many non-isomorphic computable structures of high Scott
rank.

The following implications are true: (1)⇐ (2)⇐ (3)⇒ (4)⇒ (5).

Question 2. Which of these arrows are reversible?

One of the approaches to give a negative answer to the question “(1)⇒ (3)?”
would be to positively answer the following:

Question 3. Is there a hyperarithmetical class of structures with a unique (up
to isomorphism) computable structure of high Scott rank?

If the answer to the second question is positive, we see immediately that (1)
does not imply (5). Since (3) implies (5), we also conclude that (1) does not
imply (3).

Remark. It is known that up to bi-embeddability this is true in the following
sense. In the class of computable linear orderings, the equivalence class of
linear orderings bi-embeddable with the rationals is Σ1

1-complete, but every
computable scattered linear ordering (i.e., not bi-embeddable with the rationals)
has a hyperarithmetical equivalence class. For more information on the bi-
embeddability relation in the class of countable linear orderings see [26].

This question may be also considered as a weaker version of the question from
[16] where the authors asked about the existence of a computable structure with
high Scott rank and a hyperarithmetical index set.

Question 4. Are there isomorphism relations on hyperarithmetical classes of
computable structures which are not hyperarithmetical and not FF -complete?
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